1
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
2
|
Dzehverovic M, Jusic B, Pilav A, Lukic T, Cakar J. Kinship analysis of skeletal remains from the Middle Ages. Forensic Sci Int Genet 2023; 63:102829. [PMID: 36669262 DOI: 10.1016/j.fsigen.2023.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
Medieval cemeteries Klisa-Guca Gora, Alihodze and Glavica-Han Bila located in the Travnik area (Travnik, Bosnia and Herzegovina) were archaeologically examined in the period 2011-2014, revealing human skeletal remains of 11 individuals in total. Archaeological skeletal samples, previously deposited in Travnik Homeland Museum (Travnik, Bosnia and Herzegovina) were subjected to genetic analysis. The aim of this research was to test familiar relationship of 11 individuals excavated from three medieval cemeteries and to predict Y-haplogroup for male individuals. In order to perform molecular-genetic characterisation of collected human skeletal remains, two systems of genetic markers were analysed: autosomal and Y-STR loci. Complete or partial data obtained by autosomal STR typing of 11 individuals were subjected to kinship analysis. Male sex was determined in eight samples out of 11. Direct relatives of the "brother-brother" type were detected in one case with high kinship probability (KP) value of 99.99996 %. Complete or nearly complete and usable Y-STR profiles were obtained for six out of eight male individuals. The presence of identical haplotypes at Y-STR loci and results of Y-haplogroup prediction suggest that all male individuals share the same paternal lineage and belong to J2a haplogroup. Overall, this study emphasises the usefulness, efficiency and sensitivity of STR markers in the molecular-genetic characterisation of old skeletal remains as well as the importance of employing additional markers like Y-STRs in archaeogenetic studies, besides traditionally used autosomal STR markers, in order to get a comprehensive information about close and distant relatives, and ancestry.
Collapse
Affiliation(s)
- Mirela Dzehverovic
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Belma Jusic
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina.
| | - Amela Pilav
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Tamara Lukic
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Cakar
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Danielewski M, Żuraszek J, Zielińska A, Herzig KH, Słomski R, Walkowiak J, Wielgus K. Methodological Changes in the Field of Paleogenetics. Genes (Basel) 2023; 14:genes14010234. [PMID: 36672975 PMCID: PMC9859346 DOI: 10.3390/genes14010234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Paleogenetics has significantly changed since its inception almost forty years ago. Initially, molecular techniques available to the researchers offered minimal possibilities for ancient DNA analysis. The subsequent expansion of the scientific tool cabinet allowed for more remarkable achievements, combined has with the newfound popularity of this budding field of science. Finally, a breakthrough was made with the development of next-generation sequencing (NGS) technologies and the update of DNA isolation protocols, through which even very fragmented aDNA samples could be used to sequence whole genomes. In this paper, we review the achievements made thus far and compare the methodologies utilized in this field of science, discussing their benefits and challenges.
Collapse
Affiliation(s)
- Mikołaj Danielewski
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Joanna Żuraszek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Karl-Heinz Herzig
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Medical Research Center, Oulu University Hospital, P.O. Box 5000, FIN-90014 Oulu, Finland
- Correspondence: (K.-H.H.); (K.W.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Correspondence: (K.-H.H.); (K.W.)
| |
Collapse
|
4
|
Vilanova C, Porcar M. Art-omics: multi-omics meet archaeology and art conservation. Microb Biotechnol 2020; 13:435-441. [PMID: 31452355 PMCID: PMC7017809 DOI: 10.1111/1751-7915.13480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 11/30/2022] Open
Abstract
Multi-omics can informally be described as the combined use of high-throughput techniques allowing the characterization of complete microbial communities by the sequencing/identification of total pools of biomolecules including DNA, proteins or metabolites. These techniques have allowed an unprecedented level of knowledge on complex microbial ecosystems, which is having key implications in land and marine ecology, industrial biotechnology or biomedicine. Multi-omics have recently been applied to artistic or archaeological objects, with the goal of either contributing to shedding light on the original context of the pieces and/or to inform conservation approaches. In this minireview, we discuss the application of -omic techniques to the study of prehistoric artworks and ancient man-made objects in three main technical blocks: metagenomics, proteomics and metabolomics. In particular, we will focus on how proteomics and metabolomics can provide paradigm-breaking results by unambiguously identifying peptides associated with a given, palaeo-cultural context; and we will discuss how metagenomics can be central for the identification of the microbial keyplayers on artworks surfaces, whose conservation can then be approached by a range of techniques, including using selected microorganisms as 'probiotics' because of their direct or indirect effect in the stabilization and preservation of valuable art objects.
Collapse
Affiliation(s)
- Cristina Vilanova
- Darwin Bioprospecting Excellence SLCatedrático Agustín Escardino, 946980PaternaSpain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence SLCatedrático Agustín Escardino, 946980PaternaSpain
- Institute for Integrative Systems BiologyISysBio (Universitat de València‐CSIC)Parc Científic de la Universitat de ValènciaC. Catedràtic José Beltrán 246980PaternaSpain
| |
Collapse
|
5
|
Genetic kinship and admixture in Iron Age Scytho-Siberians. Hum Genet 2019; 138:411-423. [DOI: 10.1007/s00439-019-02002-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 01/08/2023]
|
6
|
Pilli E, Boccone S, Agostino A, Virgili A, D'Errico G, Lari M, Rapone C, Barni F, Moggi Cecchi J, Berti A, Caramelli D. From unknown to known: Identification of the remains at the mausoleum of fosse Ardeatine. Sci Justice 2018; 58:469-478. [DOI: 10.1016/j.scijus.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 11/26/2022]
|
7
|
Kulstein G, Hadrys T, Wiegand P. As solid as a rock—comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int J Legal Med 2017; 132:13-24. [DOI: 10.1007/s00414-017-1653-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 12/01/2022]
|
8
|
Madel MB, Niederstätter H, Parson W. TriXY-Homogeneous genetic sexing of highly degraded forensic samples including hair shafts. Forensic Sci Int Genet 2016; 25:166-174. [PMID: 27613970 DOI: 10.1016/j.fsigen.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 02/04/2023]
Abstract
Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research.
Collapse
Affiliation(s)
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Tie J, Uchigasaki S. Detection of short tandem repeat polymorphisms from human nails using direct polymerase chain reaction method. Electrophoresis 2014; 35:3188-92. [PMID: 24934775 DOI: 10.1002/elps.201400061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/10/2022]
Abstract
Human nail is an important forensic material for parental testing and individual identification in large-scale disasters. Detection of STR polymorphism from hard tissues generally requires DNA purification, which is technically complicated and time consuming. In the present study, we attempted to detect STR polymorphisms from untreated human nail samples by direct PCR amplification method using the primer mixture supplied with the GenePrint® SilverSTR® III System or the AmpFℓSTR® Identifiler® PCR Amplification Kit, and Tks Gflex DNA polymerase known to be effective for amplification from crude samples. A nail fragment measuring approximately 1.5 mm in breadth and 0.5 mm in length was placed directly into a PCR tube, and various PCR conditions were tested. The PCR products were analyzed by denaturing acrylamide gel electrophoresis or CE. Multiple STR polymorphisms were detected successfully. This method that detects STR polymorphisms not only from fresh human fingernails, but also from old nail fragments stored at room temperature for up to 10 years is expected to become a novel DNA analytical method in forensic medicine and genetic studies.
Collapse
Affiliation(s)
- Jian Tie
- Division of Legal Medicine, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | |
Collapse
|