1
|
Harris S, Njogu G, Galbraith R, Galbraith J, Hastick S, Storey N, Chapman-Jones D, Soothill J. A 'Tuba Drain' incorporated in sink drains reduces counts of antibiotic-resistant bacterial species at the plughole: a blinded, randomized trial in 36 sinks in a hospital outpatient department with a low prevalence of sink colonization by antibiotic-resistant species. J Hosp Infect 2025; 155:123-129. [PMID: 39515476 DOI: 10.1016/j.jhin.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Multi-resistant Gram-negative bacteria (GNB) survive in hospital drains in traps that contain water and may ascend into the sink because of splashes, or biofilm growth. AIM To investigate whether the 'Tuba Drain' (TD) a long, bent, continually descending copper tube between the sink outlet and the trap prevents the ascent of bacteria. METHODS After initial laboratory tests confirmed that the TD prevented bacteria in the U-bend from splashing upwards into the sink outlet, TDs were assessed in a randomized, blinded trial in a hospital outpatient department built in 2019. Sinks were paired into those with a similar clinical exposure and each member of each pair was randomized to receive either new, standard plumbing up to and including the trap (18 sinks) or the same new standard plumbing but including the TD inserted between the sink outlet and trap. Bacterial counts in swabs from the sink outlets were determined blindly before and monthly after the plumbing change for a year. GNB that are associated with clinical infection and carriage of resistance genes, Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia and all Enterobacterales were the organisms of primary interest and termed target bacteria. FINDINGS The TDs fitted into the required spaces and functioned without problems. The geometric means (over months) of the counts of target bacteria in TD-plumbed sinks was lower than those in their paired controls, P=0.012 (sign test, two-tailed). Prevalence of target bacteria in sinks was low. CONCLUSION TDs were effective for reducing target bacteria in sinks.
Collapse
Affiliation(s)
- S Harris
- Department of Microbiology, University College Hospital, London, UK
| | - G Njogu
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital London, UK
| | - R Galbraith
- Department of Statistics, University College London, London, UK
| | - J Galbraith
- Department of Statistics, University College London, London, UK
| | - S Hastick
- Department of Space and Place, Great Ormond Street Hospital, London, UK
| | - N Storey
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital London, UK
| | - D Chapman-Jones
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - J Soothill
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital London, UK.
| |
Collapse
|
2
|
Kociołek-Balawejder E, Winiarska K, Winiarski J, Mucha I. Transformation of Cu 2O into Metallic Copper within Matrix of Carboxylic Cation Exchangers: Synthesis and Thermogravimetric Studies of Novel Composite Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3893. [PMID: 39203071 PMCID: PMC11355710 DOI: 10.3390/ma17163893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction of Cu2O particles precipitated within the matrix earlier. It was possible to introduce as much as 22.0 wt% Cu0 into a gel-type polymeric carrier (G/H#Cu) when an ascorbic acid solution was used to act as a reducer of Cu2O and a reagent transforming the functional groups from Na+ into the H+ form. The extremely high shrinkage of the porous skeleton containing -COOH groups (in a wet and also dry state) and its limited affinity for water protected the copper from oxidation without the use of special conditions. When macroporous CCE was used as a host material, the composite material (M/H#Cu) contained 18.5 wt% Cu, and copper particles were identified inside the resin beads, but not on their surface where Cu2+ ions appeared during drying. Thermal analysis in an air atmosphere and under N2 showed that dispersing metallic copper within the resin matrix accelerated its decomposition in both media, whereby M/H#Cu decomposed faster than G/H#Cu. It was found that G/H#Cu contained 6.0% bounded water, less than M/H#Cu (7.5%), and that the solid residue after combustion of G/H#Cu and M/H#Cu was CuO (26.28% and 22.80%), while after pyrolysis the solid residue (39.35% and 26.23%) was a mixture of carbon (50%) and metallic copper (50%). The presented composite materials thanks to the antimicrobial, catalytic, reducing, deoxygenating and hydrophobic properties of metallic copper can be used for point-of-use and column water/wastewater treatment systems.
Collapse
Affiliation(s)
- Elżbieta Kociołek-Balawejder
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
| | - Katarzyna Winiarska
- Department of Inorganic Chemistry, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
| | - Juliusz Winiarski
- Groups of Surface Technology, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211 A, 50-556 Wrocław, Poland
| |
Collapse
|
3
|
Gajera G, Funde S, Palep H, Kothari V. Duration of fermentation affects microbiome composition and biological activity of an Indian traditional formulation - Panchagavya. J Ayurveda Integr Med 2024; 15:100880. [PMID: 38457966 PMCID: PMC10940934 DOI: 10.1016/j.jaim.2023.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE This study aimed at investigating whether the duration of fermenting Panchagavya (PG) preparation in copper vessel affects its biological activity and microbiome composition. MATERIALS AND METHODS Prophylactic potential of PG against bacterial infection was assessed through an in vivo assay employing the nematode worm Caenorhabditis elegans as a model host. Bacterial diversity of the PG samples was revealed through metagenomic analysis. RESULTS Duration of fermentation was found to affect biological activity as well as microbiome composition of the PG samples. PG-samples fermented ≥60 min lost their prophylactic potential, and develop anthelmintic activity. Bacterial phyla whose relative abundance was significantly different between the prophylactic and anthelmintic PG samples were Planctomycetota, Proteabacteria, Bacteroidota, Verrucomicrobiota, Patescibacteria, Acidobacteriota, Chloroflexi, Firmicutes and Campilobacterota. CONCLUSION This study validates the prophylactic potential of Panchagavya against bacterial pathogens, and shows that duration of the fermentation time while preparing PG can have profound effect on its biological activities. Biological activities of PG samples seem to have a correlation with their inherent microbial community. Metagenomic profiling can be an effective tool for standardization of PG formulations.
Collapse
Affiliation(s)
- Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad, 382481, India
| | - Snehal Funde
- Dr. Palep's Medical Research Foundation, Mumbai, India
| | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, 382481, India.
| |
Collapse
|
4
|
Kiranmayee M, Rajesh N, Vidya Vani M, Khadri H, Mohammed A, Chinni SV, Ramachawolran G, Riazunnisa K, Moussa AY. Green synthesis of Piper nigrum copper-based nanoparticles: in silico study and ADMET analysis to assess their antioxidant, antibacterial, and cytotoxic effects. Front Chem 2023; 11:1218588. [PMID: 37736256 PMCID: PMC10509375 DOI: 10.3389/fchem.2023.1218588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Nanobiotechnology is a popular branch of science that is gaining interest among scientists and researchers as it allows for the green manufacturing of nanoparticles by employing plants as reducing agents. This method is safe, cheap, reproducible, and eco-friendly. In this study, the therapeutic property of Piper nigrum fruit was mixed with the antibacterial activity of metallic copper to produce copper nanoparticles. The synthesis of copper nanoparticles was indicated by a color change from brown to blue. Physical characterization of Piper nigrum copper nanoparticles (PN-CuNPs) was performed using UV-vis spectroscopy, FT-IR, SEM, EDX, XRD, and Zeta analyzer. PN-CuNPs exhibited potential antioxidant, antibacterial, and cytotoxic activities. PN-CuNPs have shown concentration-dependent, enhanced free radical scavenging activity, reaching maximum values of 92%, 90%, and 86% with DPPH, H2O2, and PMA tests, respectively. The antibacterial zone of inhibition of PN-CuNPs was the highest against Staphylococcus aureus (23 mm) and the lowest against Escherichia coli (10 mm). PN-CuNPs showed 80% in vitro cytotoxicity against MCF-7 breast cancer cell lines. Furthermore, more than 50 components of Piper nigrum extract were selected and subjected to in silico molecular docking using the C-Docker protocol in the binding pockets of glutathione reductase, E. coli DNA gyrase topoisomerase II, and epidermal growth factor receptor (EGFR) tyrosine to discover their druggability. Pipercyclobutanamide A (26), pipernigramide F (32), and pipernigramide G (33) scored the highest Gibbs free energy at 50.489, 51.9306, and 58.615 kcal/mol, respectively. The ADMET/TOPKAT analysis confirmed the favorable pharmacokinetics, pharmacodynamics, and toxicity profiles of the three promising compounds. The present in silico analysis helps us to understand the possible mechanisms behind the antioxidant, antibacterial, and cytotoxic activities of CuNPs and recommends them as implicit inhibitors of selected proteins.
Collapse
Affiliation(s)
- Modumudi Kiranmayee
- Department Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, India
| | - Nambi Rajesh
- Department Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, India
| | - M. Vidya Vani
- Department Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, India
| | - Habeeb Khadri
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Khateef Riazunnisa
- Department Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, India
| | - Ashaimaa Y. Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| |
Collapse
|
5
|
Ontiveros‐Robles JA, Villanueva‐Flores F, Juarez‐Moreno K, Simakov A, Vazquez‐Duhalt R. Antibody-Functionalized Copper Oxide Nanoparticles with Targeted Antibacterial Activity. ChemistryOpen 2023; 12:e202200241. [PMID: 37226371 PMCID: PMC10209517 DOI: 10.1002/open.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) were functionalized with specific antibodies to target their antibacterial activity against Gram-positive or Gram-negative bacteria. The CuO-NPs were covalently functionalized to cover their surface with specific antibodies. The differently prepared CuO-NPs were characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. The antibacterial activities of the unmodified CuO-NPs and the antibody-functionalized nanoparticles (CuO-NP-AbGram- and CuO-NP-AbGram+ ) were determined for both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria. The antibody-functionalized NPs showed a differential increase of their antibacterial activity according to the specific antibody. The CuO-NP-AbGram- in E. coli showed reduced half maximal inhibitory concentration (IC50 ) and minimum inhibitory concentration (MIC) values when compared with unfunctionalized CuO-NPs. On the other hand, the CuO-NP-AbGram+ also showed reduced IC50 and MIC values in B. subtilis, when compared with non-functionalized CuO-NPs. Thus, the functionalized CuO nanoparticles with specific antibodies showed enhanced specificity of their antibacterial activity. The advantages of "smart" antibiotic nanoparticles are discussed.
Collapse
Affiliation(s)
- Jorge A. Ontiveros‐Robles
- Department of BionanotechnologyCentro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoKm 107 carretera Tijuana-EnsenadaEnsenadaBaja California22860México
| | - Francisca Villanueva‐Flores
- Escuela Nacional de Medicina y Ciencias de la SaludTecnológico de MonterreyAv. H. Colegio Militar 4700ChihuahuaChihuahua31300México
| | - Karla Juarez‐Moreno
- Department of BionanotechnologyCentro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoKm 107 carretera Tijuana-EnsenadaEnsenadaBaja California22860México
| | - Andrey Simakov
- Department of BionanotechnologyCentro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoKm 107 carretera Tijuana-EnsenadaEnsenadaBaja California22860México
| | - Rafael Vazquez‐Duhalt
- Department of BionanotechnologyCentro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoKm 107 carretera Tijuana-EnsenadaEnsenadaBaja California22860México
| |
Collapse
|
6
|
Bisht N, Dwivedi N, Kumar P, Venkatesh M, Yadav AK, Mishra D, Solanki P, Verma NK, Lakshminarayanan R, Ramakrishna S, Mondal DP, Srivastava AK, Dhand C. Recent Advances in Copper and Copper-Derived Materials for Antimicrobial Resistance and Infection Control. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 24:100408. [PMID: 36033159 PMCID: PMC9395285 DOI: 10.1016/j.cobme.2022.100408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Antibacterial properties of copper have been known for ages. With the rise of antimicrobial resistance (AMR), hospital-acquired infections, and the current SARS-CoV-2 pandemic, copper and copper-derived materials are being widely researched for healthcare ranging from therapeutics to advanced wound dressing to medical devices. We cover current research that highlights the potential uses of metallic and ionic copper, copper alloys, copper nanostructures, and copper composites as antibacterial, antifungal, and antiviral agents, including those against the SARS-CoV-2 virus. The applications of copper-enabled engineered materials in medical devices, wound dressings, personal protective equipment, and self-cleaning surfaces are discussed. We emphasize the potential of copper and copper-derived materials in combating AMR and efficiently reducing infections in clinical settings.
Collapse
Affiliation(s)
- Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradip Kumar
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mayandi Venkatesh
- Ocular Infections & Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepti Mishra
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratima Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore.,National Skin Centre, 1 Mandalay Road, 308205, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections & Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore, 117576, Singapore
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal 462026, MP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Sahu M, Sharma AK, Sharma G, Kumar A, Nandave M, Babu V. Facile synthesis of bromelain copper nanoparticles to improve the primordial therapeutic potential of copper against acute myocardial infarction in diabetic rats. Can J Physiol Pharmacol 2022; 100:210-219. [PMID: 34910610 DOI: 10.1139/cjpp-2021-0129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our current investigation comprises the synthesis and pharmacological impact of bromelain copper nanoparticles (BrCuNP) against diabetes mellitus (DM) and associated ischemia/reperfusion (I/R) - induced myocardial infarction. Bromelain is a proteolytic enzyme obtained from Ananas comosus L. Merr., which has blood platelet aggregation inhibiting and arterial thrombolytic potential. Moreover, copper is well-known to facilitate glucose metabolism and strengthen cardiac muscle and antioxidant activity; although, chronic or long-term exposure to high doses of copper may lead to copperiedus. To restrict these potential hazards, we synthesized herbal nano-formulation which convincingly indicated the improved primordial therapeutic potential of copper by reformulating the treatment carrier with bromelain, resulting in facile synthesis of BrCuNP. DM was induced by administration of double cycle repetitive dose of low dose streptozotocin (20 mg/kg, i.p.) in high-fat diet- fed animals. DM and associated myocardial I/R injury were estimated by increased serum levels of total cholesterol, low-density lipoprotein, very low-density lipoprotein, lactate dehydrogenase, creatine kinase myocardial band, cardiac troponin, thiobarbituric acid reactive substances, tumor necrosis factor α, interleukin 6, and reduced serum level of high-density lipoprotein and nitrite/nitrate concentration. However, treatment with BrCuNP ameliorates various serum biomarkers by approving cardioprotective potential against DM- and I/R-associated injury. Furthermore, upturn of histopathological changes were observed in cardiac tissue of BrCuNP-treated rats in comparison to disease models.
Collapse
Affiliation(s)
- Megha Sahu
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida-201313, UP, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Gunjan Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varsha Babu
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida-201313, UP, India
| |
Collapse
|
9
|
Abraham J, Dowling K, Florentine S. Can Copper Products and Surfaces Reduce the Spread of Infectious Microorganisms and Hospital-Acquired Infections? MATERIALS (BASEL, SWITZERLAND) 2021; 14:3444. [PMID: 34206230 PMCID: PMC8269470 DOI: 10.3390/ma14133444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023]
Abstract
Pathogen transfer and infection in the built environment are globally significant events, leading to the spread of disease and an increase in subsequent morbidity and mortality rates. There are numerous strategies followed in healthcare facilities to minimize pathogen transfer, but complete infection control has not, as yet, been achieved. However, based on traditional use in many cultures, the introduction of copper products and surfaces to significantly and positively retard pathogen transmission invites further investigation. For example, many microbes are rendered unviable upon contact exposure to copper or copper alloys, either immediately or within a short time. In addition, many disease-causing bacteria such as E. coli O157:H7, hospital superbugs, and several viruses (including SARS-CoV-2) are also susceptible to exposure to copper surfaces. It is thus suggested that replacing common touch surfaces in healthcare facilities, food industries, and public places (including public transport) with copper or alloys of copper may substantially contribute to limiting transmission. Subsequent hospital admissions and mortality rates will consequently be lowered, with a concomitant saving of lives and considerable levels of resources. This consideration is very significant in times of the COVID-19 pandemic and the upcoming epidemics, as it is becoming clear that all forms of possible infection control measures should be practiced in order to protect community well-being and promote healthy outcomes.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| | - Kim Dowling
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Singarayer Florentine
- Future Regions Research Centre, School of Science, Psychology and Sport, Federation University Australia, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| |
Collapse
|
10
|
Aguş O, Arslan O, Abalı Y. Metal borate nanostructures for industrial antibacterial ceramic fabrication. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1811328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Osman Aguş
- Faculty of Science and Letters, Departmant of Chemistry, Manisa Celal Bayar University, Manisa, Turkey
| | - Osman Arslan
- Faculty of Engineering and Natural Sciences, Departmant of Food Engineering, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Yüksel Abalı
- Faculty of Science and Letters, Departmant of Chemistry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
11
|
Dauvergne E, Mullié C. Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections? Antibiotics (Basel) 2021; 10:antibiotics10030286. [PMID: 33801855 PMCID: PMC7999369 DOI: 10.3390/antibiotics10030286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Copper has been used for its antimicrobial properties since Antiquity. Nowadays, touch surfaces made of copper-based alloys such as brasses are used in healthcare settings in an attempt to reduce the bioburden and limit environmental transmission of nosocomial pathogens. After a brief history of brass uses, the various mechanisms that are thought to be at the basis of brass antimicrobial action will be described. Evidence shows that direct contact with the surface as well as cupric and cuprous ions arising from brass surfaces are instrumental in the antimicrobial effectiveness. These copper ions can lead to oxidative stress, membrane alterations, protein malfunctions, and/or DNA damages. Laboratory studies back up a broad spectrum of activity of brass surfaces on bacteria with the possible exception of bacteria in their sporulated form. Various parameters influencing the antimicrobial activity such as relative humidity, temperature, wet/dry inoculation or wear have been identified, making it mandatory to standardize antibacterial testing. Field trials using brass and copper surfaces consistently report reductions in the bacterial bioburden but, evidence is still sparse as to a significant impact on hospital acquired infections. Further work is also needed to assess the long-term effects of chemical/physical wear on their antimicrobial effectiveness.
Collapse
Affiliation(s)
- Emilie Dauvergne
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France;
- FAVI Limited Company, 80490 Hallencourt, France
| | - Catherine Mullié
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France;
- Laboratoire Hygiène, Risque Biologique et Environnement, Centre Hospitalier Universitaire Amiens-Picardie, 80025 Amiens, France
- Correspondence:
| |
Collapse
|
12
|
A novel function of
Mycobacterium tuberculosis
chaperonin paralog GroEL1 in copper homeostasis. FEBS Lett 2020; 594:3305-3323. [DOI: 10.1002/1873-3468.13906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
|
13
|
Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. J Inorg Biochem 2020; 210:111134. [DOI: 10.1016/j.jinorgbio.2020.111134] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
|
14
|
Pathania M, Bhardwaj P, Pathania N, Rathaur VK, Amisha. A review on exploring evidence-based approach to harnessing the immune system in times of corona virus pandemic: Best of modern and traditional Indian system of medicine. J Family Med Prim Care 2020; 9:3826-3837. [PMID: 33110775 PMCID: PMC7586565 DOI: 10.4103/jfmpc.jfmpc_504_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus (COVID-19) is the most dreaded pandemic of our times, which lead to a state of chaos among the mightiest nations of the world. The immune system plays a great role in response to any foreign organisms be it bacteria or viruses. Virus-based pandemics like SARS, MERS, COVID-19 have time and again been surfacing leading to mortality and morbidity worldwide. These pandemics have also resurfaced the role of public health and its modes which have been fading in the presence of lucrative hi-tech medical industry. Although Chinese system of medicine has been explored, there is still more to be done in exploring solutions from time tested Indian systems of medicine like Ayurved and Yog. Its time to rethink and explore ways to harness our immune system and look for evidence-based solutions providing the best of both medical systems to the patients, i.e., modern medicine as well as Ayurved and Yog. The present review is a narrative review wherein studies were searched from databases like PubMed, Cochrane, Scopus, and web pages. Given a paucity of studies hereby we explored existing pieces of evidence, thereby concluding that more randomized controlled trials need to be done for assessing the role of Ayurved, Yog, and other Indian systems of medicine to enrich the armamentarium in the fight against such viruses in future. Family physicians can play a vital role in not only suggesting treatment but also changes in lifestyle of the patients as well as their family. Evidence based knowledge of ancient Indian system will open a new door of integration for overall well being of patient with a scientific outlook.
Collapse
Affiliation(s)
- Monika Pathania
- Department of Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | - Praag Bhardwaj
- Department of Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | - Nitish Pathania
- Department of Kayachikitsa, Sri Sri College of Ayurvedic Science and Research, Bangaluru, Karnataka, India
| | - Vyas K Rathaur
- Department of Pediatrics, AIIMS, Rishikesh, Uttarakhand, India
| | - Amisha
- PG-1 Resident, University of Arkansas, Little Rock, USA
| |
Collapse
|
15
|
Mitra D, Kang ET, Neoh KG. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21159-21182. [PMID: 31880421 DOI: 10.1021/acsami.9b17815] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface contamination by microbes leads to several detrimental consequences like hospital- and device-associated infections. One measure to inhibit surface contamination is to confer the surfaces with antimicrobial properties. Copper's antimicrobial properties have been known since ancient times, and the recent resurgence in exploiting copper for application as antimicrobial materials or coatings is motivated by the growing concern about antibiotic resistance and the pressure to reduce antibiotic use. Copper, unlike silver, demonstrates rapid and high microbicidal efficacy against pathogens that are in close contact under ambient indoor conditions, which enhances its range of applicability. This review highlights the mechanisms behind copper's potent antimicrobial property, the design and fabrication of different copper-based antimicrobial materials and coatings comprising metallic copper/copper alloys, copper nanoparticles or ions, and their potential for practical applications. Finally, as the antimicrobial coatings market is expected to grow, we offer our perspectives on the implications of increased copper release into the environment and the potential ecotoxicity effects and possibility of development of resistant genes in pathogens.
Collapse
Affiliation(s)
- Debirupa Mitra
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| |
Collapse
|
16
|
Das PE, Abu-Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules 2020; 25:555. [PMID: 32012912 PMCID: PMC7037650 DOI: 10.3390/molecules25030555] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
: The synthesis of metal nanoparticles using plant extracts is a very promising method in green synthesis. The medicinal value of Moringa oleifera leaves and the antimicrobial activity of metallic copper were combined in the present study to synthesize copper nanoparticles having a desirable added-value inorganic material. The use of a hydroalcoholic extract of M. oleifera leaves for the green synthesis of copper nanoparticles is an attractive method as it leads to the production of harmless chemicals and reduces waste. The total phenolic content in the M. oleifera leaves extract was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The M. oleifera leaves extract was treated with a copper sulphate solution. A color change from brown to black indicates the formation of copper nanoparticles. Characterization of the synthesized copper nanoparticles was performed using ultraviolet-visible light (UV-Vis) spectrophotometry, Fourier-transform infrared (FTIR) spectrometry, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The synthesized copper nanoparticles have an amorphous nature and particle size of 35.8-49.2 nm. We demonstrate that the M. oleifera leaves extract and the synthesized copper nanoparticles display considerable antioxidant activity. Moreover, the M. oleifera leaves extract and the synthesized copper nanoparticles exert considerable anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (MIC values for the extract: 500, 250, 250, and 250 µg/mL; MIC values for the copper nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized copper nanoparticles exert relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; MIC values for the copper nanoparticles: 125, 125, 62.5, and 31.2 µg/mL, respectively). Our study reveals that the green synthesis of copper nanoparticles using a hydroalcoholic extract of M. oleifera leaves was successful. In addition, the synthesized copper nanoparticles can be potentially employed in the treatment of various microbial infections due to their reported antioxidant, anti-bacterial, and anti-fungal activities.
Collapse
Affiliation(s)
- Prince Edwin Das
- Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India;
| | - Imad A. Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666 Sharjah, UAE;
| | - Amin F. Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666 Sharjah, UAE;
| | - Srinivasan Narasimhan
- Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India;
| | | |
Collapse
|
17
|
Rai R, Gummadi SN, Chand DK. Cuprous Oxide- or Copper-Coated Jute Stick Pieces at an Air-Water Interface for Prevention of Aerial Contamination in Potable Water. ACS OMEGA 2019; 4:22514-22520. [PMID: 31909334 PMCID: PMC6941366 DOI: 10.1021/acsomega.9b03184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Cuprous oxide and copper have been synthesized via the solvothermal process using basic copper carbonate as the source of copper. Pure Cu2O or Cu could be afforded by simply varying the solvent while keeping the temperature and time constant. In this study, copper-based materials were coated on jute stick pieces (JSP) in situ. Cu2O-coated JSP (Cu2O-JSP) and Cu-coated JSP (Cu-JSP) were characterized by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Cu2O-JSP and Cu-JSP were found to be active against Escherichia coli NCIM 2931 (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). The antibacterial nature of the material and the buoyant nature of Cu2O-JSP and Cu-JSP were exploited to develop beaded necklace-like strands that could be floated on potable water to effectively prevent aerial contamination. Leaching of copper from both Cu2O-JSP and Cu-JSP into water was found to be below the permissible limit for copper in drinking water.
Collapse
Affiliation(s)
- Randhir Rai
- Department
of Chemistry and Department of Biotechnology, Bhupat and Jyoti
Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| | - Sathyanarayana N. Gummadi
- Department
of Chemistry and Department of Biotechnology, Bhupat and Jyoti
Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| | - Dillip Kumar Chand
- Department
of Chemistry and Department of Biotechnology, Bhupat and Jyoti
Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| |
Collapse
|
18
|
Copper water swishing. Br Dent J 2019; 226:718. [DOI: 10.1038/s41415-019-0381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Math MV, Kattimani YR, Padhye MM. Role of Hand Washing and Water Storage in Copper Tank on Incidence of Diarrhea. Indian J Community Med 2019; 44:71. [PMID: 30983721 PMCID: PMC6437792 DOI: 10.4103/ijcm.ijcm_302_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mahantayya V. Math
- Department of Physiology, MGM Medical College, Navi Mumbai, Maharashtra, India,Address for correspondence: Dr. Mahantayya V. Math, Department of Physiology, MGM Medical College, Navi Mumbai - 410 209, Maharashtra, India. E-mail:
| | | | - Manjusha M. Padhye
- Department of Physiology, MGM Medical College, Navi Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Original Research Article (Experimental): Targeting fungal menace through copper nanoparticles and Tamrajal. J Ayurveda Integr Med 2018; 11:316-321. [PMID: 30594354 PMCID: PMC7527802 DOI: 10.1016/j.jaim.2018.02.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/11/2018] [Accepted: 02/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background WHO reports, an escalation of antibiotic resistance in opportunistic pathogens like Candida. Tamrajal, i.e., water stored in copper vessels has been proclaimed as health elixir by ancient Ayurveda. Vis-a-Vis the use of copper contact surfaces and nanoparticles has gained significance for their antimicrobial effects. It thus seems imperative to examine copper nanoparticles and tamrajal as promising alternatives to existing antifungals. Objective This study not only assessed the influence of Tamrajal and copper nanoparticles on the morphological alterations of the Candida and its biofilm forming ability, but also on their ability to destroy preformed biofilms. Materials and methods Copper oxide nanoparticles as well as Tamrajal were evaluated as complementary as well as stand-alone antimicrobial agents. ‘Time kill assay’ and ‘germ tube inhibition test’ were performed as end-point analysis for pathogenesis, while biofilm quantification, performed to assess the colonizing capability of Candida. Scanning Electron Microscope was used for visualizing the cells, whilst ICP-AES to determine the copper concentration. Results 92–100% cytotoxicity to the fluconazole resistant Candida species was observed with copper oxide nanoparticles as well as tamrajal during 24hr time kill assay. The study also confirmed complete germ tube inhibition by copper in both its forms in addition to the reduction in the biofilm production. Conclusion Compared to the classes of antifungals like azoles, echinocandins etc, copper based anti-candidal agents highlight a potential way to combat resistant candidiasis. The possibility of accumulation of NP resulting in cytotoxicity puts tamrajal as the choice due to its efficacy as well as non-toxicity as per the EPA.
Collapse
|
21
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
22
|
González MB, Brugnoni LI, Flamini DO, Quinzani LM, Saidman SB. Immobilization and release of copper species from a microstructured polypyrrole matrix. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:53. [PMID: 28064434 DOI: 10.1007/s10661-016-5764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Copper species immobilization in hollow rectangular-sectioned microtubes of polypyrrole (PPy) electrosynthesized on 316L stainless steel was carried out using two different methods. One of them involved the immobilization after the PPy electropolymerization and the other one during the electrosynthesis process. The electrodes modified with copper species were rotated at different speeds in well water under open-circuit potential conditions. The release of copper species from the PPy matrix and the antibacterial activity against Escherichia coli were analyzed. The obtained results demonstrate that the amount of copper species released as well as the bactericidal effects against E. coli increases with rotation speed. The PPy coating modified with copper species after the electropolymerization reaction exhibited the best performance in terms of antibacterial activity and corrosion protection. These electrodes were tested in a lab-scale continuous flow system for well water disinfection.
Collapse
Affiliation(s)
- M B González
- Departamento de Ingeniería Química, Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Universidad Nacional del Sur, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - L I Brugnoni
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| | - D O Flamini
- Departamento de Ingeniería Química, Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Universidad Nacional del Sur, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - L M Quinzani
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur, CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - S B Saidman
- Departamento de Ingeniería Química, Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Universidad Nacional del Sur, Av. Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
23
|
Tarnishing and Cu Ion release in Selected Copper-Base Alloys: Implications towards Antimicrobial Functionality. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Chauhan A, Semwal DK, Mishra SP, Semwal RB. Ayurvedic research and methodology: Present status and future strategies. Ayu 2015; 36:364-369. [PMID: 27833362 PMCID: PMC5041382 DOI: 10.4103/0974-8520.190699] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ayurveda is a science of life with a holistic approach to health and personalized medicine. It is one of the oldest medical systems, which comprises thousands of medical concepts and hypothesis. Interestingly, Ayurveda has ability to treat many chronic diseases such as cancer, diabetes, arthritis, and asthma, which are untreatable in modern medicine. Unfortunately, due to lack of scientific validation in various concepts, this precious gift from our ancestors is trailing. Hence, evidence-based research is highly needed for global recognition and acceptance of Ayurveda, which needs further advancements in the research methodology. The present review highlights various fields of research including literary, fundamental, drug, pharmaceutical, and clinical research in Ayurveda. The review further focuses to improve the research methodology for Ayurveda with main emphasis on the fundamental research. This attempt will certainly encourage young researchers to work on various areas of research for the development and promotion of Ayurveda.
Collapse
Affiliation(s)
- Ashutosh Chauhan
- Department of Biotechnology, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Deepak Kumar Semwal
- Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | | | - Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
26
|
Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. WATER RESEARCH 2014; 63:245-51. [PMID: 25014431 PMCID: PMC4159065 DOI: 10.1016/j.watres.2014.06.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/27/2014] [Accepted: 06/16/2014] [Indexed: 05/05/2023]
Abstract
As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm).
Collapse
Affiliation(s)
- Theresa A Dankovich
- P.O. Box 400472, Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | - James A Smith
- P.O. Box 400472, Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
27
|
Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater 2014; 10:3795-810. [PMID: 24704700 DOI: 10.1016/j.actbio.2014.03.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/07/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
Periodontal diseases like periodontitis and peri-implantitis have been linked with Gram-negative anaerobes. The incorporation of various chemotherapeutic agents, including metal ions, into several materials and devices has been extensively studied against periodontal bacteria, and materials doped with metal ions have been proposed for the treatment of periodontal and peri-implant diseases. The aim of this review is to discuss the effectiveness of materials doped with metal and metalloid ions already used in the treatment of periodontal diseases, as well as the potential use of alternative materials that are currently available for other applications but have been proved to be cytotoxic to the specific periodontal pathogens. The sources of this review included English articles using Google Scholar™, ScienceDirect, Scopus and PubMed. Search terms included the combinations of the descriptors "disease", "ionic species" and "bacterium". Articles that discuss the biocidal properties of materials doped with metal and metalloid ions against the specific periodontal bacteria were included. The articles were independently extracted by two authors using predefined data fields. The evaluation of resources was based on the quality of the content and the relevance to the topic, which was evaluated by the ionic species and the bacteria used in the study, while the final application was not considered as relevant. The present review summarizes the extensive previous and current research efforts concerning the use of metal ions in periodontal diseases therapy, while it points out the challenges and opportunities lying ahead.
Collapse
|