1
|
Inselman AL, Masters EA, Moore JN, Agarwal R, Gassman A, Kuijpers G, Beger RD, Delclos KB, Swift S, Camacho L, Vanlandingham MM, Sloper D, Nakamura N, Gamboa da Costa G, Woodling K, Bryant M, Trbojevich R, Wu Q, McLellen F, Christner D. The effect of black cohosh extract and risedronate coadministration on bone health in an ovariectomized rat model. Front Pharmacol 2024; 15:1365151. [PMID: 38689663 PMCID: PMC11058223 DOI: 10.3389/fphar.2024.1365151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Preparations of black cohosh extract are sold as dietary supplements marketed to relieve the vasomotor symptoms of menopause, and some studies suggest it may protect against postmenopausal bone loss. Postmenopausal women are also frequently prescribed bisphosphonates, such as risedronate, to prevent osteoporotic bone loss. However, the pharmacodynamic interactions between these compounds when taken together is not known. To investigate possible interactions, 6-month-old, female Sprague-Dawley rats underwent bilateral ovariectomy or sham surgery and were treated for 24 weeks with either vehicle, ethinyl estradiol, risedronate, black cohosh extract or coadministration of risedronate and black cohosh extract, at low or high doses. Bone mineral density (BMD) of the femur, tibia, and lumbar vertebrae was then measured by dual-energy X-ray absorptiometry (DEXA) at weeks 0, 8, 16, and 24. A high dose of risedronate significantly increased BMD of the femur and vertebrae, while black cohosh extract had no significant effect on BMD individually and minimal effects upon coadministration with risedronate. Under these experimental conditions, black cohosh extract alone had no effect on BMD, nor did it negatively impact the BMD-enhancing properties of risedronate.
Collapse
Affiliation(s)
- Amy L. Inselman
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Elysia A. Masters
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Jalina N. Moore
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Rajiv Agarwal
- Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Audrey Gassman
- Division of Urology, Obstetrics and Gynecology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Gemma Kuijpers
- Division of Urology, Obstetrics and Gynecology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Kenneth B. Delclos
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Sybil Swift
- Office of Dietary Supplement Program, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Michelle M. Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Gonçalo Gamboa da Costa
- Office of the Center Director, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Kellie Woodling
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Raul Trbojevich
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Florence McLellen
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Donna Christner
- Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
2
|
Guo X, Yu X, Yao Q, Qin J. Early effects of ovariectomy on bone microstructure, bone turnover markers and mechanical properties in rats. BMC Musculoskelet Disord 2022; 23:316. [PMID: 35366843 PMCID: PMC8977003 DOI: 10.1186/s12891-022-05265-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fragility fracture is one of the most serious consequences of female aging, which can increase the risk of death. Therefore, paying attention to the pathogenesis of postmenopausal osteoporosis (PMOP) is very important for elderly women. Methods and materials Forty 12-week-old female rats were divided into two groups including the ovariectomy (OVX) group and the control group. Four rats in each group were selected at 1, 4, 8, 12 and 16 weeks after operation. Vertebral bones and femurs were dissected completely for micro-Computed Tomography (micro-CT) scanning, biological modulus detection and histomorphological observation. Results In OVX group, bone volume/total volume (BV/TV), bone trabecular connection density (Conn.D) and trabecular bone number (Tb.N) decreased significantly with time (P < 0.05). The elastic modulus of femur in OVX group was lower than that in control group, but there was no significant difference between them (P > 0.05). Over time, the tartrate resistant acid phosphatase (TRAP), osteocalcin (BGP), type I procollagen amino terminal propeptide (PINP) and type I collagen carboxy terminal peptide (CTX-I) in OVX group increased significantly (P < 0.05). The micrographs of the OVX group showed sparse loss of the trabecular interconnectivity and widening intertrabecular spaces with time. Conclusion The bone loss patterns of vertebral body and femur were different in the early stage of estrogen deficiency. The bone turnover rate of OVX rats increased, however the changes of biomechanical properties weren’t obvious.
Collapse
|
3
|
Munshi R, Joshi S, Panchal F, Kumbhar D, Chaudhari P. Does Panchatikta ghrita have anti-osteoporotic effect? Assessment in an experimental model in ovariectomized rats. J Ayurveda Integr Med 2021; 12:35-42. [PMID: 31708331 PMCID: PMC8039356 DOI: 10.1016/j.jaim.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Osteoporosis is a public health problem in the elderly wherein a decrease in bone mass and mineral density increases the at risk of fractures. Panchatikta Ghrita (PG) is a classical Ayurvedic formulation that may help slow bone degeneration. OBJECTIVE This experimental study was conducted to assess the efficacy of Panchatikta ghrita (PG) in protecting against postmenopausal osteoporosis in ovariectomized rats. MATERIALS AND METHODS The experiment was initiated after Institutional Animal Ethics Committee approval. 96 female Sprague Dawley rats were divided into 8 groups viz. sham control (NC), diseased control (DC), vehicle control (VC), 3 test drug (PG) groups (PG1, PG2 & PG3 - 0.9, 1.8 and 2.7gm/kg body weight respectively) and 2 standard control (SC) groups - SC1 received 17α-ethinylestradiol 1μg/kg/day while SC2 received alendronate (7mg/kg/week). Study medications were administereddaily for four months. Bone specific biomarkers viz. osteocalcin and TRAP-5b were estimated at baseline and end of study. Animals were sacrificed on day 121 and their femurs and tibiae were harvested for histomorphometric analysisand bone microarchitectural studies. RESULTS Serum osteocalcin and TRAP-5b showed significant increase (p < 0.001) in levels in DC group as compared to sham controls. All 3 doses of PG decreased bone specific biomarker levels with maximal effect seen with highest dose of PG similar to that seen with standard drugs. PG also significantly improved bone micro architectural parameters like bone mineral density and mineral content at higher dose levels. Decrease in osteoclasts and significant dose dependent increase in bone hardness and elasticity was seen with PG which was comparable to standard drugs. CONCLUSION PG increased bone mineral density and content, decreased turnover of bone specific biomarkers and osteoclast formation, indicating its protective effect against experimentally induced postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Renuka Munshi
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Hospital, Dr AR Nair Road, Mumbai Central, Mumbai, 400 008, India.
| | - Samidha Joshi
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Hospital, Dr AR Nair Road, Mumbai Central, Mumbai, 400 008, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Hospital, Dr AR Nair Road, Mumbai Central, Mumbai, 400 008, India
| | - Dipti Kumbhar
- Department of Clinical Pharmacology, TN Medical College & BYL Nair Hospital, Dr AR Nair Road, Mumbai Central, Mumbai, 400 008, India
| | - Pradip Chaudhari
- Comparative Oncology Program & Small Animal Imaging Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India
| |
Collapse
|
4
|
Lee HH, Jang JW, Lee JK, Park CK. Rutin Improves Bone Histomorphometric Values by Reduction of Osteoclastic Activity in Osteoporosis Mouse Model Induced by Bilateral Ovariectomy. J Korean Neurosurg Soc 2020; 63:433-443. [PMID: 32172552 PMCID: PMC7365279 DOI: 10.3340/jkns.2019.0097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/28/2019] [Indexed: 11/27/2022] Open
Abstract
Objective Osteoporosis is a disease of unbalanced bone metabolism that results in low bone mineral density with increased bone fragility and propensity for fractures. The increased rate of bone fracture due to osteoporosis places a significant burden on public health care expenditures. Therefore, numerous studies have been designed and performed to identify the drugs or health foods that can improve the bone quality or quantity. This study was designed to evaluate and analyze the therapeutic effects of rutin on histomorphometric values of the spine and femur in an osteoporotic mouse model induced by bilateral ovariectomy.
Methods Thirty female ICR mice (8 weeks old) underwent either a sham operation (only abdominal incision, sham group, n=10) or bilateral ovariectomy (n=20). The ovariectomized (OVX) animals were randomly divided into two groups : untreated OVX group (OVX-C, n=10), or rutin-administered group (OVX-R, n=10). The OVX-C group received weight-adjusted doses of saline vehicle and the OVX-R group received 50 mg/kg of rutin intraperitoneally, starting 1 day after surgery. At 4 and 8 weeks after surgery, serum estrogen, osteocalcin, alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX-1) were analyzed. Interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α were also analyzed. Bone histomorphometric parameters of the 4th lumbar vertebra and femur were determined by micro-computed tomography.
Results In OVX-C group, ALP, osteocalcin, CTX-1, IL-1β, IL-6, and TNF-α levels were significantly increased at 4 and 8 weeks compared to sham operation group. Rutin administration after OVX statistically significantly reduced ALP, CTX-1, IL-1β, IL-6, and TNF-α levels at 4 and 8 weeks. Rutin administration also improves bone histomorphometric parameters including trabecular bone volume fraction, trabecular thickness, and trabecular number. Trabecular separation was also decreased in OVX-R group compared to OVX-C group.
Conclusion The present study demonstrated that rutin has therapeutic effects on improving bone histomorphometric values in an OVX mouse model. The improvement in histomorphometric values may be associated with the reduction of osteoclastic activity via inhibition of IL-1β, IL-6, and TNF-α. In future studies, the mechanism for the effect of rutin on osteoporosis should be demonstrated more clearly to use rutin in human osteoporosis.
Collapse
Affiliation(s)
- Hye-Hwa Lee
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Jae-Won Jang
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea.,Department of Neurosurgery, Leon Wiltse Memorial Hospital, Suwon, Korea
| | - Jung-Kil Lee
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea.,Department of Neurosurgery, Chonnam National University Hospital, Gwangju, Korea
| | - Choon-Keun Park
- Department of Neurosurgery, Leon Wiltse Memorial Hospital, Suwon, Korea
| |
Collapse
|
5
|
Chanpaisaeng K, Reyes Fernandez PC, Fleet JC. Dietary calcium intake and genetics have site-specific effects on peak trabecular bone mass and microarchitecture in male mice. Bone 2019; 125:46-53. [PMID: 31078711 PMCID: PMC6604851 DOI: 10.1016/j.bone.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Abstract
Trabecular bone (Tb) is used for rapid exchange of calcium (Ca) in times of physiologic need and the site-specific characteristics of Tb may explain why certain sites are more vulnerable to osteoporosis. We hypothesized that peak trabecular bone mass (PTBM) and Tb microarchitecture are differentially regulated by dietary Ca intake, genetics, or Gene-by-Diet (GxD) interactions at the distal femur and the fifth lumbar (L5) vertebra. Male mice from 62 genetically distinct lines were fed basal (0.5%) or low (0.25%) Ca diets from 4 to 12 wks of age. Afterwards, the right femur and L5 vertebra were removed and trabecular bone was analyzed by μCT. In mice fed the basal diet, bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Conn.D) were significantly higher in the L5 vertebra than femur. Femur Tb had a weaker, more rod-like structure than the L5 vertebrae while mice fed the low Ca diet developed rod-like structures at both sites. Dietary Ca restriction also caused a greater relative reduction of Tb.N and Conn.D in the femur than L5 vertebra, i.e. it was more harmful to the integrity of Tb microarchitecture in femur. Genetics was a major determinant of Tb at both sites, e.g. heritability of BV/TV on the basal diet = 0.65 (femur) and 0.68 (L5 vertebra). However, while GxD interactions altered the impact of dietary Ca restriction on Tb parameters at both sites, the effect was not uniform, e.g. some lines had site-specific responses to Ca restriction. The significance of our work is that there are site-specific effects of dietary Ca restriction and genetics that work independently and interactively to influence the attainment of PTBM and Tb microarchitecture.
Collapse
Affiliation(s)
- Krittikan Chanpaisaeng
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA
| | - Perla C Reyes Fernandez
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA
| | - James C Fleet
- Department of Nutrition Science, Purdue University, USA; Interdepartmental Graduate Nutrition Program (INP), Purdue University, USA.
| |
Collapse
|
6
|
Longo AB, Sacco SM, Salmon PL, Ward WE. Longitudinal Use of Micro-computed Tomography Does Not Alter Microarchitecture of the Proximal Tibia in Sham or Ovariectomized Sprague-Dawley Rats. Calcif Tissue Int 2016; 98:631-41. [PMID: 26860853 DOI: 10.1007/s00223-016-0113-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
In vivo micro-computed tomography (μCT) provides the ability to measure longitudinal changes to tibia microarchitecture, but the effect of this radiation is not well understood. The right proximal tibia of Sprague-Dawley rats (n = 12/group) randomized to Sham-control (Sham) or ovariectomy (OVX) surgery at 12 weeks of age was scanned using μCT at 13, 17, 21, and 25 weeks of age, at a resolution of 18 μm and a radiation dose of 603 mGy. The left proximal tibia was scanned only at 25 weeks of age to serve as an internal non-irradiated control. Repeated irradiation did not affect tibia microarchitecture in Sham or OVX groups, although there was an increase in cortical eccentricity (P < 0.05). All trabecular outcomes and cortical BMD were different (P < 0.05) between groups after only 1 week post-surgery and differences persisted to study endpoint. Characteristic changes to trabecular bone were observed in OVX rats over time. Interactions of time and hormone status were found for cortical BMD (P < 0.001), Ps. Pm., and Ec. Pm. (P < 0.05). Repeated irradiation of the tibia at 13, 17, 21, and 25 weeks does not cause adverse effects to microarchitecture, regardless of hormone status. This radiation dose can be applied over a typical 3-month study period to comprehensively understand how an intervention alters tibia microarchitecture without confounding effects of radiation.
Collapse
Affiliation(s)
- Amanda B Longo
- Center for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Sandra M Sacco
- Center for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | | - Wendy E Ward
- Center for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
7
|
Li B, Jiang Y, Sun J, Liang J, Jin Y. MR spectroscopy for assessing the effects of oxytocin on marrow adipogenesis induced by glucocorticoid in rabbits. Acta Radiol 2016; 57:701-7. [PMID: 26297728 DOI: 10.1177/0284185115599804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/19/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggest that oxytocin (OT) negatively modulates adipogenesis while promoting osteogenesis in vitro. Because of its effects on marrow stromal cells, OT might have potential utility in therapy for glucocorticoid-induced osteoporosis (GIO). PURPOSE To explore the effects of OT on marrow adipogenesis in a rabbit model of GIO. MATERIAL AND METHODS Thirty-six-month-old female New Zealand rabbits were randomly assigned to the control, GIO, and GIO + OT groups. Magnetic resonance (MR) spectroscopy and multi-detector computed tomography (MDCT) were performed to detect marrow fat content (MFC) and bone mineral density (BMD) at baseline, and 1, 2, and 3 months. After 3 months of treatment, marrow adipocytes were quantitatively evaluated by histopathology. RESULTS In the GIO group, MFC substantially increased from 34.1% to 43.2% at month 1, and it was maintained until month 3 (by 59.2%, all P <0.01). MFC values in the GIO group were significantly different from the control and OT-treated groups over time. Early OT treatment reversed marrow adiposity to levels of the controls. BMD values were significantly lower in the GIO group at months 2 and 3 compared to the controls; however, partial recovery of vertebral BMD (87.1% of baseline) and femoral BMD (89.3% of baseline) in the OT-treated group were observed. The mean diameter and density of adipocyte and percentage of adipocyte area increased by 30.0%, 70.1%, and 88.9%, respectively (all P <0.05) in the GIO group, but remained unchanged in the OT-treated group. CONCLUSION Early OT treatment was sufficient to eliminate glucocorticoid-induced marrow adiposity.
Collapse
Affiliation(s)
- Baoqing Li
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Yuqing Jiang
- Clinical Laboratory, Beijing Hospital, The First Affiliated College of Peking University, Beijing, PR China
| | - Jinlei Sun
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Jie Liang
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Yulian Jin
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| |
Collapse
|
8
|
Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304178. [PMID: 26064895 PMCID: PMC4434225 DOI: 10.1155/2015/304178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022]
Abstract
Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.
Collapse
|
9
|
Abstract
OBJECTIVE Icariin prevents bone loss by stimulating new bone formation and by inhibiting bone resorption. However, less is known about how icariin affects marrow adiposity. This lack of information is a vital problem, as the degree of marrow adipogenesis may be an alternative indicator of the severity of osteoporosis in relation to the degree of osteogenesis and osteoblastogenesis. To explore this question, we tested the effects of icariin on bone mineral density (BMD) and marrow fat content in a rat model of postmenopausal osteoporosis. METHODS Thirty-six 3-month-old female Sprague-Dawley rats were randomly assigned to one of the following treatment groups: sham operation, ovariectomized controls, and ovariectomized rats treated orally with either 17β-estradiol or icariin for 12 weeks. BMD and marrow fat fraction were dynamically measured on weeks 0, 6, and 12. After 12 weeks of treatment, serum 17β-estradiol and bone biomarker levels were measured, and marrow adipocytes were quantitatively evaluated by histopathology. RESULTS Ovariectomized controls experienced a marked increase in fat fraction over time, with increases of 40% between weeks 0 and 6 and 69.4% between weeks 6 and 12 (P < 0.001). Marrow adiposity in ovariectomized controls was dramatically higher than that in sham rats on week 6; however, a reduction in BMD was detected in ovariectomized rats on week 12 (P < 0.001). Ovariectomized rats had levels of serum alkaline phosphatase and serum C-terminal telopeptide of type I collagen that were 49.4% and 67.2% higher, respectively, than those of sham rats (P < 0.001). The density, size, and volume of marrow adipocytes in ovariectomized controls were 57.3%, 29.5%, and 163% higher, respectively, than those in sham rats. Early icariin treatment decreased bone biomarker levels, inhibited bone degeneration, and restored marrow fat infiltration and adipocyte parameters to the levels observed in sham rats. Overall, the osteoprotective effect of icariin was comparable with that of 17β-estradiol; however, icariin did not produce uterine estrogenicity. CONCLUSIONS Early icariin treatment restores marrow adiposity in the estrogen-deficient rat model.
Collapse
|
10
|
Li GW, Xu Z, Chang SX, Zhou L, Wang XY, Nian H, Shi X. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats. Endocrinology 2014; 155:4731-8. [PMID: 25243855 DOI: 10.1210/en.2014-1359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the primary target cell of bisphosphonates is the osteoclast, increasing attention is being given to other effector cells influenced by bisphosphonates, such as osteoblasts and marrow adipocytes. Early zoledronic acid (ZA) treatment to ovariectomized (OVX) rats has been found to fully preserve bone microarchitecture over time. However, little is known regarding the influence of ZA on marrow adipogenesis. The purpose of this study was to monitor the ability of early administration of ZA in restoring marrow adiposity in an estrogen-deficient rat model. Thirty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX + vehicle, and OVX + ZA groups (n=10/group). Dual-energy x-ray absorptiometry and water/fat magnetic resonance imaging were performed at baseline, 6 weeks, and 12 weeks after treatment to assess bone mineral density and marrow fat fraction. Serum biochemical markers, bone remodeling, and marrow adipocyte parameters were analyzed using biochemistry, histomorphometry, and histopathology, respectively. The expression levels of osteoblast, adipocyte, and osteoclast-related genes in bone marrow were assessed using RT-PCR. The OVX rats showed marked bone loss, first detected at 12 weeks, but estrogen deficiency resulted in a remarked increase in marrow fat fraction, first detected at 6 weeks compared with the SHAM rats (all P < .001). Similarly, the OVX rats had a substantially larger percent adipocyte area (+163.0%), mean diameter (+29.5%), and higher density (+57.3%) relative to the SHAM rats. Bone histomorphometry, levels of osteoclast-related gene expression, and a serum resorption marker confirmed that ZA significantly suppressed bone resorption activities. Furthermore, ZA treatment returned adipocyte-related gene expression and marrow adipocyte parameters toward SHAM levels. These data suggest that a single dose of early ZA treatment acts to reverse marrow adipogenesis occurring during estrogen deficiency, which may contribute to its capacity to reduce bone loss.
Collapse
Affiliation(s)
- Guan-Wu Li
- Departments of Radiology (G.-W.L., S.-X.C., L.Z., X.-Y.W.), Pharmacy (H.N.), and Gerontology (X.S.), Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; and Medico-Technical Department (Z.X.), Xin-Zhuang Community Health Service Center, Shanghai 201199, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Cho DC, Jung HS, Kim KT, Jeon Y, Sung JK, Hwang JH. Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat. J Korean Neurosurg Soc 2013; 54:461-6. [PMID: 24527187 PMCID: PMC3921272 DOI: 10.3340/jkns.2013.54.6.461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/17/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022] Open
Abstract
Objective Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats. Methods Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. Results High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015). Conclusion The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.
Collapse
Affiliation(s)
- Dae-Chul Cho
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Sik Jung
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Joo-Kyung Sung
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|