1
|
Kim D, Park J, Park HC, Zhang S, Park M, Park SA, Lee SH, Lee YS, Park JS, Jeun SS, Chung YJ, Ahn S. Establishment of tumor microenvironment-preserving organoid model from patients with intracranial meningioma. Cancer Cell Int 2024; 24:36. [PMID: 38238738 PMCID: PMC10795458 DOI: 10.1186/s12935-024-03225-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although meningioma is the most common primary brain tumor, treatments rely on surgery and radiotherapy, and recurrent meningiomas have no standard therapeutic options due to a lack of clinically relevant research models. Current meningioma cell lines or organoids cannot reflect biological features of patient tumors since they undergo transformation along culture and consist of only tumor cells without microenvironment. We aim to establish patient-derived meningioma organoids (MNOs) preserving diverse cell types representative of the tumor microenvironment. METHODS The biological features of MNOs were evaluated using WST, LDH, and collagen-based 3D invasion assays. Cellular identities in MNOs were confirmed by immunohistochemistry (IHC). Genetic alteration profiles of MNOs and their corresponding parental tumors were obtained by whole-exome sequencing. RESULTS MNOs were established from four patients with meningioma (two grade 1 and two grade 2) at a 100% succession rate. Exclusion of enzymatic dissociation-reaggregation steps endowed MNOs with original histology and tumor microenvironment. In addition, we used a liquid media culture system instead of embedding samples into Matrigel, resulting in an easy-to-handle, cost-efficient, and time-saving system. MNOs maintained their functionality and morphology after long-term culture (> 9 wk) and repeated cryopreserving-recovery cycles. The similarities between MNOs and their corresponding parental tumors were confirmed by both IHC and whole-exome sequencing. As a representative application, we utilized MNOs in drug screening, and mifepristone, an antagonist of progesterone receptor, showed prominent antitumor efficacy with respect to viability, invasiveness, and protein expression. CONCLUSION Taken together, our MNO model overcame limitations of previous meningioma models and showed superior resemblance to parental tumors. Thus, our model could facilitate translational research identifying and selecting drugs for meningioma in the era of precision medicine.
Collapse
Affiliation(s)
- Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon-Chun Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Songzi Zhang
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Minyoung Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sug Hyung Lee
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
2
|
Azab MA, Cole K, Earl E, Cutler C, Mendez J, Karsy M. Medical Management of Meningiomas. Neurosurg Clin N Am 2023; 34:319-333. [PMID: 37210123 DOI: 10.1016/j.nec.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Meningiomas represent the most common type of benign tumor of the extra-axial compartment. Although most meningiomas are benign World Health Organization (WHO) grade 1 lesions, the increasingly prevalent of WHO grade 2 lesion and occasional grade 3 lesions show worsened recurrence rates and morbidity. Multiple medical treatments have been evaluated but show limited efficacy. We review the status of medical management in meningiomas, highlighting successes and failures of various treatment options. We also explore newer studies evaluating the use of immunotherapy in management.
Collapse
Affiliation(s)
- Mohammed A Azab
- Biomolecular Sciences Graduate Program, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | - Kyril Cole
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Emma Earl
- School of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Chris Cutler
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 N Green Bay Rd., North Chicago, IL 60064, USA
| | - Joe Mendez
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, UT 84112, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA.
| |
Collapse
|
3
|
Graillon T, Tabouret E, Salgues B, Horowitz T, Padovani L, Appay R, Farah K, Dufour H, Régis J, Guedj E, Barlier A, Chinot O. Innovative treatments for meningiomas. Rev Neurol (Paris) 2023; 179:449-463. [PMID: 36959063 DOI: 10.1016/j.neurol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Multi-recurrent high-grade meningiomas remain an unmet medical need in neuro-oncology when iterative surgeries and radiation therapy sessions fail to control tumor growth. Nevertheless, the last 10years have been marked by multiple advances in the comprehension of meningioma tumorigenesis via the discovery of new driver mutations, the identification of activated intracellular signaling pathways, and DNA methylation analyses, providing multiple potential therapeutic targets. Today, Anti-VEGF and mTOR inhibitors are the most used and probably the most active drugs in aggressive meningiomas. Peptide radioactive radiation therapy aims to target SSTR2A receptors, which are strongly expressed in meningiomas, but have an insufficient effect in most aggressive meningiomas, requiring the development of new techniques to increase the dose applied to the tumor. Based on the multiple potential intracellular targets, multiple targeted therapy clinical trials targeting Pi3K-Akt-mTOR and MAP kinase pathways as well as cell cycle and particularly, cyclin D4-6 are ongoing. Recently discovered driver mutations, SMO, Akt, and PI3KCA, offer new targets but are mostly observed in benign meningiomas, limiting their clinical relevance mainly to rare aggressive skull base meningiomas. Therefore, NF2 mutation remains the most frequent mutation and main challenging target in high-grade meningioma. Recently, inhibitors of focal adhesion kinase (FAK), which is involved in tumor cell adhesion, were tested in a phase 2 clinical trial with interesting but insufficient activity. The Hippo pathway was demonstrated to interact with NF2/Merlin and could be a promising target in NF2-mutated meningiomas with ongoing multiple preclinical studies and a phase 1 clinical trial. Recent advances in immune landscape comprehension led to the proposal of the use of immunotherapy in meningiomas. Except in rare cases of MSH2/6 mutation or high tumor mass burden, the activity of PD-1 inhibitors remains limited; however, its combination with various radiation therapy modalities is particularly promising. On the whole, therapeutic management of high-grade meningiomas is still challenging even with multiple promising therapeutic targets and innovations.
Collapse
Affiliation(s)
- T Graillon
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France.
| | - E Tabouret
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - B Salgues
- Nuclear Medicine Department, Groupe Hospitalier Pitié-Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - T Horowitz
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - L Padovani
- AP-HM, Timone Hospital, Radiotherapy Department, Marseille, France
| | - R Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - K Farah
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - H Dufour
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France
| | - J Régis
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - E Guedj
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - A Barlier
- Aix-Marseille University, AP-HM, Inserm, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - O Chinot
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| |
Collapse
|
4
|
Danish H, Brastianos P. Novel Medical Therapies in Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:213-223. [PMID: 37432630 DOI: 10.1007/978-3-031-29750-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Meningiomas are the most common primary brain tumor in adults and have been historically managed with surgery and radiation therapy. However, in patients with inoperable, recurrent or high-grade tumors, medical therapy is often needed. Traditional chemotherapy and hormone therapy have been largely ineffective. However, with improved understanding of the molecular drivers in meningioma, there has been increasing interest in targeted molecular and immune therapies. In this chapter, we will discuss recent advances in meningioma genetics and biology and review current clinical trials with targeted molecular treatment and other novel therapies.
Collapse
Affiliation(s)
- Husain Danish
- Massachusetts General Hospital, Divisions of Neuro-Oncology and Hematology/Oncology, Departments of Neurology and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Priscilla Brastianos
- Massachusetts General Hospital, Divisions of Neuro-Oncology and Hematology/Oncology, Departments of Neurology and Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Corniola MV, Meling TR. Management of Recurrent Meningiomas: State of the Art and Perspectives. Cancers (Basel) 2022; 14:cancers14163995. [PMID: 36010988 PMCID: PMC9406695 DOI: 10.3390/cancers14163995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Intracranial meningiomas account for 30% to 40% of the primary lesions of the central nervous system. Surgery is the mainstay treatment whenever symptoms related to an intra-cranial meningioma are encountered. However, the management of recurrences after initial surgery, which are not uncommon, is still a matter of debate. Here, we present the alternatives described in the management of meningioma recurrence (radiotherapy, stereotaxic radiosurgery, protontherapy, and chemotherapy, among others). Their overall results are compared to surgery and future perspectives are presented. Abstract Background: While meningiomas often recur over time, the natural history of repeated recurrences and their management are not well described. Should recurrence occur, repeat surgery and/or use of adjuvant therapeutic options may be necessary. Here, we summarize current practice when it comes to meningioma recurrence after initial surgical management. Methods: A total of N = 89 articles were screened. N = 41 articles met the inclusion criteria and N = 16 articles failed to assess management of meningioma recurrence. Finally, N = 24 articles were included in our review. Results: The articles were distributed as follows: studies on chemotherapy (N = 14), radiotherapy, protontherapy, and stereotaxic radiosurgery (N = 6), boron-neutron capture therapy (N = 2) and surgery (N = 3). No study seems to provide serious alternatives to surgery in terms of progression-free and overall survival. Recurrence can occur long after the initial surgery and also affects WHO grade 1 meningiomas, even after initial gross total resection at first surgery, emphasizing the need for a long-term and comprehensive follow-up. Conclusions: Surgery still seems to be the state-of-the-art management when it comes to meningioma recurrence, since none of the non-surgical alternatives show promising results in terms of progression-free and overall survival.
Collapse
Affiliation(s)
- Marco Vincenzo Corniola
- Service de Neurochirurgie, Pôle des Neurosciences, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Faculté de Médecine, Université de Rennes 1, 35000 Rennes, France
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Laboratoire du Traitement de Signal, Unité Médicis, INSERM UMR 1099 LTSI, Université de Rennes 1, 35000 Rennes, France
| | - Torstein R. Meling
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Besta NeuroSim Center, Fondazione IRCCS, Istituto Neurologico Carlo Basta, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
6
|
Forward AK, Volk HA, Cherubini GB, Harcourt-Brown T, Plessas IN, Garosi L, De Decker S. Clinical presentation, diagnostic findings and outcome of dogs undergoing surgical resection for intracranial meningioma: 101 dogs. BMC Vet Res 2022; 18:88. [PMID: 35249530 PMCID: PMC8900440 DOI: 10.1186/s12917-022-03182-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Meningioma is the most common primary brain neoplasm in dogs. Further information is required regarding the expected long-term prognosis of dogs following the surgical resection of an intracranial meningioma together with the influence of adjunctive therapies. Whilst there have been several studies reporting the long-term outcome of intracranial meningioma resection following surgery alone, surgery with the use of an ultrasonic aspirator, surgery combined with radiotherapy and surgery combined with the addition of hydroxyurea, it is currently unclear which type of adjunctive therapy is associated with the most favourable outcomes. The objective of this study is to describe the presentation and outcome of dogs undergoing surgery for the resection of an intracranial meningioma and the effect of clinical factors, adjunctive therapies and meningioma histopathological subtype on the long-term outcome. Results A hundred and one dogs that had intracranial surgery for meningioma resection were investigated from four referral centres. 94% of dogs survived to hospital discharge with a median survival time of 386 days. Approximately 50% of dogs survived for less than a year, 25% survived between 1 and 2 years, 15% survived between 2 and 3 years and 10% survived for greater than 3 years following discharge from hospital. One or more adjunctive therapies were used in 75 dogs and the analysis of the data did not reveal a clear benefit of a specific type of adjunctive therapy. Those dogs that had a transfrontal approach had a significantly reduced survival time (MST 184 days) compared to those dogs that had a rostrotentorial approach (MST 646 days; p < 0.05). There was no association between meningioma subtype and survival time. Conclusions This study did not identify a clear benefit of a specific type of adjunctive therapy on the survival time. Dogs that had a transfrontal approach had a significantly reduced survival time. Intracranial surgery for meningioma resection offers an excellent prognosis for survival to discharge from hospital with a median long term survival time of 386 days.
Collapse
Affiliation(s)
| | - Holger Andreas Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Giunio Bruto Cherubini
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire, CB8 0UH, UK
| | - Tom Harcourt-Brown
- Langford Small Animal Referral Hospital, Langford House, Langford, Bristol, BS40 5DU, UK
| | | | | | - Steven De Decker
- Department of Clinical Science and Services, Royal Veterinary College, University of London, North Mymms, AL9 7TA, UK
| |
Collapse
|
7
|
Szychot E, Goodden J, Whitfield G, Curry S. Children's Cancer and Leukaemia Group (CCLG): review and guidelines for the management of meningioma in children, teenagers and young adults. Br J Neurosurg 2020; 34:142-153. [PMID: 32116043 DOI: 10.1080/02688697.2020.1726286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primary tumours of the meninges are rare accounting for only 0.4-4.6% of all paediatric tumours of the central nervous system. Due to the rarity of these tumours in children, and the consequent absence of collaborative prospective trials, there is no clear consensus on how the unique characteristics of paediatric meningiomas impact clinical status, management approach, and survival. Much of the evidence and treatment recommendations for paediatric meningiomas are extrapolated from adult data. Translating and adapting adult treatment recommendations into paediatric practice can be challenging and might inadvertently lead to inappropriate management. In 2009, Traunecker et al. published guidelines for the management of intracranial meningioma in children and young people on behalf of UK Children's Cancer and Leukaemia Group (CCLG). Ten years later we have developed the updated guidelines following a comprehensive appraisal of the literature. Complete surgical resection is the treatment of choice for symptomatic meningiomas, while radiotherapy remains the only available adjuvant therapy and may be necessary for those tumours that cannot be completely removed. However, significant advances have been made in the identification of the genetic and molecular alterations of meningioma, which has not only a potential value in the development of therapeutic agents but also in surveillance of childhood meningioma survivors. This guideline builds upon the CCLG 2009 guideline. We summarise recommendations for the diagnosis, treatment, surveillance and long-term follow-up of children and adolescents with meningioma.
Collapse
Affiliation(s)
- Elwira Szychot
- Paediatric Oncology Cinical Studies, The Institute of Cancer Research, Sutton, London.,The Royal Marsden Hospital, Sutton, London
| | - John Goodden
- Department of Neurosurgery, Leeds General Infirmary, Leeds, UK
| | - Gillian Whitfield
- Department of Clinical Neuro-oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Sarah Curry
- Department of Paediatric Oncology, Southampton Children's Hospital, Southampton, UK
| |
Collapse
|
8
|
Abstract
Surgery is curative for most meningiomas, but a minority of these tumors recur and progress after resection. Initial trials of medical therapies for meningioma utilized nonspecific cytotoxic chemotherapies. The presence of hormone receptors on meningioma ushered in trials of hormone-mimicking agents. While these trials expanded clinical understanding of meningioma, they ultimately had limited efficacy in managing aggressive lesions. Subsequent detection of misregulated proteins and genomic aberrancies motivated the study of therapies targeting specific biological disturbances observed in meningioma. These advances led to trials of targeted kinase inhibitors and immunotherapies, as well as combinations of these agents together with chemotherapies. Prospective trials currently recruiting participants are testing a diverse range of medical therapies for meningioma, and some studies now require the presence of a specific protein alteration or genetic mutation as an inclusion criterion. Increasing understanding of the unique and heterogeneous nature of meningiomas will continue to spur the development of novel medical therapies for the arsenal against aggressive tumors.
Collapse
|
9
|
Rahman RMA, van Schaijik B, Brasch HD, Marsh RW, Wickremesekera AC, Johnson R, Woon K, Tan ST, Itinteang T. Expression of Cathepsins B, D, and G in WHO Grade I Meningioma. Front Surg 2019; 6:6. [PMID: 30949483 PMCID: PMC6436525 DOI: 10.3389/fsurg.2019.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aim: We have recently demonstrated the presence of putative tumor stem cells (TSCs) in World Health Organization (WHO) grade I meningioma (MG) localized to the microvessels, which expresses components of the renin-angiotensin system (RAS). The RAS is known to be dysregulated and promotes tumorigenesis in many cancer types, including glioblastoma. Cathepsins B, D, and G are isoenzymes that catalyze the production of angiotensin peptides, hence providing bypass loops for the RAS. This study investigated the expression of cathepsins B, D, and G in WHO grade I MG in relation to the putative TSC population we have previously demonstrated. Methods: 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining with antibodies for cathepsins B, D, and G was performed on WHO grade I MG tissue samples from 10 patients. Three of the MG samples subjected to DAB IHC staining underwent immunofluorescence (IF) IHC staining to investigate co-expression of each of these cathepsins using combinations of smooth muscle actin (SMA) and embryonic stem cell marker OCT4. NanoString mRNA expression (n = 6) and Western blotting (WB; n = 5) analyses, and enzyme activity assays (EAAs; n = 3), were performed on snap-frozen WHO grade I MG tissue samples to confirm transcriptional activation, protein expression, and functional activity of these proteins, respectively. Results: DAB IHC staining demonstrated expression of cathepsins B, D, and G in all 10 MG samples. NanoString mRNA expression and WB analyses showed transcriptional activation and protein expression of all three cathepsins, although cathepsin G was expressed at low levels. EAAs demonstrated that cathepsin B and cathepsin D were functionally active. IF IHC staining illustrated localization of cathepsin B and cathepsin D to the endothelium and SMA+ pericyte layer of the microvessels, while cathepsin G was localized to cells scattered within the interstitium, away from the microvessels. Conclusion: Cathepsin B and cathepsin D, and to a lesser extent cathepsin G, are expressed in WHO grade I MG. Cathepsin B and cathepsin D are enzymatically active and are localized to the putative TSC population on the microvessels, whereas cathepsin G was localized to cells scattered within the interstitium, These results suggest the presence of bypass loops for the RAS, within WHO grade I MG.
Collapse
Affiliation(s)
- Rosanna M. A. Rahman
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | | | | | - Reginald W. Marsh
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Faculty of Medicine, Auckland University, Auckland, New Zealand
| | - Agadha C. Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Reuben Johnson
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Kelvin Woon
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
10
|
Abdel Karim K, El Shehaby A, Emad R, Reda W, El Mahdy M, Ghali R, Nabeel A. Role of hydroxyurea as an adjuvant treatment after Gamma knife radiosurgery for atypical (WHO grade II) meningiomas. J Egypt Natl Canc Inst 2018; 30:69-72. [PMID: 29691095 DOI: 10.1016/j.jnci.2018.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 10/16/2022] Open
Affiliation(s)
- Khalid Abdel Karim
- Gamma Knife Center, Nasser Institute, Cairo, Egypt; Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr El Shehaby
- Gamma Knife Center, Nasser Institute, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem Emad
- Department of Radiation Oncology, National Cancer Institute, Cairo University, Cairo, Egypt; Gamma Knife Center, Nasser Institute, Cairo, Egypt.
| | - Wael Reda
- Gamma Knife Center, Nasser Institute, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams Univesity, Cairo, Egypt
| | - Ramy Ghali
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeel
- Gamma Knife Center, Nasser Institute, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
11
|
Visceral and bone metastases of a WHO grade 2 meningioma: A case report and review of the literature. Cancer Radiother 2017; 21:55-59. [DOI: 10.1016/j.canrad.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 09/11/2016] [Accepted: 09/16/2016] [Indexed: 11/23/2022]
|
12
|
Review of controversies in management of non-benign meningioma. J Clin Neurosci 2016; 31:37-46. [DOI: 10.1016/j.jocn.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 11/23/2022]
|
13
|
Elmaci İ, Altinoz MA, Sav A, Yazici Z, Ozpinar A. Giving another chance to mifepristone in pharmacotherapy for aggressive meningiomas—A likely synergism with hydroxyurea? Curr Probl Cancer 2016; 40:229-243. [DOI: 10.1016/j.currproblcancer.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
14
|
Abstract
INTRODUCTION Meningioma comprise 20-30% of all primary brain tumors. Notwithstanding surgery and radiotherapy, a subset of patients will manifest recurrent meningioma. Systemic therapy is recommended only when further surgery and radiotherapy are not possible. No prospective study with a high level of evidence is available to inform as to recommendations regarding systemic therapy. AREAS COVERED We aim to summarize systemic therapies for recurrent meningioma. Expert commentary: Hydroxurea, temozolomide, irinotecan, the combination of cyclophosphamide/adriamycine/vincristine, interferon-alpha, somatostatin analogs, mifepristone, megestrol acetate, imatinib, erlotinib and gefitinib are considered as having limited efficacy. Potential activity of VEGF (vascular endothelial growth factor) inhibitors such as sunitinib, valatinib, and bevacizumab is suggested in small non-controlled studies and requires validation in randomized trials. The identification of new prognostic markers such as TERT promoter mutations and potential new therapeutic targets, such as KLF4, AKT1, TRAF7, and SMO mutations hopefully facilitate this endeavor.
Collapse
Affiliation(s)
- E Le Rhun
- a Lille University, PRISM Inserm U1191 , Villeneuve d'Ascq , France.,b Neuro-oncology, Department of Neurosurgery , Lille Universisty Hospital , Lille Cedex , France.,c Breast unit, Department of Medical Oncology , Oscar Lambret Center , Lille Cedex , France
| | - S Taillibert
- d Department of Neurology Mazarin , Pitié-Salpétrière Hospital, Assistance Publique des Hôpitaux de Paris , Paris , France.,e Department of Neurology , University Pierre et Marie Curie, Paris VI , Paris , France
| | - M C Chamberlain
- f Department of Neurology and Neurological Surgery , University of Washington , Seattle , WA , USA
| |
Collapse
|
15
|
Karsy M, Guan J, Cohen A, Colman H, Jensen RL. Medical Management of Meningiomas: Current Status, Failed Treatments, and Promising Horizons. Neurosurg Clin N Am 2016; 27:249-60. [PMID: 27012389 DOI: 10.1016/j.nec.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Meningiomas are benign tumors of the central nervous system, with low recurrence risk for World Health Organization (WHO) grade I lesions but a high risk for WHO grade II and III lesions. Current standard treatments include maximum safe surgical resection when indicated and radiation. Only three systemic therapies alpha-interferon, somatostatin receptor agonists, and vascular endothelial growth factor inhibitors are currently recommended by the National Comprehensive Cancer Network for treatment of recurrent meningioma. This paper aims to review medical approaches in the treatment of meningiomas.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Adam Cohen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Abstract
Intracranial meningiomas are tumors arising from the covering cells of the arachnoid layer of the dura mater or from the intraventricular choroid plexus. While mostly benign tumors, they still represent a major challenge to neurosurgeons and other medical disciplines involved in their diagnostic and therapeutic management. Although this review intends to give some state-of-the-art information from the literature, it is mainly based on personal experiences since more than 30 years caring for more than 1500 meningioma patients and point to a few new strategies to further improve on patient outcome.Diagnostics are based on magnetic resonance imaging which shows the relationship between tumor and surrounding intracranial structures, particularly the brain but also the vasculature and to some extent the cranial nerves. Furthermore, it may suggest the grading of the tumor and is very helpful in the postoperative diagnosis of complications and later follow-up course.Surgery still is the main treatment with the aim to completely remove the tumor; also in cases of recurrence, other additional options include radiotherapy and radiosurgery for incompletely removed or recurrent meningiomas. Postoperative chemotherapy has not been shown to provide substantial benefit to the patient especially in highly malignant meningiomas.All therapy options should be intended to provide the patient with the best possible functional outcome. Patients' perspective is not always equivalent to surgeons' perspectives. Neuropsychological evaluation and additional guidance of patients harboring meningiomas have proven to be important in modern neurosurgical intracranial tumor treatment. Their help beyond neurosurgical care facilitates the patients to lead an independent postoperative life.
Collapse
Affiliation(s)
- H Maximilian Mehdorn
- Department of Neurosurgery, University Clinics of Schleswig-Holstein Campus Kiel, Arnold Heller Str 3 Hs 41, 24105, Kiel, Germany.
| |
Collapse
|
17
|
The importance of microsurgery in childhood meningioma: a case report. Childs Nerv Syst 2015; 31:161-5. [PMID: 25034239 DOI: 10.1007/s00381-014-2490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Although meningiomas are frequently diagnosed in adults, it is a rare (intracranial) tumor in the pediatric population, with an incidence of 0.06/100,000. The pathology and treatment of meningiomas in adulthood has been a topic of increasing investigation. So far, the treatment of pediatric meningiomas has been extrapolated from these results. The question remains, however, whether translation of adult meningioma data into the childhood population is legitimate. METHODS We present the case of a 3-year-old girl diagnosed with an intraventricular malignant meningioma and type 2 neurofibromatosis. She was operated on multiple times to achieve complete resection and received adjuvant chemotherapy. Since, she has been stable with no neurological sequelae and/or recurrence of the meningioma. CONCLUSION Pediatric meningiomas are rare tumors and differ from their adult counterparts in various aspects. We believe that gross total resection of meningioma in the pediatric population, when possible, is the treatment of choice. In the event of a subtotal resection, repeat resection is recommended. Any adjuvant treatment with chemotherapy or radiation therapy should be carefully considered during multidisciplinary meetings.
Collapse
|
18
|
De la Garza-Ramos R, Flores-Rodríguez JV, Martínez-Gutiérrez JC, Ruiz-Valls A, Caro-Osorio E. Current standing and frontiers of gene therapy for meningiomas. Neurosurg Focus 2013; 35:E4. [DOI: 10.3171/2013.8.focus13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Meningiomas are among the most common intracranial tumors. The treatment of choice for these lesions is complete resection, but in 50% of cases it is not achieved due to tumor location and/or surgical morbidities. Moreover, benign meningiomas have high recurrence rates of up to 32% in long-term follow-up. Molecular analyses have begun to uncover the genetics behind meningiomas, giving rise to potential genetics-based treatments, including gene therapy. The authors performed a literature review on the most relevant genes associated with meningiomas and both current and potential gene therapy strategies to treat these tumors. Wild-type NF2 gene insertion, oncolytic viruses, and transfer of silencing RNA have all shown promising results both in vitro and in mice. These strategies have decreased meningioma cell growth, proliferation, and angiogenesis. However, no clinical trial has been done to date. Future research and trials in gene insertion, selective inhibition of oncogenes, and the use of oncolytic viruses, among other potential treatment approaches, may shape the future of meningioma management.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Caro-Osorio
- 1Tecnológico de Monterrey School of Medicine and Health Sciences
- 3Institute of Neurology and Neurosurgery, Hospital Zambrano Hellion, Tec Salud, Monterrey, Nuevo León, México; and
| |
Collapse
|