1
|
Zhou ZZ, Zhu J, Yin Y, Ding LJ. Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172542. [PMID: 38636860 DOI: 10.1016/j.scitotenv.2024.172542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs.
Collapse
Affiliation(s)
- Zhi-Zi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jasmine Zhu
- School of Journalism and Communication, Tsinghua University, Beijing 100084, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Benton LD, Lopez-Galvez N, Herman C, Caporaso JG, Cope EK, Rosales C, Gameros M, Lothrop N, Martínez FD, Wright AL, Carr TF, Beamer PI. Environmental and structural factors associated with bacterial diversity in household dust across the Arizona-Sonora border. Sci Rep 2024; 14:12803. [PMID: 38834753 PMCID: PMC11150412 DOI: 10.1038/s41598-024-63356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs. 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, housing structure, and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs. 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from Mexican homes was enriched with Alishewanella, Paracoccus, Rheinheimera genera and Intrasporangiaceae family. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
Affiliation(s)
- Lauren D Benton
- Department of Pediatrics, Steele Children's Research Center, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
| | - Nicolas Lopez-Galvez
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
- San Diego State University Research Foundation, San Diego State University, 5250 Campanile Dr, San Diego, CA, 92182, USA
| | - Chloe Herman
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily K Cope
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Cecilia Rosales
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Mercedes Gameros
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Nathan Lothrop
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Anne L Wright
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Paloma I Beamer
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| |
Collapse
|
3
|
Hiruma T, Higuchi R, Yamamoto T, Kikuchi K, Nanasato M. Pneumococcal infectious aortic aneurysm: A caution for a life-threatening vascular complication caused by non-vaccine-covered serotypes. J Cardiol Cases 2024; 29:1-4. [PMID: 38188312 PMCID: PMC10770090 DOI: 10.1016/j.jccase.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 01/09/2024] Open
Abstract
The 23-valent pneumococcal polysaccharide vaccine (PPSV23) has contributed to reducing pneumonia caused by Streptococcus pneumoniae. However, in Japan, invasive pneumococcal diseases caused by non-vaccine-covered serotypes have increased over the years. A 73-year-old man with a history of PPSV23 was referred to our hospital due to persistent fever and back pain following pneumococcal pneumonia. Contrast-enhanced computed tomography revealed an infectious aneurysm (IAA) at the distal part of the aortic arch. The patient was surgically treated with in situ aortic reconstruction and administered antibiotics. On pathogenic examination of the resected IAA, atherosclerotic changed aortic wall, neutrophil infiltration, and abscesses were observed. Although multiple blood culture tests were negative, tissue culture tests and 16S ribosomal RNA gene-based polymerase chain reaction identified S. pneumoniae. According to capsular polysaccharide synthesis B gene-based serotyping, the serotype was identified as 23A, which is not covered with PPSV23. Serotype 23 is among the most frequently identified serotypes in recent years and associated with in-hospital mortality. Although several pneumococcal serotypes are responsible for lethal infections, the association between these serotypes and disease is uncertain. Further studies on the association between pneumococcal serotypes and IAA, and the development of a broader-covered vaccine are required. Learning objective •To be able to make a differential diagnosis of invasive pneumococcal pneumonia in patients with persistent fever and newly emerging back pain following pneumococcal infection.•To understand the importance of combining culture tests and molecular analysis to diagnose invasive pneumococcal diseases accurately.•To understand the threat of non-vaccine-covered serotypes even in patients with vaccination histories because the vaccine is limited to only one-fourth of all pneumococcal serotypes.
Collapse
Affiliation(s)
- Takashi Hiruma
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Higuchi
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Tomoko Yamamoto
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, Tokyo, Japan
| | - Mamoru Nanasato
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| |
Collapse
|
4
|
Benton L, Lopez-Galvez N, Herman C, Caporaso G, Cope E, Rosales C, Gameros M, Lothrop N, Martínez F, Wright A, Carr T, Beamer P. Environmental and Structural Factors Associated with Bacterial Diversity in Household Dust Across the Arizona-Sonora Border. RESEARCH SQUARE 2023:rs.3.rs-3325336. [PMID: 37841844 PMCID: PMC10571632 DOI: 10.21203/rs.3.rs-3325336/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, and housing structure and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from US homes was enriched with Geodermatophilus, whereas dust from Mexican homes was enriched with Alishewanella and Chryseomicrobium. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
|
5
|
Huh HJ, Sung H. Recent Trends in Invasive Pneumococcal Disease in Korea in the Post-pneumococcal Vaccine Era. Ann Lab Med 2023; 43:1-2. [PMID: 36045050 PMCID: PMC9467838 DOI: 10.3343/alm.2023.43.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Corresponding author: Heungsup Sung, M.D., Ph.D. Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-4499, Fax: +82-2-478-0884, E-mail:
| |
Collapse
|
6
|
Li Z, Zheng N, An Q, Li X, Sun S, Zhang W, Ji Y, Wang S, Li P. Impact of environmental factors and bacterial interactions on dust mite allergens in different indoor dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157177. [PMID: 35803427 DOI: 10.1016/j.scitotenv.2022.157177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Indoor dust is the main carrier of indoor pollutants, especially dust mite allergens and bacteria, they can trigger asthma, rhinitis, eczema and other allergic diseases. However, the interactions between dust mite allergens and bacterial communities in different types of indoor dust are not clear. The study focused on particulate and flocculent fibrous dust, explored the concentrations of Der p 1 (Dermatophagoides pteronyssinus) and Der f 1 (D. farinae) in 46 households in Changchun and their environmental influences, characterized the bacterial communities by high-throughput sequencing, and the interactions between Der p 1, Der f 1 and bacterial communities were explored. The results showed that Der p 1 and Der f 1 tended to accumulate more in flocculent fibrous dust, and Der p 1 predominated in the indoor dust samples. The floor height, years of housing occupancy and the living areas all affected the concentrations of dust mite allergens. In bacterial community, Proteobacteria, Firmicutes and Actinobacteria were leading phyla in the two types of dust. Kocuria, Blastococcus and Massilia were dominating genera in particulate dust and Acinetobacter, Lactobacillus, Corynebacterium_1 were dominating genera in flocculent fibrous dust. The overall diversity and species richness of bacteria in particulate dust were significantly higher than those in flocculent dust (p < 0.001). The living area was an important environmental factor affecting the bacterial community in flocculent fibrous dust (p < 0.01). The interaction between the relative abundance of Proteobacteria, Firmicutes and Actinobacteria and dust mite allergen concentrations significantly differed between the two dust types, indicating that bacteria could be used both as food and to establish symbiotic relationships with household dust mites (HDMs) hosts and provide nutrition.
Collapse
Affiliation(s)
- Zimeng Li
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun, 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130012, China.
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yining Ji
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Pengyang Li
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Ding LJ, Zhou XY, Zhu YG. Microbiome and antibiotic resistome in household dust from Beijing, China. ENVIRONMENT INTERNATIONAL 2020; 139:105702. [PMID: 32248025 DOI: 10.1016/j.envint.2020.105702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
We spend ever-increasing time indoors along with urbanization; however, the geographical distribution patterns of microbiome and antibiotic resistome, and their driving forces in household environment remains poorly characterized. Here, we surveyed the bacterial and fungal communities, and the resistome in settled dust gathered from 82 homes located across Beijing, China, employing Illumina sequencing and high-throughput quantitative PCR techniques. There was no clear geographical distribution pattern in dust-related bacterial communities although a slight but significant (P < 0.05) distance-decay relationship occurred in its community similarity; by contrast, a relatively distinct geographical clustering and a stronger distance-decay relationship were observed in fungal communities at the local scale. The cross-domain (bacteria versus fungi) relationships in the microbiome of the dust samples were mostly observed as robust co-occurrence correlations. The bacterial communities were dominated by Proteobacteria and Actinobacteria phyla, with human skin, soil and plants being potential major sources. The fungal communities largely comprised potential allergens (a median 61% of the fungal sequences), with Alternaria genus within Ascomycota phylum being the most predominant taxa. The profile of dust-related bacterial communities was mainly affected by housing factors related to occupants and houseplants, while that of fungal communities was determined by georeferenced environmental factors, particularly vascular plant diversity. Additionally, a great diversity (1.96 on average for Shannon index) and normalized abundance (2.22 copies per bacterial cell on average) of antibiotic resistance genes were detected across the dust samples, with the dominance of genes resistant to vancomycin and Macrolide-Lincosamide-Streptogramin B. The resistome profile exhibited no distinct geographical pattern, and was primarily driven by certain bacterial phyla and occupancy-related factors. Overall, we underline the significance of anthropogenic impacts and house location in structuring bacterial and fungal communities inside homes, respectively, and suggest that household dust is an overlooked reservoir for antibiotic resistance.
Collapse
Affiliation(s)
- Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin-Yuan Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|