1
|
Chapman LR, Ramnarine IVP, Zemke D, Majid A, Bell SM. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? Int J Mol Sci 2024; 25:2968. [PMID: 38474215 DOI: 10.3390/ijms25052968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Down syndrome is a well-studied aneuploidy condition in humans, which is associated with various disease phenotypes including cardiovascular, neurological, haematological and immunological disease processes. This review paper aims to discuss the research conducted on gene expression studies during fetal development. A descriptive review was conducted, encompassing all papers published on the PubMed database between September 1960 and September 2022. We found that in amniotic fluid, certain genes such as COL6A1 and DSCR1 were found to be affected, resulting in phenotypical craniofacial changes. Additionally, other genes such as GSTT1, CLIC6, ITGB2, C21orf67, C21orf86 and RUNX1 were also identified to be affected in the amniotic fluid. In the placenta, dysregulation of genes like MEST, SNF1LK and LOX was observed, which in turn affected nervous system development. In the brain, dysregulation of genes DYRK1A, DNMT3L, DNMT3B, TBX1, olig2 and AQP4 has been shown to contribute to intellectual disability. In the cardiac tissues, dysregulated expression of genes GART, ETS2 and ERG was found to cause abnormalities. Furthermore, dysregulation of XIST, RUNX1, SON, ERG and STAT1 was observed, contributing to myeloproliferative disorders. Understanding the differential expression of genes provides insights into the genetic consequences of DS. A better understanding of these processes could potentially pave the way for the development of genetic and pharmacological therapies.
Collapse
Affiliation(s)
- Laura R Chapman
- Sheffield Children's NHS Foundation Trust, Clarkson St, Sheffield S10 2TH, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Isabela V P Ramnarine
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Dan Zemke
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Arshad Majid
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| | - Simon M Bell
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| |
Collapse
|
2
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
3
|
Çavdarlı B, Köken ÖY, Satılmış SBA, Bilen Ş, Ardıçlı D, Ceylan AC, Gündüz CNS, Topaloğlu H. High diagnostic yield of targeted next-generation sequencing panel as a first-tier molecular test for the patients with myopathy or muscular dystrophy. Ann Hum Genet 2022; 87:104-114. [PMID: 36575883 DOI: 10.1111/ahg.12492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Muscular dystrophies are a heterogeneous group of neuromuscular disorders with a wide range of the clinical and genetic spectrum. Whole-exome sequencing (WES) has been on the rise to become the usual method of choice for molecular diagnosis in patients presenting with muscular dystrophy or congenital or metabolic myopathy phenotype. Here, we used a panel with 47 genes including not only muscular dystrophy but also myopathy-associated genes that had been used as a first-tier approach. A total of 146 patients who were referred to our clinic with the prediagnosis of muscular dystrophy and/or myopathy were included in the study. Dystrophin gene deletion/duplication was ruled out on the patients with a preliminary diagnosis of Duchenne muscular dystrophy. In this study, the molecular etiology of 67 patients was proved with the gene panel with a diagnostic yield of 46%. Causal variants were identified in 23 genes including CAPN3(11), DYSF(9), DMD(8), SGCA(5), TTN(4), LAMA2(3), LMNA(3), SGCB(3), COL6A1(3), DES (2), CAV3(2), FKRP(2), FKTN(2), ANO5, COL6A2, CLCN1, GNE, POMGNT1, POMGNT2, POMT2, SYNE1, TCAP, and FLNC with 16 novel variants. There were 27 patients with uncertain molecular results including the ones who had a variant of uncertain significance, who had only one heterozygous variant for an autosomal recessive disease, and the ones who had two variants in different genes. Molecular diagnosis in muscular dystrophy is essential to plan clinical management and choosing treatment options. Also, the results will affect the reproduction options. Targeted next-generation sequencing is a cost-effective method that reduces the WES requirements with a significant diagnostic rate.
Collapse
Affiliation(s)
- Büşranur Çavdarlı
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey
| | | | | | - Şule Bilen
- Department of Neurology, Ankara City Hospital, Ankara, Turkey
| | - Didem Ardıçlı
- Department of Pediatric Neurology, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Cevdet Ceylan
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Cavidan Nur Semerci Gündüz
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Haluk Topaloğlu
- Department of Pediatric Neurology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
4
|
Yang X, Yin H, Peng L, Zhang D, Li K, Cui F, Xia C, Huang H, Li Z. The Global Status and Trends of Enteropeptidase: A Bibliometric Study. Front Med (Lausanne) 2022; 9:779722. [PMID: 35223895 PMCID: PMC8866687 DOI: 10.3389/fmed.2022.779722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundEnteropeptidase (EP) is a type II transmembrane serine protease and a physiological activator of trypsinogen. Extensive studies related to EP have been conducted to date. However, no bibliometric analysis has systematically investigated this theme. Our study aimed to visualize the current landscape and frontier trends of scientific achievements on EP, provide an overview of the past 120 years and insights for researchers and clinicians to facilitate future collaborative research and clinical intervention.MethodsQuantitative analysis of publications relating to EP from 1900 to 2020 was interpreted and graphed through the Science Citation Index Expanded of Web of Science Core Collection (limited to SCIE). Microsoft office 2019, GraphPad Prism 8, VOSviewer, and R-bibliometrix were used to conduct the bibliometric analysis.ResultsFrom 1900 to 2020, a total of 1,034 publications were retrieved. The USA had the largest number of publications, making the greatest contribution to the topic (n = 260, 25.15%). Active collaborations between countries/regions were also enrolled. Grant and Hermontaylor were perhaps the most impactful researchers in the landscape of EP. Protein Expression and Purification and the Journal of Biological Chemistry were the most prevalent (79/1,034, 7.64%) and cited journals (n = 2,626), respectively. Using the top 15 citations and co-citations achievements clarified the theoretical basis of the EP research field. Important topics mainly include the structure of EP, the affective factors for activating substrates by EP, EP-related disorders, and inhibitors of EP.ConclusionBased on the bibliometric analysis, we have gained a comprehensive analysis of the global status and research frontiers of studies investigating EP, which provides some guidance and reference for researchers and clinicians engaged in EP research.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hua Yin
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- *Correspondence: Haojie Huang
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- Zhaoshen Li
| |
Collapse
|
5
|
The Amniotic Fluid Cell-Free Transcriptome Provides Novel Information about Fetal Development and Placental Cellular Dynamics. Int J Mol Sci 2021; 22:ijms22052612. [PMID: 33807645 PMCID: PMC7961801 DOI: 10.3390/ijms22052612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The amniotic fluid (AF) is a complex biofluid that reflects fetal well-being during development. AF con be divided into two fractions, the supernatant and amniocytes. The supernatant contains cell-free components, including placenta-derived microparticles, protein, cell-free fetal DNA, and cell-free fetal RNA from the fetus. Cell-free mRNA (cfRNA) analysis holds a special position among high-throughput analyses, such as transcriptomics, proteomics, and metabolomics, owing to its ease of profiling. The AF cell-free transcriptome differs from the amniocyte transcriptome and alters with the progression of pregnancy and is often associated with the development of various organ systems including the fetal lung, skin, brain, pancreas, adrenal gland, gastrointestinal system, etc. The AF cell-free transcriptome is affected not only by normal physiologies, such as fetal sex, gestational age, and fetal maturity, but also by pathologic mechanisms such as maternal obesity, and genetic syndromes (Down, Edward, Turner, etc.), as well as pregnancy complications (preeclampsia, intrauterine growth restriction, preterm birth, etc.). cfRNA in the amniotic fluid originates from the placenta and fetal organs directly contacting the amniotic fluid as well as from the fetal plasma across the placenta. The AF transcriptome may reflect the fetal and placental development and therefore aid in the monitoring of normal and abnormal development.
Collapse
|
6
|
Vasani A, Kumar MS. Advances in the proteomics of amniotic fluid to detect biomarkers for chromosomal abnormalities and fetomaternal complications during pregnancy. Expert Rev Proteomics 2019; 16:277-286. [PMID: 30722712 DOI: 10.1080/14789450.2019.1578213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Amniotic fluid (AF) is a dynamic and complex mixture that reflects the physiological condition of developing fetus. In the last decade, proteomic analysis of AF for 16-18 weeks normal pregnancy has been done for the composition and functions of this fluid. Other body fluids such as urine, sweat, tears, etc. are being used for diagnosis of disease, but an insight into protein biomarkers of amniotic fluid can save the fetus and mother from future complications. Areas covered: We have covered the proteomics of amniotic fluid done since 2000, in order to strengthen the establishment of these techniques as a recognized diagnostic tool in the field. After classifying the diseases based on chromosomal aneuploidies, gestational changes, and inflammation caused during pregnancy; we have focused on amniotic fluid to detect various complications during and post pregnancy and its effect on the fetomaternal relationship. Expert comment: The main protein biomarkers responsible for various syndromes, diseases, and complications have been summarized. Major proteins identified for gestational conditions are IGFBP-1, fibrinogen, neutrophil defensins like calgranulins A and C, cathelicidin, APOA1, TRFE, etc. Validation of particular technique and establishing a single standardized biomarker for the diagnosis to avoid any overlapping for different diseases is required. After certain improvements, proteomics approach can be considered for diagnosis of diseases associated with fetal-maternal health.
Collapse
Affiliation(s)
- Aayushi Vasani
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , V.L. Mehta Road, Vile Parle west, Mumbai - 400056 , India
| | - Maushmi S Kumar
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , V.L. Mehta Road, Vile Parle west, Mumbai - 400056 , India
| |
Collapse
|
7
|
Fasulo L, Brandi R, Arisi I, La Regina F, Berretta N, Capsoni S, D'Onofrio M, Cattaneo A. ProNGF Drives Localized and Cell Selective Parvalbumin Interneuron and Perineuronal Net Depletion in the Dentate Gyrus of Transgenic Mice. Front Mol Neurosci 2017; 10:20. [PMID: 28232789 PMCID: PMC5299926 DOI: 10.3389/fnmol.2017.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 01/12/2023] Open
Abstract
ProNGF, the precursor of mature Nerve Growth Factor (NGF), is the most abundant NGF form in the brain and increases markedly in the cortex in Alzheimer's Disease (AD), relative to mature NGF. A large body of evidence shows that the actions of ProNGF and mature NGF are often conflicting, depending on the receptors expressed in target cells. TgproNGF#3 mice, expressing furin-cleavage resistant proNGF in CNS neurons, directly reveal consequences of increased proNGF levels on brain homeostasis. Their phenotype clearly indicates that proNGF can be a driver of neurodegeneration, including severe learning and memory behavioral deficits, cholinergic deficits, and diffuse immunoreactivity for A-beta and A-beta-oligomers. In aged TgproNGF#3 mice spontaneous epileptic-like events are detected in entorhinal cortex-hippocampal slices, suggesting occurrence of excitatory/inhibitory (E/I) imbalance. In this paper, we investigate the molecular events linking increased proNGF levels to the epileptiform activity detected in hippocampal slices. The occurrence of spontaneous epileptiform discharges in the hippocampal network in TgproNGF#3 mice suggests an impaired inhibitory interneuron homeostasis. In the present study, we detect the onset of hippocampal epileptiform events at 1-month of age. Later, we observe a regional- and cellular-selective Parvalbumin interneuron and perineuronal net (PNN) depletion in the dentate gyrus (DG), but not in other hippocampal regions of TgproNGF#3 mice. These results demonstrate that, in the hippocampus, the DG is selectively vulnerable to altered proNGF/NGF signaling. Parvalbumin interneuron depletion is also observed in the amygdala, a region strongly connected to the hippocampus and likewise receiving cholinergic afferences. Transcriptome analysis of TgproNGF#3 hippocampus reveals a proNGF signature with broad down-regulation of transcription. The most affected mRNAs modulated at early times belong to synaptic transmission and plasticity and extracellular matrix (ECM) gene families. Moreover, alterations in the expression of selected BDNF splice variants were observed. Our results provide further mechanistic insights into the vicious negative cycle linking proNGF and neurodegeneration, confirming the regulation of E/I homeostasis as a crucial mediating mechanism.
Collapse
Affiliation(s)
- Luisa Fasulo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| | - Rossella Brandi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | | | - Nicola Berretta
- Department of Experimental Neurology, Fondazione Santa Lucia IRCCS Rome, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore Pisa, Italy
| | - Mara D'Onofrio
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| |
Collapse
|
8
|
Svobodová I, Korabečná M, Calda P, Břešťák M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M, Hořínek A. Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn 2016; 36:775-84. [PMID: 27323694 DOI: 10.1002/pd.4861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/30/2016] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Molecular pathogenesis of Down syndrome (DS) is still incompletely understood. Epigenetic mechanisms, including miRNAs gene expression regulation, belong to potential influencing factors. The aims of this study were to compare miRNAs expressions in placentas with normal and trisomic karyotype and to associate differentially expressed miRNAs with concrete biological pathways. METHODS A total of 80 CVS samples - 41 with trisomy 21 and 39 with normal karyotype - were included in our study. Results obtained in the pilot study using real-time PCR technology and TaqMan Human miRNA Array Cards were subsequently validated on different samples using individual TaqMan miRNA Assays. RESULTS Seven miRNAs were verified as upregulated in DS placentas (miR-99a, miR-542-5p, miR-10b, miR-125b, miR-615, let-7c and miR-654); three of these miRNAs are located on chromosome 21 (miR-99a, miR-125b and let-7c). Many essential biological processes, transcriptional regulation or apoptosis, were identified as being potentially influenced by altered miRNA levels. Moreover, miRNAs overexpressed in DS placenta apparently regulate genes involved in placenta development (GJA1, CDH11, EGF, ERVW-1, ERVFRD-1, LEP or INHA). CONCLUSION These findings suggest the possible participation of miRNAs in Down syndrome impaired placentation and connected pregnancy pathologies. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Iveta Svobodová
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Calda
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miroslav Břešťák
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Screening Center ProfiG2, Prague, Czech Republic
| | - Eva Pazourková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Šárka Pospíšilová
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Michaela Novotná
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Aleš Hořínek
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,3rd Medical Department of Internal Medicine of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
He P, Shao D, Ye M, Zhang G. Analysis of gene expression identifies candidate markers and pathways in pre-eclampsia. J OBSTET GYNAECOL 2014; 35:578-84. [PMID: 25528892 DOI: 10.3109/01443615.2014.990430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pre-eclampsia is a serious multisystem disorder and causes significant increase in both maternal and foetal morbidity and perinatal mortality globally. Due to the limited understanding of the molecular mechanism of pre-eclampsia, the current study conducted bioinformatic analyses to screen key regulators involved in pre-eclampsia. The gene expression profiling dataset GSE44711 containing 8 early-onset pre-eclampsia placentas and 8 gestational-age-matched control placentas was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened by limma software package, which were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the Database for Annotation, Visualization, and Integrated Discovery website. Finally, protein-protein interaction network was constructed using the Search Tool for the Retrieval of Interacting Genes database. In total, 192 DEGs including 106 upregulated and 86 downregulated genes were obtained. Proteoglycan 2 and podoplanin were the most significantly up- and downregulated genes, respectively. In addition, three potential pathways and their related DEGs: spermidine/spermine N1-acetyltransferase 1, amiloride-binding protein 1 and adenosylmethionine decarboxylase 1 were associated with arginine and proline metabolism. Vascular endothelial growth factor C; phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit beta; collagen, type I, alpha 1 (COL1A1); and fibronectin 1 (FN1) were associated with focal adhesion. COL6A1 as well as COL1A1 and FN1 were involved in extra-cellular matrix-receptor interaction. The current study identified several potential genes and three pathways which may be considered as candidate targets for diagnosis and therapy of pre-eclampsia.
Collapse
Affiliation(s)
- P He
- a Department of Physiological Obstetric , Guangzhou Women and Children's Medical Centre, Guangzhou Medical University , Guangzhou , P. R. China
| | - D Shao
- b Guangzhou Medical Research and Development Centre of BGI , Guangzhou , P. R. China
| | - M Ye
- b Guangzhou Medical Research and Development Centre of BGI , Guangzhou , P. R. China
| | - G Zhang
- a Department of Physiological Obstetric , Guangzhou Women and Children's Medical Centre, Guangzhou Medical University , Guangzhou , P. R. China
| |
Collapse
|
10
|
Anuthama K, Prasad H, Ramani P, Premkumar P, Natesan A, Sherlin HJ. Genetic alterations in syndromes with oral manifestations. Dent Res J (Isfahan) 2013; 10:713-22. [PMID: 24379857 PMCID: PMC3872620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ever since Gregor Johan Mendel proposed the law of inheritance, genetics has transcended the field of health and has entered all walks of life in its application. Thus, the gene is the pivoting factor for all happenings revolving around it. Knowledge of gene mapping in various diseases would be a valuable tool in prenatally diagnosing the condition and averting the future disability and stigma for the posterity. This article includes an array of genetically determined conditions in patients seen at our college out-patient department with complete manifestation, partial manifestation and array of manifestations not fitting into a particular syndrome.
Collapse
Affiliation(s)
- Krishnamurthy Anuthama
- Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Tiruchengode, India
| | - Harikrishnan Prasad
- Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Tiruchengode, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, College of Dental Surgery, Saveetha University, Chennai, Tamil Nadu, India
| | - Priya Premkumar
- Department of Oral and Maxillofacial Pathology, College of Dental Surgery, Saveetha University, Chennai, Tamil Nadu, India
| | - Anuja Natesan
- Department of Oral and Maxillofacial Pathology, College of Dental Surgery, Saveetha University, Chennai, Tamil Nadu, India
| | - Herald J. Sherlin
- Department of Oral and Maxillofacial Pathology, College of Dental Surgery, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Cho CKJ, Drabovich AP, Karagiannis GS, Martínez-Morillo E, Dason S, Dimitromanolakis A, Diamandis EP. Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome. Clin Proteomics 2013; 10:2. [PMID: 23394617 PMCID: PMC3626793 DOI: 10.1186/1559-0275-10-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/18/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. RESULTS Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. CONCLUSIONS The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.
Collapse
Affiliation(s)
- Chan-Kyung J Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bianchi DW. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nat Med 2012; 18:1041-51. [PMID: 22772565 DOI: 10.1038/nm.2829] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment.
Collapse
Affiliation(s)
- Diana W Bianchi
- The Mother Infant Research Institute at Tufts Medical Center and the Division of Genetics, Department of Pediatrics, Floating Hospital for Children, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Hui L, Slonim DK, Wick HC, Johnson KL, Koide K, Bianchi DW. Novel neurodevelopmental information revealed in amniotic fluid supernatant transcripts from fetuses with trisomies 18 and 21. Hum Genet 2012; 131:1751-9. [PMID: 22752091 DOI: 10.1007/s00439-012-1195-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/19/2012] [Indexed: 01/15/2023]
Abstract
Trisomies 18 and 21 are the two most common live born autosomal aneuploidies in humans. While the anatomic abnormalities in affected fetuses are well documented, the dysregulated biological pathways associated with the development of the aneuploid phenotype are less clear. Amniotic fluid (AF) cell-free RNA is a valuable source of biological information obtainable from live fetuses. In this study, we mined gene expression data previously produced by our group from mid-trimester AF supernatant samples. We identified the euploid, trisomy 18 and trisomy 21 AF transcriptomes, and analyzed them with a particular focus on the nervous system. We used multiple bioinformatics resources, including DAVID, Ingenuity Pathway Analysis, and the BioGPS Gene Expression Atlas. Our analyses confirmed that AF supernatant from aneuploid fetuses is enriched for nervous system gene expression and neurological disease pathways. Tissue analysis showed that fetal brain cortex and Cajal-Retzius cells were significantly enriched for genes contained in the AF transcriptomes. We also examined AF transcripts known to be dysregulated in aneuploid fetuses compared with euploid controls and identified several brain-specific transcripts among them. Many of these genes play critical roles in nervous system development. NEUROD2, which was downregulated in trisomy 18, induces neurogenic differentiation. SOX11, downregulated in trisomy 21, is a transcription factor that is essential for pan-neuronal protein expression and axonal growth of sensory neurons. Our results show that whole transcriptome analysis of cell-free RNA in AF from live pregnancies permits discovery of biomarkers of abnormal human neurodevelopment and advances our understanding of the pathophysiology of aneuploidy.
Collapse
Affiliation(s)
- Lisa Hui
- Mother Infant Research Institute and the Division of Genetics, Department of Pediatrics, The Floating Hospital for Children at Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Pennings JLA, Rodenburg W, Imholz S, Koster MPH, van Oostrom CTM, Breit TM, Schielen PCJI, de Vries A. Gene expression profiling in a mouse model identifies fetal liver- and placenta-derived potential biomarkers for Down Syndrome screening. PLoS One 2011; 6:e18866. [PMID: 21533146 PMCID: PMC3077415 DOI: 10.1371/journal.pone.0018866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/21/2011] [Indexed: 11/23/2022] Open
Abstract
Background As a first step to identify novel potential biomarkers for prenatal Down
Syndrome screening, we analyzed gene expression in embryos of wild type mice
and the Down Syndrome model Ts1Cje. Since current Down Syndrome screening
markers are derived from placenta and fetal liver, these tissues were chosen
as target. Methodology/Principal Findings Placenta and fetal liver at 15.5 days gestation were analyzed by microarray
profiling. We confirmed increased expression of genes located at the
trisomic chromosomal region. Overall, between the two genotypes more
differentially expressed genes were found in fetal liver than in placenta.
Furthermore, the fetal liver data are in line with the hematological
aberrations found in humans with Down Syndrome as well as Ts1Cje mice.
Together, we found 25 targets that are predicted (by Gene Ontology, UniProt,
or the Human Plasma Proteome project) to be detectable in human serum. Conclusions/Significance Fetal liver might harbor more promising targets for Down Syndrome screening
studies. We expect these new targets will help focus further experimental
studies on identifying and validating human maternal serum biomarkers for
Down Syndrome screening.
Collapse
Affiliation(s)
- Jeroen L A Pennings
- Laboratory for Health Protection Research (GBO), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lintas C, Sacco R, Persico AM. Genome-wide expression studies in autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiol Dis 2010; 45:57-68. [PMID: 21130877 DOI: 10.1016/j.nbd.2010.11.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/11/2010] [Accepted: 11/16/2010] [Indexed: 12/19/2022] Open
Abstract
Though different in their aetiology, autism spectrum disorder (ASD), Rett syndrome (RTT) and Down syndrome (DS) are three neurodevelopmental disorders sharing significant clinical and neuropathological overlaps. Genome-wide expression studies are reviewed and available datasets from post-mortem brains reanalyzed to identify genes and gene pathways dysregulated in all three disorders. Our results surprisingly converge upon immune, and not neurodevelopmental genes, as the most consistently shared abnormality in genome-wide expression patterns. A dysregulated immune response, accompanied by enhanced oxidative stress and abnormal mitochondrial metabolism seemingly represents the common molecular underpinning of these neurodevelopmental disorders. This conclusion may be important for the definition of pharmacological therapies able to ameliorate clinical symptoms across these disorders.
Collapse
Affiliation(s)
- Carla Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Research into cell-free fetal (cff) nucleic acids has primarily focused on maternal plasma; however, cff DNA and RNA are also detectable in other body fluids such as amniotic fluid (AF). In AF, cff DNA is present in much greater concentrations than in maternal plasma and represents a pure fetal sample uncontaminated by maternal- and trophoblast-derived nucleic acids. The aim of this review was to summarize the current knowledge on cff nucleic acids in AF and to outline future research directions. METHODS MEDLINE and PREMEDLINE were searched up to August 2010 for original investigations of cell-free RNA or DNA in AF. Sixteen studies were included in the review. RESULTS AF cff DNA represents a physiologically separate pool from cff DNA in maternal plasma. The placenta is not a major source of nucleic acids in AF. It is feasible to isolate cff nucleic acids from small volumes of discarded AF supernatant in sufficient quality and quantity to perform microarray studies and downstream applications such as pathway analysis. This 'discovery-driven approach' has resulted in new information on the pathogenesis of Down syndrome and polyhydramnios. There is otherwise a paucity of information relating to the basic biology and clinical applications of cff nucleic acids in AF. CONCLUSIONS AF supernatant is a valuable and widely available but under-utilized biological resource. Further studies of cff nucleic acids in AF may lead to new insights into human fetal development and ultimately new approaches to antenatal treatment of human disease.
Collapse
Affiliation(s)
- L Hui
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
17
|
Cho CKJ, Smith CR, Diamandis EP. Amniotic Fluid Proteome Analysis from Down Syndrome Pregnancies for Biomarker Discovery. J Proteome Res 2010; 9:3574-82. [DOI: 10.1021/pr100088k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chan-Kyung J. Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Christopher R. Smith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Bhattacharyya A, McMillan E, Chen SI, Wallace K, Svendsen CN. A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells. Dev Neurosci 2009; 31:497-510. [PMID: 19738365 DOI: 10.1159/000236899] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/30/2009] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is a developmental disorder whose mental impairment is due to defective cortical development. Human neural progenitor cells (hNPCs) derived from fetal DS cortex initially produce normal numbers of neurons, but generate fewer neurons with time in culture, similar to the pattern of neurogenesis that occurs in DS in vivo. Microarray analysis of DS hNPCs at this critical time reveals gene changes indicative of defects in interneuron progenitor development. In addition, dysregulated expression of many genes involved in neural progenitor cell biology points to changes in the progenitor population and subsequent reduction in interneuron neurogenesis. Delineation of a critical period in interneuron development in DS provides a foundation for investigation of the basis of reduced neurogenesis in DS and defines a time when these progenitor cells may be amenable to therapeutic treatment.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Stem Cell Research Group, The Waisman Center, University of Wisconsin, Madison, Wisc. 53705, USA.
| | | | | | | | | |
Collapse
|
19
|
Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc Natl Acad Sci U S A 2009; 106:9425-9. [PMID: 19474297 DOI: 10.1073/pnas.0903909106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To characterize the differences between second trimester Down syndrome (DS) and euploid fetuses, we used Affymetrix microarrays to compare gene expression in uncultured amniotic fluid supernatant samples. Functional pathway analysis highlighted the importance of oxidative stress, ion transport, and G protein signaling in the DS fetuses. Further evidence supporting these results was derived by correlating the observed gene expression patterns to those of small molecule drugs via the Connectivity Map. Our results suggest that there are secondary adverse consequences of DS evident in the second trimester, leading to testable hypotheses about possible antenatal therapy for DS.
Collapse
|
20
|
Chou CY, Liu LY, Chen CY, Tsai CH, Hwa HL, Chang LY, Lin YS, Hsieh FJ. Gene expression variation increase in trisomy 21 tissues. Mamm Genome 2008; 19:398-405. [PMID: 18594911 DOI: 10.1007/s00335-008-9121-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 05/27/2008] [Indexed: 12/26/2022]
Abstract
Congenital development disorders with variable severity occur in trisomy 21. However, how these phenotypic abnormalities develop with variations remains elusive. We hypothesize that the differences in euploid gene expression variation among trisomy 21 tissues are caused by the presence of an extra copy of chromosome 21 and may contribute to the phenotypic variations in Down syndrome. We used DNA microarray to measure the differences in gene expression variance between four human trisomy 21 and six euploid amniocytes. The three publicly available data sets of fetal brains, adult brains, and fetal hearts were also analyzed. The numbers of euploid genes with greater variance were significantly higher in all four kinds of trisomy 21 tissues (p<0.01) than in the corresponding euploid tissues. Seventeen euploid genes with significantly different variance between trisomy 21 and euploid amniocytes were found using the F test. In summary, there is a set of euploid genes that shows greater variance of expression in human trisomy 21 tissues than in euploid tissues. This change may contribute to producing the variable phenotypic abnormalities observed in Down syndrome.
Collapse
Affiliation(s)
- Ching Yu Chou
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sommer CA, Pavarino-Bertelli EC, Goloni-Bertollo EM, Henrique-Silva F. Identification of dysregulated genes in lymphocytes from children with Down syndrome. Genome 2008; 51:19-29. [PMID: 18356936 DOI: 10.1139/g07-100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The molecular mechanisms by which trisomy of human chromosome 21 disrupts normal development are not well understood. Global transcriptome studies attempting to analyze the consequences of trisomy in Down syndrome (DS) tissues have reported conflicting results, which have led to the suggestion that the analysis of specific tissues or cell types may be more productive. In the present study, we set out to analyze global changes of gene expression in lymphocytes from children with trisomy 21 by means of the serial analysis of gene expression (SAGE) methodology. Two SAGE libraries were constructed using pooled RNA of normal and Down syndrome children. Comparison between DS and normal profiles revealed that most of the transcripts were expressed at similar levels and functional classes of abundant genes were equally represented. Among the 242 significantly differentially expressed SAGE tags, several transcripts downregulated in DS code for proteins involved in T-cell and B-cell receptor signaling (e.g., PI3Kdelta, RGS2, LY6E, FOS, TAGAP, CD46). The SAGE data and interindividual variability were validated by real-time quantitative PCR. Our results indicate that trisomy 21 induces a modest dysregulation of disomic genes that may be related to the immunological perturbations seen in DS.
Collapse
Affiliation(s)
- Cesar A Sommer
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luis km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
22
|
Proteomic profile determination of autosomal aneuploidies by mass spectrometry on amniotic fluids. Proteome Sci 2008; 6:1. [PMID: 18190690 PMCID: PMC2248173 DOI: 10.1186/1477-5956-6-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/11/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Prenatal diagnosis of chromosomal abnormalities by cytogenetic analysis is time-consuming, expensive, and requires highly qualified technicians. Rapid diagnosis of aneuploidies followed by reassurance of women with normal results can be performed by molecular analysis of uncultured foetal cells. In the present study, we developed a proteomic fingerprinting approach coupled with a statistical classification method to improve diagnosis of aneuploidies, including trisomies 13, 18, and 21, in amniotic fluid samples. RESULTS The proteomic spectra obtained from 52 pregnant women were compiled, normalized, and mass peaks with mass-to-charge ratios between 2.5 and 50 kDa identified. Peak information was combined together and analysed using univariate statistics. Among the 208 expressed protein peaks, 40 differed significantly between aneuploid and non aneuploid samples, with AUC diagnostic values ranging from 0.71 to 0.91. Hierarchical clustering, principal component analysis and support vector machine (SVM) analysis were performed. Two class predictor models were defined from the training set, which resulted in a prediction accuracy of 92.3% and 96.43%, respectively. Using an external and independent validation set, diagnostic accuracies were maintained at 87.5% and 91.67%, respectively. CONCLUSION This pilot study demonstrates the potential interest of protein expression signature in the identification of new potential biological markers that might be helpful for the rapid clinical management of high-risk pregnancies.
Collapse
|
23
|
Selwood SP, Parvathy S, Cordell B, Ryan HS, Oshidari F, Vincent V, Yesavage J, Lazzeroni LC, Murphy GM. Gene expression profile of the PDAPP mouse model for Alzheimer's disease with and without Apolipoprotein E. Neurobiol Aging 2007; 30:574-90. [PMID: 17904698 DOI: 10.1016/j.neurobiolaging.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 12/31/2022]
Abstract
The APOE epsilon 4 allele is a strong risk factor for Alzheimer's disease (AD). However, the molecular basis for this effect remains unclear. We examined expression of approximately 12,000 genes and expressed sequence tags in the hippocampus and cortex of PDAPP (APP(V717)) mice modeling AD that show extensive amyloid beta (A beta) deposition, and in PDAPP mice lacking murine APOE expression, which show marked attenuation of A beta deposition in the brain. Wild type and APOE knockout animals were also examined. Expression levels were determined at the initial stage of A beta deposition, as well as in older animals showing extensive neuropathological changes. Fifty-four transcripts were identified using our statistical analysis as differentially regulated between the PDAPP and PDAPP/APOE ko mice, whereas 31 transcripts were classified as differentially regulated among PDAPP mice and WT animals, and seven transcripts were identified as regulated between the PDAPP/APOE ko animals and the APOE ko animals. Interestingly, many of the differentially regulated genes we detected can be related to biological processes previously shown to be important in AD pathophysiology, including inflammation, calcium homeostasis, cholesterol transport and uptake, kinases and phosphatases involved in tau phosphorylation and dephosphorylation, mitochondrial energy metabolism, protein degradation, neuronal growth, endoplasmic reticulum (ER) stress related proteins, antioxidant activity, cytoskeletal organization, and presenilin binding proteins. Regulated genes also included some not directly associated with AD in the past but likely to be involved in known AD pathophysiologic mechanisms, and others that may represent completely novel factors in the pathogenesis of AD. These results provide a global molecular profile of hippocampal and cortical gene expression during the initial and intermediate stages Abeta deposition, and the effects of APOE deletion on this process.
Collapse
Affiliation(s)
- Simon P Selwood
- Neuroscience Research Laboratories, Stanford University School of Medicine, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aït Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, Rossier J, Personnaz L, Creau N, Bléhaut H, Robin S, Delabar JM, Potier MC. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 2007; 81:475-91. [PMID: 17701894 PMCID: PMC1950826 DOI: 10.1086/520000] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/21/2007] [Indexed: 12/15/2022] Open
Abstract
Down syndrome caused by chromosome 21 trisomy is the most common genetic cause of mental retardation in humans. Disruption of the phenotype is thought to be the result of gene-dosage imbalance. Variations in chromosome 21 gene expression in Down syndrome were analyzed in lymphoblastoid cells derived from patients and control individuals. Of the 359 genes and predictions displayed on a specifically designed high-content chromosome 21 microarray, one-third were expressed in lymphoblastoid cells. We performed a mixed-model analysis of variance to find genes that are differentially expressed in Down syndrome independent of sex and interindividual variations. In addition, we identified genes with variations between Down syndrome and control samples that were significantly different from the gene-dosage effect (1.5). Microarray data were validated by quantitative polymerase chain reaction. We found that 29% of the expressed chromosome 21 transcripts are overexpressed in Down syndrome and correspond to either genes or open reading frames. Among these, 22% are increased proportional to the gene-dosage effect, and 7% are amplified. The other 71% of expressed sequences are either compensated (56%, with a large proportion of predicted genes and antisense transcripts) or highly variable among individuals (15%). Thus, most of the chromosome 21 transcripts are compensated for the gene-dosage effect. Overexpressed genes are likely to be involved in the Down syndrome phenotype, in contrast to the compensated genes. Highly variable genes could account for phenotypic variations observed in patients. Finally, we show that alternative transcripts belonging to the same gene are similarly regulated in Down syndrome but sense and antisense transcripts are not.
Collapse
Affiliation(s)
- E Aït Yahya-Graison
- Neurobiologie et Diversité Cellulaire, Unité Mixte de Recherche 7637 du Centre National de la Recherche Scientifique et de l'Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M, Gehrig C, Descombes P, Sherman S, Dagna Bricarelli F, Baldo C, Novelli A, Dallapiccola B, Antonarakis SE. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet 2007; 81:252-63. [PMID: 17668376 PMCID: PMC1950802 DOI: 10.1086/519248] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/27/2007] [Indexed: 02/06/2023] Open
Abstract
Down syndrome (DS) is characterized by extensive phenotypic variability, with most traits occurring in only a fraction of affected individuals. Substantial gene-expression variation is present among unaffected individuals, and this variation has a strong genetic component. Since DS is caused by genomic-dosage imbalance, we hypothesize that gene-expression variation of human chromosome 21 (HSA21) genes in individuals with DS has an impact on the phenotypic variability among affected individuals. We studied gene-expression variation in 14 lymphoblastoid and 17 fibroblast cell lines from individuals with DS and an equal number of controls. Gene expression was assayed using quantitative real-time polymerase chain reaction on 100 and 106 HSA21 genes and 23 and 26 non-HSA21 genes in lymphoblastoid and fibroblast cell lines, respectively. Surprisingly, only 39% and 62% of HSA21 genes in lymphoblastoid and fibroblast cells, respectively, showed a statistically significant difference between DS and normal samples, although the average up-regulation of HSA21 genes was close to the expected 1.5-fold in both cell types. Gene-expression variation in DS and normal samples was evaluated using the Kolmogorov-Smirnov test. According to the degree of overlap in expression levels, we classified all genes into 3 groups: (A) nonoverlapping, (B) partially overlapping, and (C) extensively overlapping expression distributions between normal and DS samples. We hypothesize that, in each cell type, group A genes are the most dosage sensitive and are most likely involved in the constant DS traits, group B genes might be involved in variable DS traits, and group C genes are not dosage sensitive and are least likely to participate in DS pathological phenotypes. This study provides the first extensive data set on HSA21 gene-expression variation in DS and underscores its role in modulating the outcome of gene-dosage imbalance.
Collapse
Affiliation(s)
- Paola Prandini
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kimura R, Kamino K, Yamamoto M, Nuripa A, Kida T, Kazui H, Hashimoto R, Tanaka T, Kudo T, Yamagata H, Tabara Y, Miki T, Akatsu H, Kosaka K, Funakoshi E, Nishitomi K, Sakaguchi G, Kato A, Hattori H, Uema T, Takeda M. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum Mol Genet 2007; 16:15-23. [PMID: 17135279 DOI: 10.1093/hmg/ddl437] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We scanned throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) using 374 Japanese patients and 375 population-based controls, because trisomy 21 is known to be associated with early deposition of beta-amyloid (Abeta) in the brain. Among 417 markers spanning 33 Mb, 22 markers showed associations with either the allele or the genotype frequency (P < 0.05). Logistic regression analysis with age, sex and apolipoprotein E (APOE)-epsilon4 dose supported genetic risk of 17 markers, of which eight markers were linked to the SAMSN1, PRSS7, NCAM2, RUNX1, DYRK1A and KCNJ6 genes. In logistic regression, the DYRK1A (dual-specificity tyrosine-regulated kinase 1A) gene, located in the Down syndrome critical region, showed the highest significance [OR = 2.99 (95% CI: 1.72-5.19), P = 0.001], whereas the RUNX1 gene showed a high odds ratio [OR = 23.3 (95% CI: 2.76-196.5), P = 0.038]. DYRK1A mRNA level in the hippocampus was significantly elevated in patients with AD when compared with pathological controls (P < 0.01). DYRK1A mRNA level was upregulated along with an increase in the Abeta-level in the brain of transgenic mice, overproducing Abeta at 9 months of age. In neuroblastoma cells, Abeta induced an increase in the DYRK1A transcript, which also led to tau phosphorylation at Thr212 under the overexpression of tau. Therefore, the upregulation of DYRK1A transcription results from Abeta loading, further leading to tau phosphorylation. Our result indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.
Collapse
Affiliation(s)
- Ryo Kimura
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2-D3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li CM, Guo M, Salas M, Schupf N, Silverman W, Zigman WB, Husain S, Warburton D, Thaker H, Tycko B. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC MEDICAL GENETICS 2006; 7:24. [PMID: 16539728 PMCID: PMC1435874 DOI: 10.1186/1471-2350-7-24] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 03/15/2006] [Indexed: 11/18/2022]
Abstract
Background Down syndrome (DS) is caused by trisomy 21 (+21), but the aberrations in gene expression resulting from this chromosomal aneuploidy are not yet completely understood. Methods We used oligonucleotide microarrays to survey mRNA expression in early- and late-passage control and +21 fibroblasts and mid-gestation fetal hearts. We supplemented this analysis with northern blotting, western blotting, real-time RT-PCR, and immunohistochemistry. Results We found chromosome 21 genes consistently over-represented among the genes over-expressed in the +21 samples. However, these sets of over-expressed genes differed across the three cell/tissue types. The chromosome 21 gene MX1 was strongly over-expressed (mean 16-fold) in senescent +21 fibroblasts, a result verified by northern and western blotting. MX1 is an interferon target gene, and its mRNA was induced by interferons present in +21 fibroblast conditioned medium, suggesting an autocrine loop for its over-expression. By immunohistochemistry the p78MX1 protein was induced in lesional tissue of alopecia areata, an autoimmune disorder associated with DS. We found strong over-expression of the purine biosynthesis gene GART (mean 3-fold) in fetal hearts with +21 and verified this result by northern blotting and real-time RT-PCR. Conclusion Different subsets of chromosome 21 genes are over-expressed in different cell types with +21, and for some genes this over-expression is non-linear (>1.5X). Hyperactive interferon signaling is a candidate pathway for cell senescence and autoimmune disorders in DS, and abnormal purine metabolism should be investigated for a potential role in cardiac defects.
Collapse
Affiliation(s)
- Chi-Ming Li
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Meirong Guo
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Martha Salas
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Wayne Silverman
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Warren B Zigman
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Sameera Husain
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Dorothy Warburton
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Harshwardhan Thaker
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Benjamin Tycko
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
28
|
Mao R, Wang X, Spitznagel EL, Frelin LP, Ting JC, Ding H, Kim JW, Ruczinski I, Downey TJ, Pevsner J. Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol 2005; 6:R107. [PMID: 16420667 PMCID: PMC1414106 DOI: 10.1186/gb-2005-6-13-r107] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/04/2005] [Accepted: 11/21/2005] [Indexed: 11/11/2022] Open
Abstract
Microarray analysis of transcript levels in fetal cerebellum and heart tissues of Down syndrome patients showed a disruption only of chromosome 21 gene expression. Background Down syndrome, caused by trisomic chromosome 21, is the leading genetic cause of mental retardation. Recent studies demonstrated that dosage-dependent increases in chromosome 21 gene expression occur in trisomy 21. However, it is unclear whether the entire transcriptome is disrupted, or whether there is a more restricted increase in the expression of those genes assigned to chromosome 21. Also, the statistical significance of differentially expressed genes in human Down syndrome tissues has not been reported. Results We measured levels of transcripts in human fetal cerebellum and heart tissues using DNA microarrays and demonstrated a dosage-dependent increase in transcription across different tissue/cell types as a result of trisomy 21. Moreover, by having a larger sample size, combining the data from four different tissue and cell types, and using an ANOVA approach, we identified individual genes with significantly altered expression in trisomy 21, some of which showed this dysregulation in a tissue-specific manner. We validated our microarray data by over 5,600 quantitative real-time PCRs on 28 genes assigned to chromosome 21 and other chromosomes. Gene expression values from chromosome 21, but not from other chromosomes, accurately classified trisomy 21 from euploid samples. Our data also indicated functional groups that might be perturbed in trisomy 21. Conclusions In Down syndrome, there is a primary transcriptional effect of disruption of chromosome 21 gene expression, without a pervasive secondary effect on the remaining transcriptome. The identification of dysregulated genes and pathways suggests molecular changes that may underlie the Down syndrome phenotypes.
Collapse
Affiliation(s)
- Rong Mao
- Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Edward L Spitznagel
- Department of Mathematics, Campus Box 1146, Washington University, St Louis, MO 63130, USA
| | - Laurence P Frelin
- Department of Neurology, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | - Jason C Ting
- Department of Neurology, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | - Huashi Ding
- Partek Incorporated, St Charles, MO 63304, USA
| | - Jung-whan Kim
- Pathobiology Graduate Program, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Jonathan Pevsner
- Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Neurology, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
- Pathobiology Graduate Program, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Current awareness in prenatal diagnosis. Prenat Diagn 2005; 25:971-6. [PMID: 16270411 DOI: 10.1002/pd.1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447491 DOI: 10.1002/cfg.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|