1
|
Lee YA, Shin MH. CysLT receptor-mediated NOX2 activation is required for IL-8 production in HMC-1 cells induced by Trichomonas vaginalis-derived secretory products. PARASITES, HOSTS AND DISEASES 2024; 62:270-280. [PMID: 39218626 PMCID: PMC11366543 DOI: 10.3347/phd.24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Trichomoniasis is caused by a sexually transmitted flagellate protozoan parasite Trichomonas vaginalis. T. vaginalis-derived secretory products (TvSP) contain lipid mediators such as leukotriene B4 (LTB4) and various cysteinyl leukotrienes (CysLTs) which included LTC4, LTD4, and LTE4. However, the signaling mechanisms by which T. vaginalis-induced CysLTs stimulate interleukin (IL)-8 production in human mast cells remain unclear. In this study, we investigated these mechanisms in human mast cells (HMC-1). Stimulation with TvSP resulted in increased intracellular reactive oxygen species (ROS) generation and NADPH oxidase 2 (NOX2) activation compared to unstimulated cells. Pre-treatment with NOX2 inhibitors such as diphenyleneiodonium chloride (DPI) or apocynin significantly reduced ROS production in TvSP-stimulated HMC-1 cells. Additionally, TvSP stimulation increased NOX2 protein expression and the translocation of p47phox from the cytosol to the membrane. Pretreatment of HMC-1 cells with PI3K or PKC inhibitors reduced TvSP-induced p47phox translocation and ROS generation. Furthermore, NOX2 inhibitors or NOX2 siRNA prevented CREB phosphorylation and IL-8 gene expression or protein secretion induced by TvSP. Pretreatment with a CysLTR antagonist significantly inhibited TvSP-induced ROS production, CREB phosphorylation, and IL-8 production. These results indicate that CysLT-mediated activation of NOX2 plays a crucial role in ROS-dependent IL-8 production in human mast cells stimulated by T. vaginalis-secreted CysLTs. These findings enhance our understanding of the inflammatory response in trichomoniasis and may inform the development of targeted therapies to mitigate this response.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Myeong Heon Shin
- Department of Tropical Medicine and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
2
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
3
|
Zhang Z, Li F, Deng Y, Li Y, Sheng W, Tian X, Yang Z, Wang S, Guo L, Hao L, Mei X. Trichomonas vaginalis excretory secretory proteins reduce semen quality and male fertility. Acta Trop 2023; 238:106794. [PMID: 36535511 DOI: 10.1016/j.actatropica.2022.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Trichomonas vaginalis (T. vaginalis) infection is the most common non-viral sexually transmitted disease (STD) in the world. It can cause male reproductive dysfunction and infertility. However, the pathogenic mechanism is not clear. In this study, the excretory secretory proteins of T. vaginalis (TvESPs) were collected, concentrated, and sterilized. After sperm co-cultured with TvESPs, the survival rate and motility of sperms were analyzed by seminal routine examination, and the results showed that the TvESPs could significantly reduce the survival rate and motility of sperms. Fluorescence staining displayed that TvESPs could destroy the integrity of sperm acrosomes. Flow cytometry indicated that TvESPs induced sperm apoptosis. By mouse in vitro fertilization, we confirmed that TvESPs could significantly reduce the fertilization ability of sperms and negatively affect the development of the fertilized ovum. Via semi-quantitative analysis, we found that the apoptosis-related p27, SMAC, p53, BAX, BCL-2, XIAP, and BCL-W molecules were down-regulated in mouse sperm cells after interaction between the sperms and TvESPs, which played an important role in regulating sperm apoptosis. In conclusion, our study showed that T. vaginalis degraded semen quality and negatively affected male fertility by TvESPs. TvESPs may damage sperms by breaking the balance between sperm pro-apoptotic and anti-apoptotic molecules. This study proves that T. vaginalis infection is a risk factor for infertility.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yangyang Deng
- The Third Affiliated Hospital Of Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Lihua Guo
- Xinxiang Maternity and Child Healthcare Hospital, Xinxiang, Henan, 453003, PR China
| | - Lixia Hao
- Xinxiang Maternity and Child Healthcare Hospital, Xinxiang, Henan, 453003, PR China.
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
4
|
Wu SC, Kuo PJ, Rau CS, Huang LH, Lin CW, Wu YC, Wu CJ, Tsai CW, Hsieh TM, Liu HT, Huang CY, Hsieh CH. Increased Angiogenesis by Exosomes Secreted by Adipose-Derived Stem Cells upon Lipopolysaccharide Stimulation. Int J Mol Sci 2021; 22:8877. [PMID: 34445582 PMCID: PMC8396299 DOI: 10.3390/ijms22168877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis.
Collapse
Affiliation(s)
- Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan;
| | - Pao-Jen Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Chia-Wei Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Wen Tsai
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
5
|
Lee YA, Nam YH, Min A, Shin MH. Trichomonas vaginalis-secreted cysteinyl leukotrienes promote migration, degranulation and MCP-1 production in mast cells. Parasite Immunol 2020; 42:e12789. [PMID: 32881004 DOI: 10.1111/pim.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
Trichomonas vaginalis, a flagellated extracellular protozoan parasite that infects the human genitourinary tract, is usually transmitted by sexual contact. Our previous study showed that the leukotriene B4 (LTB4 ), a T vaginalis-secreted lipid mediator, induces interleukin (IL)-8 production and promotes mast cell degranulation and migration via BLT1 in human. In this study, we investigated whether T vaginalis produces another leukotrienes and whether it causes increased MCP-1 production, mast cell migration and degranulation by activating mast cells. We found that cysteinyl leukotrienes (CysLTs) were contained in T vaginalis-derived secretory product (TvSP) by ELISA. The TvSP-stimulated human mast cell line (HMC-1) exhibited significantly increased monocyte chemoattractant protein-1 (MCP-1) secretion compared to the unstimulated cells. Inhibition of NOX2 activation of cells by treatment of NOX inhibitor or NOX2 siRNA reduced TvSP-stimulated MCP-1 production in HMC-1 cells. It was also confirmed that the receptor for CysLTs is expressed in mast cells. The CysLT receptor (CysLTR) antagonist inhibited TvSP-stimulated MCP-1 production of mast cells, as well as ROS production, migration and degranulation of mast cells, and reduced phospho-NF-kB expression. These results suggest that T vaginalis-secreted CysLTs promote migration, degranulation and MCP-1 production in human mast cells through CysLT receptor-mediated NOX2 activation.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hee Nam
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Arim Min
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
7
|
SNAP23-Dependent Surface Translocation of Leukotriene B4 (LTB4) Receptor 1 Is Essential for NOX2-Mediated Exocytotic Degranulation in Human Mast Cells Induced by Trichomonas vaginalis-Secreted LTB4. Infect Immun 2016; 85:IAI.00526-16. [PMID: 27795355 DOI: 10.1128/iai.00526-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/16/2016] [Indexed: 11/20/2022] Open
Abstract
Trichomonas vaginalis is a sexually transmitted parasite that causes vaginitis in women and itself secretes lipid mediator leukotriene B4 (LTB4). Mast cells are important effector cells of tissue inflammation during infection with parasites. Membrane-bridging SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes are critical for fusion during exocytosis. Although T. vaginalis-derived secretory products (TvSP) have been shown to induce exocytosis in mast cells, information regarding the signaling mechanisms between mast cell activation and TvSP is limited. In this study, we found that SNAP23-dependent surface trafficking of LTB4 receptor 1 (BLT1) is required for nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-mediated exocytotic degranulation of mast cells induced by TvSP. First, stimulation with TvSP induced exocytotic degranulation and reactive oxygen species (ROS) generation in HMC-1 cells. Next, TvSP-induced ROS generation and exocytosis were strongly inhibited by transfection of BLT1 small interfering RNA (siRNA). TvSP induced trafficking of BLT1 from the cytosol to the plasma membrane. We also found that knockdown of SNAP23 abrogated TvSP-induced ROS generation, exocytosis, and surface trafficking of BLT1 in HMC-1 cells. By coimmunoprecipitation, there was a physical interaction between BLT1 and SNAP23 in TvSP-stimulated HMC-1 cells. Taken together, our results suggest that SNAP23-dependent surface trafficking of BLT1 is essential for exocytosis in human mast cells induced by T. vaginalis-secreted LTB4 Our data collectively demonstrate a novel regulatory mechanism for SNAP23-dependent mast cell activation of T. vaginalis-secreted LTB4 involving surface trafficking of BLT1. These results can help to explain how the cross talk mechanism between parasite and host can govern deliberately tissue inflammatory responses.
Collapse
|
8
|
Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol 2015; 36:9159-70. [PMID: 26088449 DOI: 10.1007/s13277-015-3593-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
|
9
|
Lin WC, Chang WT, Chang TY, Shin JW. The Pathogenesis of Human Cervical Epithelium Cells Induced by Interacting with Trichomonas vaginalis. PLoS One 2015; 10:e0124087. [PMID: 25901354 PMCID: PMC4406492 DOI: 10.1371/journal.pone.0124087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/25/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Trichomonas vaginalis is a protozoan parasite that occurs in the urogenital-vaginal tract and is the primary causative agent of trichomoniasis, a common sexually transmitted disease in humans. The aggregation of this protozoan tends to destroy epithelial cells and induce pathogenesis. PRINCIPAL FINDINGS This study cultured T. vaginalis and human cervical epithelial cells (Z172) under the same conditions in the experiments. Following co-culturing for ten hours, the protozoans became attached to Z172, such that the cells presented a round shape and underwent shrinkage. Time-lapse recording and flow cytometry on interacted Z172 revealed that 70% had been disrupted, 18% presented a necrosis-like morphology and 8% showed signs of apoptosis. Gene expression profiling revealed in the seven inflammatory Z172 genes as well as in T. vaginalis genes that code for adhesion proteins 65 and 65-1. SIGNIFICANCE These results suggest that cytopathogenic effects progress while Z172 is in contact with T. vaginalis, and the resulting morphological changes can be categorized as disruption.
Collapse
Affiliation(s)
- Wei-Chen Lin
- Department of Parasitology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Ting Chang
- Department of Parasitology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tsuey-Yu Chang
- Department of Parasitology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Jyh-Wei Shin
- Department of Parasitology, National Cheng Kung University, Tainan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|