1
|
Patil S, Patel D, Kata R, Teichner E, Subtirelu R, Ayubcha C, Werner T, Alavi A. Molecular Imaging with PET in the Assessment of Vascular Dementia and Cerebrovascular Disease. PET Clin 2025; 20:121-131. [PMID: 39477719 DOI: 10.1016/j.cpet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Vascular dementia (VaD) is a unique form of cognitive decline caused by impairment of blood flow to the brain. Atherosclerosis is strongly associated with VaD as plaque accumulation can lead to tissue hypoperfusion or stroke. VaD and atherosclerosis are both diagnosed relatively late in their disease courses, prompting the need for novel diagnostic approaches such as PET to visualize subclinical pathophysiologic changes. This review discusses the use of PET in the assessment of VaD and cerebrovascular disease, focusing on the application of [18F] fluorodeoxyglucose to study neurometabolism and [18F] sodium fluoride to quantify arterial calcification.
Collapse
Affiliation(s)
- Shiv Patil
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Darshil Patel
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rithvik Kata
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Teichner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Subtirelu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zwezerijnen GJC, Eertink JJ, Ferrández MC, Wiegers SE, Burggraaff CN, Lugtenburg PJ, Heymans MW, de Vet HCW, Zijlstra JM, Boellaard R. Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor. Eur J Nucl Med Mol Imaging 2023; 50:486-493. [PMID: 36166080 PMCID: PMC9816285 DOI: 10.1007/s00259-022-05977-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Although visual and quantitative assessments of [18F]FDG PET/CT studies typically rely on liver uptake value as a reference or normalisation factor, consensus or consistency in measuring [18F]FDG uptake is lacking. Therefore, we evaluate the variation of several liver standardised uptake value (SUV) measurements in lymphoma [18F]FDG PET/CT studies using different uptake metrics. METHODS PET/CT scans from 34 lymphoma patients were used to calculate SUVmaxliver, SUVpeakliver and SUVmeanliver as a function of (1) volume-of-interest (VOI) size, (2) location, (3) imaging time point and (4) as a function of total metabolic tumour volume (MTV). The impact of reconstruction protocol on liver uptake is studied on 15 baseline lymphoma patient scans. The effect of noise on liver SUV was assessed using full and 25% count images of 15 lymphoma scans. RESULTS Generally, SUVmaxliver and SUVpeakliver were 38% and 16% higher compared to SUVmeanliver. SUVmaxliver and SUVpeakliver increased up to 31% and 15% with VOI size while SUVmeanliver remained unchanged with the lowest variability for the largest VOI size. Liver uptake metrics were not affected by VOI location. Compared to baseline, liver uptake metrics were 15-18% and 9-18% higher at interim and EoT PET, respectively. SUVliver decreased with larger total MTVs. SUVmaxliver and SUVpeakliver were affected by reconstruction protocol up to 62%. SUVmax and SUVpeak moved 22% and 11% upward between full and 25% count images. CONCLUSION SUVmeanliver was most robust against VOI size, location, reconstruction protocol and image noise level, and is thus the most reproducible metric for liver uptake. The commonly recommended 3 cm diameter spherical VOI-based SUVmeanliver values were only slightly more variable than those seen with larger VOI sizes and are sufficient for SUVmeanliver measurements in future studies. TRIAL REGISTRATION EudraCT: 2006-005,174-42, 01-08-2008.
Collapse
Affiliation(s)
- Gerben J C Zwezerijnen
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jakoba J Eertink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Hematology, Amsterdam, The Netherlands
| | - Maria C Ferrández
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sanne E Wiegers
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Coreline N Burggraaff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Hematology, Amsterdam, The Netherlands
| | | | - Martijn W Heymans
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Henrica C W de Vet
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Hematology, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Borja AJ, Hancin EC, Zhang V, Koa B, Bhattaru A, Rojulpote C, Detchou DK, Aly M, Kaghazchi F, Gerke O, Patil S, Gonuguntla K, Werner TJ, Revheim ME, Høilund-Carlsen PF, Alavi A. Global brain glucose uptake on 18F-FDG-PET/CT is influenced by chronic cardiovascular risk. Nucl Med Commun 2021; 42:444-450. [PMID: 33323870 DOI: 10.1097/mnm.0000000000001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The goal of this study was to assess global cerebral glucose uptake in subjects with known cardiovascular risk factors by employing a quantitative 18F-fluorodeoxyglucose-PET/computed tomography (FDG-PET/CT) technique. We hypothesized that at-risk subjects would demonstrate decreased global brain glucose uptake compared to healthy controls. METHODS We compared 35 healthy male controls and 14 male subjects at increased risk for cardiovascular disease (CVD) as assessed by the systematic coronary risk evaluation (SCORE) tool. All subjects were grouped into two age-matched cohorts: younger (<50 years) and older (≥50 years). The global standardized uptake value mean (Avg SUVmean) was measured by mapping regions of interest of the entire brain across the supratentorial structures and cerebellum. Wilcoxon's rank-sum test was used to assess the differences in Avg SUVmean between controls and at-risk subjects. RESULTS Younger subjects demonstrated higher brain Avg SUVmean than older subjects. In addition, in both age strata, the 10-year risk for fatal CVD according to the SCORE tool was significantly greater in the at-risk groups than in healthy controls (younger: P = 0.0304; older: P = 0.0436). In the younger cohort, at-risk subjects demonstrated significantly lower brain Avg SUVmean than healthy controls (P = 0.0355). In the older cohort, at-risk subjects similarly had lower Avg SUVmean than controls (P = 0.0343). CONCLUSIONS Global brain glucose uptake appears to be influenced by chronic cardiovascular risk factors. Therefore, FDG-PET/CT may play a role in determining the importance of CVD on brain function and has potential for monitoring the efficacy of various therapeutic interventions.
Collapse
Affiliation(s)
- Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania
- Lewis Katz School of Medicine, Temple University
| | - Vincent Zhang
- Department of Radiology, Hospital of the University of Pennsylvania
| | - Benjamin Koa
- Department of Radiology, Hospital of the University of Pennsylvania
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Abhijit Bhattaru
- Department of Radiology, Hospital of the University of Pennsylvania
| | | | - Donald K Detchou
- Department of Radiology, Hospital of the University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
| | - Mahmoud Aly
- Department of Radiology, Hospital of the University of Pennsylvania
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital
- Department of Clinical Research, Research Unit of Clinical Physiology and Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Shivaraj Patil
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Medicine, University of Connecticut, Hartford, Connecticut, USA
| | - Karthik Gonuguntla
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Medicine, University of Connecticut, Hartford, Connecticut, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital
- Department of Clinical Research, Research Unit of Clinical Physiology and Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania
| |
Collapse
|
4
|
Képes Z, Aranyi C, Forgács A, Nagy F, Kukuts K, Hascsi Z, Esze R, Somodi S, Káplár M, Varga J, Emri M, Garai I. Glucose-level dependent brain hypometabolism in type 2 diabetes mellitus and obesity. Eur J Hybrid Imaging 2021; 5:3. [PMID: 34181137 PMCID: PMC8218076 DOI: 10.1186/s41824-021-00097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic syndrome and its individual components lead to wide-ranging consequences, many of which affect the central nervous system. In this study, we compared the [18F]FDG regional brain metabolic pattern of participants with type 2 diabetes mellitus (T2DM) and non-DM obese individuals. METHODS In our prospective study, 51 patients with controlled T2DM (ages 50.6 ± 8.0 years) and 45 non-DM obese participants (ages 52.0 ± 9.6 years) were enrolled. Glucose levels measured before PET/CT examination (pre-PET glucose) as well as laboratory parameters assessing glucose and lipid status were determined. NeuroQ application (NeuroQTM 3.6, Syntermed, Philips) was used to evaluate regional brain metabolic differences. [18F]FDG PET/CT (AnyScan PC, Mediso) scans, estimating brain metabolism, were transformed to MNI152 brain map after T1 registration and used for SPM-based group comparison of brain metabolism corrected for pre-PET glucose, and correlation analysis with laboratory parameters. RESULTS NeuroQ analysis did not reveal significant regional metabolic defects in either group. Voxel-based group comparison revealed significantly (PFWE<0.05) decreased metabolism in the region of the precuneus and in the right superior frontal gyrus (rSFG) in the diabetic group as compared to the obese patients. Data analysis corrected for pre-PET glucose level showed a hypometabolic difference only in the rSFG in T2DM. Voxel-based correlation analysis showed significant negative correlation of the metabolism in the following brain regions with pre-PET glucose in diabetes: precuneus, left posterior orbital gyrus, right calcarine cortex and right orbital part of inferior frontal gyrus; whilst in the obese group only the right rolandic (pericentral) operculum proved to be sensitive to pre-PET glucose level. CONCLUSIONS To our knowledge, this is the first study to perform pre-PET glucose level corrected comparative analysis of brain metabolism in T2DM and obesity. We also examined the pre-PET glucose level dependency of regional cerebral metabolism in the two groups separately. Large-scale future studies are warranted to perform further correlation analysis with the aim of determining the effects of metabolic disturbances on brain metabolism.
Collapse
Affiliation(s)
- Z. Képes
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - Cs. Aranyi
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - A. Forgács
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - F. Nagy
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - K. Kukuts
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - Zs. Hascsi
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| | - R. Esze
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - S. Somodi
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - M. Káplár
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - J. Varga
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - M. Emri
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - I. Garai
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
- Scanomed Ltd. Nuclear Medicine Centers, Nagyerdei krt. 98, Debrecen, Hungary
| |
Collapse
|
5
|
Bang JI, Moon CM, Kim HO, Kang SY, Yoon HJ, Kim BS. Blood pool activity on F-18 FDG PET/CT as a possible imaging biomarker of metabolic syndrome. Sci Rep 2020; 10:17367. [PMID: 33060688 PMCID: PMC7567068 DOI: 10.1038/s41598-020-74443-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
Association of blood pool (BP) and adipose tissue activity from F-18 fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) with the parameters of metabolic syndrome (MetS) and different MetS/obesity types were investigated. 245 subjects underwent FDG PET/CT scan for health check-ups were investigated retrospectively. Associations of BP (BP SUV: SUVmax, SUVmean), visceral (VAT SUV), and subcutaneous adipose tissue (SAT SUV) activity with parameters of MetS, body mass index (BMI), and lipid profiles were analyzed. MetS/obesity types were subdivided into metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO). BP SUV was higher in subjects with MetS (t-test, P < 0.005), and was associated with MetS from multivariable binary logistic regression (OR 5.232 P = 0.010). BP SUV was statistically higher in MUO than in MHO (P < 0.05) along with blood pressure, triglycerides, and HDL-cholesterol. Multivariable binary logistic regression analysis showed MUO had higher blood pressure and BP SUV, while lower HDL-cholesterol relative to MHO after adjusting for triglycerides.
Collapse
Affiliation(s)
- Ji-In Bang
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Chang Mo Moon
- Depratment of Internal Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Hye Ok Kim
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Jiang Y, Zhou W, Hu K, Han Y, Sun P, Wang Q, Li G, Wu H, Tang G, Huang S. Radiosynthesis and preclinical evaluation of [ 18F]FEM as a potential novel PET probe for tumor imaging. Bioorg Med Chem Lett 2020; 30:127200. [PMID: 32354567 DOI: 10.1016/j.bmcl.2020.127200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022]
Abstract
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.
Collapse
Affiliation(s)
- Yanping Jiang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Wenlan Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Guiping Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
7
|
Characterization of glucose uptake metabolism in visceral fat by 18 F-FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS One 2020; 15:e0228602. [PMID: 32027706 PMCID: PMC7004347 DOI: 10.1371/journal.pone.0228602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The inflammatory activity of visceral adipose tissue (VAT) is elevated in metabolic syndrome (MS), and associated with vulnerability to atherosclerosis. Inflammation can be assessed by glucose uptake in atherosclerotic plaques. We investigated whether the glucose uptake of VAT, assessed by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), is associated with systemic inflammatory status, and related to the number of MS components. Methods 18F-FDG PET/CT was performed in a total of 203 participants: 59 without MS component; M(0), 92 with one or two MS components; M(1–2), and 52 with MS. Glucose uptake in VAT was evaluated using the mean standardized uptake value (SUVmean) and the maximum SUV (SUVmax). Glucose uptakes of immune-related organs such as the spleen and bone marrow (BM) were evaluated using the SUVmax. Results VAT SUVmax correlated with high-sensitivity C-reactive protein (hsCRP) and the SUVmax of spleen and BM, which reflect the status of systemic inflammation. Both hsCRP and the SUVmax of the spleen and BM were higher in the MS group than in the M(1–2) or M(0) groups. In VAT, SUVmax increased with increasing number of MS components, while SUVmean decreased. Conclusions The SUVmax and SUVmean of VAT assessed by 18F-FDG PET/CT reflected inflammation-driven unique glucose metabolism in the VAT of MS patients, distinct from that of atherosclerotic plaques.
Collapse
|
8
|
Altun Tuzcu S, Cetin F, Pekkolay Z, Tuzcu A. 18F-FLUORODEOXYGLUCOSE PET/CT CAN BE AN ALTERNATIVE METHOD TO ASSESSMENT OF INSULIN RESISTANCE. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; 15:539-543. [PMID: 32377256 PMCID: PMC7200103 DOI: 10.4183/aeb.2019.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Insulin resistance is routinely measured by homeostasis model assessment of insulin resistance (HOMA-IR).Positron emission tomography of 18F-fluorodeoxyglucose combined with computed tomography (18F-FDG PET/CT) is a valuable assessment tool for patients with cancer or staging tumors. 18F-FDG PET/CT imaging can also be utilised to detect the metabolic activity of glucose in the adipose tissue, liver and muscles. The aim of this study was to determine insulin sensitivity in the liver, muscle visceral adipose and subcutaneous adipose tissue separately via18F-FDG PET/CT. MATERIALS AND METHOD Sixty three adult patients who underwent whole body 18F-FDG PET/CT scanning for clinical purposes (diagnosis or staging of cancer) between July and August of 2016 were included in the study. Patients were divided into two groups according to their BMI (Group 1: BMI<25kg/m2, Group 2: BMI>25kg/m2). HOMA-IR,fasting glucose,insulin, triglycerides, total cholesterol, HDL levels were measured. We calculated SUV as the tissue activity of the ROI (MBq/g)/(injected dose [MBq]/ body weight [g]) on PET images and measured the maximum SUVs (SUVmax) of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT),liver and rectus muscle ROIs (2 cm). SUV corrected by blood glucose level (SUVgluc) was calculated as SUVmax×blood glucose level/100. Student-t test, Chi-square test and Pearson correlation test were used for statistical analysis. RESULTS Mean glucose,insulin,HOMA-IR levels of the group-2 were statistically higher than of group-1. Muscle SUVmax and liver SUVmax of group-1 were statistically higher than of group-2. Muscle SUVgluc of group-1 was statistically higher than of group-2. HOMA-IR was negatively correlated with both SUVmax(r=-0.340, p=0.01) and muscle SUVmax(r=-0.373, p=0.005). CONCLUSION 18F-FDG PET/CT has shown that the muscle tissue maximum FDG uptake was lower in the insulin resistance group. Therefore, 18-FDG PET/CT could be a valuable tool for diagnosing insulin resistance.
Collapse
Affiliation(s)
- S. Altun Tuzcu
- Dicle University Department of Nuclear Medicine, Diyarbakir, Turkey
| | - F.A. Cetin
- Private Baglara Hospital - Radiology, Diyarbakir, Turkey
| | - Z. Pekkolay
- Dicle University - Endocrinology, Diyarbakir, Turkey
| | - A.K. Tuzcu
- Dicle University - Endocrinology, Diyarbakir, Turkey
| |
Collapse
|
9
|
Kang JH, Kim DH, Park SH, Baek JH. Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals. Korean J Radiol 2018; 19:1172-1178. [PMID: 30386148 PMCID: PMC6201984 DOI: 10.3348/kjr.2018.19.6.1172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Objective To analyze and compare the age of data in contemporary research articles published in representative general radiology journals. Materials and Methods We searched for articles reporting original research studies analyzing patient data that were published in the print issues of the Korean Journal of Radiology (KJR), European Radiology (ER), and Radiology in 2017. Eligible articles were reviewed to extract data collection period (time from first patient recruitment to last patient follow-up) and age of data (time between data collection end and publication). The journals were compared in terms of the proportion of articles reporting the data collection period to the level of calendar month and regarding the age of data. Results There were 50, 492, and 254 eligible articles in KJR, ER, and Radiology, respectively. Of these, 44 (88%; 95% confidence interval [CI]: 75.8-94.8%), 359 (73%; 95% CI: 68.9-76.7%), and 211 (83.1%; 95% CI: 78-87.2%) articles, respectively, provided enough details of data collection period, revealing a significant difference between ER and Radiology (p = 0.002). The age of data was significantly greater in KJR (median age: 826 days; range: 299-2843 days) than in ER (median age: 570 days; range: 56-4742 days; p < 0.001) and Radiology (median age: 618; range: 75-4271 days; p < 0.001). Conclusion Korean Journal of Radiology did not fall behind ER or Radiology in reporting of data collection period, but showed a significantly greater age of data than ER and Radiology, suggesting that KJR should take measures to improve the timeliness of its data.
Collapse
Affiliation(s)
- Ji Hun Kang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Dong Hwan Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jung Hwan Baek
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
10
|
Hammoud DA, Sinharay S, Steinbach S, Wakim PG, Geannopoulos K, Traino K, Dey AK, Tramont E, Rapoport SI, Snow J, Mehta NN, Smith BR, Nath A. Global and regional brain hypometabolism on FDG-PET in treated HIV-infected individuals. Neurology 2018; 91:e1591-e1601. [PMID: 30258017 DOI: 10.1212/wnl.0000000000006398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To quantitatively measure brain glucose metabolism in treated HIV-positive individuals with [18F]-labeled fluorodeoxyglucose (FDG) PET/CT. METHODS We performed a cross-sectional comparison of FDG uptake in 47 treated HIV+ individuals, 10 age-matched controls (HIV-) sharing many of the comorbid conditions seen in the HIV+ group, and 19 age-matched healthy controls (HCs). We compared whole-brain (WB) and regional FDG standardized uptake values (SUVs) of select subcortical/central structures among the groups and correlated the values to clinical and neuropsychological assessments. A variable selection model was used to predict SUVs in HIV+ (n = 47) and in combined HIV+ and HIV- participants (n = 57). RESULTS We found lower WB SUVmax in HIV+ participants compared to HCs but not to HIV- participants. Among the relative SUVmean measurements (regional SUVmean/WB SUVmean), only relative thalamic uptake values were lower in HIV+ compared to HIV- participants. When HIV+ and HIV- participants were grouped, cardiovascular disease risk scores best predicted WB SUVmean and SUVmax, while HIV status best predicted thalamic relative SUVmean. CONCLUSIONS We identified an important role for cardiovascular disease in neuronal loss/dysfunction, as measured by FDG-PET, in treated HIV+ patients. This underscores the need for shifting the focus of clinical intervention in this vulnerable population from HIV effects alone to a wider set of comorbid conditions, mainly cardiovascular disease. Only the thalamus showed significantly lower relative uptake in the HIV+ compared to the HC and HIV- groups. This needs to be further evaluated for underlying pathophysiology and potential association with memory, executive functioning, and attention deficits seen in the HIV+ population.
Collapse
Affiliation(s)
- Dima A Hammoud
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD.
| | - Sanhita Sinharay
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Sally Steinbach
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Paul G Wakim
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Katrina Geannopoulos
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Katherine Traino
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Amit K Dey
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Edmund Tramont
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Stanley I Rapoport
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Joseph Snow
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Nehal N Mehta
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| | - Bryan R Smith
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD.
| | - Avindra Nath
- From the Center for Infectious Disease Imaging, Radiology and Imaging Sciences (D.A.H., S. Sinharay), Clinical Center, National Institute of Neurological Diseases and Stroke (S. Steinbach, K.G., B.R.S., A.N.), Biostatistics and Clinical Epidemiology Service (P.G.W.), Clinical Center, National Institute of Mental Health (K.T., J.S.), National Heart, Lung, and Blood Institute (A.K.D., N.N.M.), National Institute for Allergy and Infectious Diseases (E.T.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), NIH, Bethesda, MD
| |
Collapse
|