1
|
Kim J, Chang HS, Yun HJ, Chang HJ, Park KC. New Small-Molecule SERCA Inhibitors Enhance Treatment Efficacy in Lenvatinib-Resistant Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:10646. [PMID: 39408974 PMCID: PMC11476702 DOI: 10.3390/ijms251910646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most treatable forms of cancer, with many cases being fully curable. However, resistance to anticancer drugs often leads to metastasis or recurrence, contributing to the failure of cancer therapy and, ultimately, patient mortality. The mechanisms underlying molecular differences in patients with metastatic or recurrent PTC, particularly those resistant to anticancer drugs through epigenetic reprogramming, remain poorly understood. Consequently, refractory PTC presents a critical challenge, and effective therapeutic strategies are urgently needed. Therefore, this study aimed to identify small-molecule inhibitors to enhance treatment efficacy in lenvatinib-resistant PTC. We observed an increase in sarco/endoplasmic reticulum calcium ATPase (SERCA) levels in patient-derived lenvatinib-resistant PTC cells compared with lenvatinib-sensitive ones, highlighting its potential as a therapeutic target. We subsequently identified two SERCA inhibitors [candidates 40 (isoflurane) and 42 (ethacrynic acid)] through in silico screening. These candidates demonstrated significant tumor shrinkage in a xenograft tumor model and reduced cell viability in patient-derived lenvatinib-resistant PTC cells when used in combination with lenvatinib. Our findings have potential clinical value for the development of new combination therapies to effectively target highly malignant, anticancer drug-resistant cancers.
Collapse
Affiliation(s)
- Jungmin Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Ho-Jin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
2
|
Li Z, Li J, Li F, Han L, Sui C, Zhou L, Zhang D, Fu Y, Du R, Kou J, Dionigi G, Sun H, Liang N. Potential functions and mechanisms of lysine crotonylation modification (Kcr) in tumorigenesis and lymphatic metastasis of papillary thyroid cancer (PTC). J Transl Med 2024; 22:874. [PMID: 39342359 PMCID: PMC11439252 DOI: 10.1186/s12967-024-05651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVES To examine the putative functions and mechanisms of lysine crotonylation (Kcr) during the development and progression of papillary thyroid cancer (PTC). METHODS Samples of thyroid cancer tissues were collected and subjected to liquid chromatography-tandem mass spectrometry. Crotonylated differentially expressed proteins (DEPs) and differentially expressed Kcr sites (DEKSs) were analyzed by Motif, dynamic expression model analysis (Mfuzz), subcellular localization, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, Go Ontology (GO) annotation, and protein-protein interaction analysis (PPI). Validation was performed by immunohistochemistry (IHC). RESULTS A total of 262 crotonylated DEPs and 702 DEKSs were quantitated. First, for the tumor/normal comparison, a dynamic expression model analysis (Mfuzz) of the DEKSs revealed that clusters 1, 3, and 4 increased with the progression of thyroid cancer; however, cluster 6 showed a dramatic increase during the transition from N0-tumor to N1-tumor. Furthermore, based on GO annotation, KEGG, and PPI, the crotonylated DEPs were primarily enriched in the PI3K-Akt signaling pathway, Cell cycle, and Hippo signaling pathway. Of note, crosstalk between the proteome and Kcr proteome suggested a differential changing trend, which was enriched in Thyroid hormone synthesis, Pyruvate metabolism, TCA cycle, Cell cycle, and Apoptosis pathways. Similarly, for the LNM comparison group, the DEKSs and related DEPs were primarily enriched in Hydrogen peroxide catabolic process and Tight junction pathway. Finally, according to The Cancer Genome Atlas Program (TCGA) database, the differential expression of Kcr DEPs were associated with the prognosis of thyroid cancer, indicating the prognostic significance of these proteins. Moreover, based on the clinical validation of 47 additional samples, Kcr was highly expressed in thyroid tumor tissues compared with normal tissue (t = 9.792, P < 0.001). In addition, a positive correlation was observed between Kcr and N-cadherin (r = 0.5710, P = 0.0015). Moreover, N-cadherin expression was higher in the relatively high Kcr expression group (χ2 = 18.966, P < 0.001). CONCLUSIONS Higher Kcr expression was correlated with thyroid tumorigenesis and lymphatic metastasis, which may regulate thyroid cancer progression by Pyruvate metabolism, TCA cycle, Cell cycle, and other pathways.
Collapse
Affiliation(s)
- Zhaokun Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Jingting Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Fang Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Liang Han
- Division of Pathology, The China-Japan Union Hospital of Jilin University, Changchun City, , Jilin Province, China
| | - Chengqiu Sui
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Le Zhou
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Daqi Zhang
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Yantao Fu
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Rui Du
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Jiedong Kou
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Gianlorenzo Dionigi
- Division of General and Endocrine Surgery, Istituto Auxologico Italiano IRCCS, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hui Sun
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China.
| | - Nan Liang
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine On Differentiated Thyroid Carcinoma, The China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
3
|
Micheletti S, Schlauch D, Quackenbush J, Ben Guebila M. Higher-order correction of persistent batch effects in correlation networks. Bioinformatics 2024; 40:btae531. [PMID: 39226186 PMCID: PMC11441315 DOI: 10.1093/bioinformatics/btae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024] Open
Abstract
MOTIVATION Systems biology analyses often use correlations in gene expression profiles to infer co-expression networks that are then used as input for gene regulatory network inference or to identify functional modules of co-expressed or putatively co-regulated genes. While systematic biases, including batch effects, are known to induce spurious associations and confound differential gene expression analyses (DE), the impact of batch effects on gene co-expression has not been fully explored. Methods have been developed to adjust expression values, ensuring conditional independence of mean and variance from batch or other covariates for each gene, resulting in improved fidelity of DE analysis. However, such adjustments do not address the potential for spurious differential co-expression (DC) between groups. Consequently, uncorrected, artifactual DC can skew the correlation structure, leading to the identification of false, non-biological associations, even when the input data are corrected using standard batch correction. RESULTS In this work, we demonstrate the persistence of confounders in covariance after standard batch correction using synthetic and real-world gene expression data examples. We then introduce Co-expression Batch Reduction Adjustment (COBRA), a method for computing a batch-corrected gene co-expression matrix based on estimating a conditional covariance matrix. COBRA estimates a reduced set of parameters expressing the co-expression matrix as a function of the sample covariates, allowing control for continuous and categorical covariates. COBRA is computationally efficient, leveraging the inherently modular structure of genomic data to estimate accurate gene regulatory associations and facilitate functional analysis for high-dimensional genomic data. AVAILABILITY AND IMPLEMENTATION COBRA is available under the GLP3 open source license in R and Python in netZoo (https://netzoo.github.io).
Collapse
Affiliation(s)
- Soel Micheletti
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Daniel Schlauch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Genospace, LLC, Boston, MA 02108, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
4
|
Bahmad HF, Thiravialingam A, Sriganeshan K, Gonzalez J, Alvarez V, Ocejo S, Abreu AR, Avellan R, Arzola AH, Hachem S, Poppiti R. Clinical Significance of SOX10 Expression in Human Pathology. Curr Issues Mol Biol 2023; 45:10131-10158. [PMID: 38132479 PMCID: PMC10742133 DOI: 10.3390/cimb45120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The embryonic development of neural crest cells and subsequent tissue differentiation are intricately regulated by specific transcription factors. Among these, SOX10, a member of the SOX gene family, stands out. Located on chromosome 22q13, the SOX10 gene encodes a transcription factor crucial for the differentiation, migration, and maintenance of tissues derived from neural crest cells. It plays a pivotal role in developing various tissues, including the central and peripheral nervous systems, melanocytes, chondrocytes, and odontoblasts. Mutations in SOX10 have been associated with congenital disorders such as Waardenburg-Shah Syndrome, PCWH syndrome, and Kallman syndrome, underscoring its clinical significance. Furthermore, SOX10 is implicated in neural and neuroectodermal tumors, such as melanoma, malignant peripheral nerve sheath tumors (MPNSTs), and schwannomas, influencing processes like proliferation, migration, and differentiation. In mesenchymal tumors, SOX10 expression serves as a valuable marker for distinguishing between different tumor types. Additionally, SOX10 has been identified in various epithelial neoplasms, including breast, ovarian, salivary gland, nasopharyngeal, and bladder cancers, presenting itself as a potential diagnostic and prognostic marker. However, despite these associations, further research is imperative to elucidate its precise role in these malignancies.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Aran Thiravialingam
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Karthik Sriganeshan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Jeffrey Gonzalez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Veronica Alvarez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Stephanie Ocejo
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alvaro R. Abreu
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Rima Avellan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alejandro H. Arzola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Kuo CY, Hsu YC, Liu CL, Li YS, Chang SC, Cheng SP. SOX4 is a pivotal regulator of tumorigenesis in differentiated thyroid cancer. Mol Cell Endocrinol 2023; 578:112062. [PMID: 37673293 DOI: 10.1016/j.mce.2023.112062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The SOX family consists of about 20 transcription factors involved in embryonic development, reprogramming, and cell fate determination. In this study, we demonstrated that SOX4 was significantly upregulated in differentiated thyroid cancer. Immunohistochemical analysis revealed that high SOX4 expression was associated with papillary histology, extrathyroidal extension, lymph node metastasis, and advanced disease stage. Patients whose tumors exhibited high SOX4 expression had a shorter recurrence-free survival, though significance was lost in multivariate Cox regression analysis. SOX4 silencing in thyroid cancer cells slowed cell growth, attenuated clonogenicity, and suppressed anoikis resistance. Additionally, SOX4 knockdown impeded xenograft tumor growth in nude mice. Knockdown of SOX4 expression was accompanied by reduced phosphorylation of AKT and ERK. Furthermore, CRABP2 expression correlated with SOX4 expression, and SOX4 silencing decreased CRABP2 expression and its downstream effectors such as integrin β1 and β4. These results indicate that SOX4 has both prognostic and therapeutic implications in differentiated thyroid cancer, and targeting SOX4 may modulate tumorigenic processes in the thyroid.
Collapse
Affiliation(s)
- Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ying-Syuan Li
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Toraih EA, Hussein MH, Al Ageeli E, Ellaban M, Kattan SW, Moroz K, Fawzy MS, Kandil E. Matrix Metalloproteinase 9/microRNA-145 Ratio: Bridging Genomic and Immunological Variabilities in Thyroid Cancer. Biomedicines 2023; 11:2953. [PMID: 38001954 PMCID: PMC10669161 DOI: 10.3390/biomedicines11112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP9) and microRNA-145 (miR-145) have emerged as essential biomarkers in thyroid cancer progression and metastasis. However, their combined evaluation and clinical utility as a unified prognostic marker across diverse thyroid cancer subgroups remain unexplored. We investigated the diagnostic and prognostic value of the MMP9/miR-145 ratio in thyroid cancer, hypothesizing it may overcome inter-patient heterogeneity and serve as a versatile biomarker regardless of genetic mutations or autoimmune status. MMP9 and miR-145 expressions were analyzed in 175 paired papillary thyroid cancer (PTC) and normal tissues. Plasma levels were assessed perioperatively and longitudinally over 12-18 months in 86 matched PTC patients. The associations with clinicopathological parameters and patient outcomes were evaluated. MMP9 was upregulated, and miR-145 downregulated in cancer tissues, with a median MMP9/miR-145 ratio 17.6-fold higher versus controls. The tissue ratio accurately diagnosed thyroid malignancy regardless of BRAF mutation or Hashimoto's thyroiditis status, overcoming genetic and autoimmune heterogeneity. A high preoperative circulating ratio predicted aggressive disease features, including lymph node metastasis, extrathyroidal extension, progression/relapse, and recurrence. Although the preoperative plasma ratio was elevated in patients with unfavorable outcomes, it had limited utility for post-surgical monitoring. In conclusion, the MMP9/miR-145 ratio is a promising biomarker in PTC that bridges genetic and immunological variabilities, enhancing preoperative diagnosis and prognostication across diverse patient subgroups. It accurately stratifies heterogenous cases by aggressiveness. The longitudinal trends indicate decreasing applicability for post-thyroidectomy surveillance. Further large-scale validation and protocol standardization can facilitate clinical translation of the MMP9/miR-145 ratio to guide personalized thyroid cancer management.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohamad Ellaban
- Faculty of Medicine, Port Said University, Port Said 42526, Egypt;
| | - Shahd W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia;
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| |
Collapse
|
7
|
Wang P, Zhu J, Long Q, Wang Y, Xu H, Tao H, Wu B, Li J, Wu Y, Liu S. LncRNA SATB2-AS1 promotes tumor growth and metastasis and affects the tumor immune microenvironment in osteosarcoma by regulating SATB2. J Bone Oncol 2023; 41:100491. [PMID: 37601080 PMCID: PMC10436287 DOI: 10.1016/j.jbo.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Our previous report has identified a lncRNA SATB2-AS1, which was significantly up-regulated in osteosarcoma tissue and promotes the proliferation of osteosarcoma cells in vitro. However, the mechanisms of SATB2-AS1 regulating the growth and metastasis of osteosarcoma cells in vivo and its role in the prognosis of osteosarcoma patients are still unclear. In this study, the transcriptome sequencing data of 87 patients with osteosarcoma from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and 7 patients from our clinical center (GZFPH) was used to evaluate the importance of SATB2-AS1 and SATB2 on the prognosis. The effect of SATB2-AS1 on the growth and metastasis of osteosarcoma cells in vivo was verified by a mouse tumor model. The potential mechanisms of SATB2-AS1 regulating SATB2 were further explored by dual-luciferase reporter gene assay, RNA pull-down assay, and bioinformatics analysis. The results suggested that increased co-expression of SATB2-AS1 and SATB2 was significantly associated with poor overall survival (OS) and relapse-free survival (RFS), and was a biomarker for risk stratification in patients with osteosarcoma. Mechanistically, SATB2-AS1 promotes tumor growth and lung metastasis by regulating SATB2 in vivo. SATB2-AS1 directly binds to POU3F1 for mediating SATB2 expression in MNNG/HOS cells. In addition, SATB2-AS1 and SATB2 might be potential immunomodulators for negatively affecting immune cell infiltration by the IL-17 signaling pathway. In summary, SATB2-AS1 promoted tumor cell growth and lung metastasis by activating SATB2, thereby associated with poor prognosis in patients with osteosarcoma, which indicated that SATB2-AS1 and SATB2 might be novel biomarkers for risk stratification and promising therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Oncology, the Second Affiliated Hospital, and School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jianwei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huihua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huimin Tao
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Biwen Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jiajun Li
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Sihong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| |
Collapse
|
8
|
Wen J, Qin X, Zhang J, Wu X, Yan X, Lu K, Yang P, Ji S, Zhao X, Wang Y. Clinical significance of matrix metalloproteinase-9 expression in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol 2023; 21:225. [PMID: 37496069 PMCID: PMC10369753 DOI: 10.1186/s12957-023-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship between the expression of matrix metalloproteinase-9 (MMP-9) and pathological indexes in papillary thyroid carcinoma (PTC). EVIDENCE OBTAINED The database was searched in PubMed, Embase, CNKI, and Web of Science databases for relevant clinical trials. The odds ratio (OR) and 95% confidence interval (CI) show the effect of MMP-9 expression and age, tumour size, gender, lymph node metastasis (LNM), and TNM (tumour, lymph node, metastasis) stage. Statistical analysis of the data was performed using Stata 17.0. EVIDENCE SYNTHESIS A total of 1433 patients with PTC were included in this meta-analysis. MMP-9 expression was significantly correlated with LNM (OR = 3.92, 95% CI = 2.71-5.65, P = 0.000), tumour size (OR = 1.69, 95% CI = 1.13-2.52, P = 0.011), and TNM stage (OR = 2.95, 95% CI = 2.10-4.13, P = 0.000), but not with gender (OR = 0.90, 95% CI = 0.66-1.22, P = 0.487) and age (OR = 1.36, 95% CI = 0.93-1.98, P = 0.115). CONCLUSIONS Our meta-analysis showed that MMP-9 was significantly associated with LNM, tumour size, and TNM stage; therefore, MMP-9 may be a reliable prognostic biomarker for patients with PTC. However, more high-quality studies are needed to support these findings further.
Collapse
Affiliation(s)
- Jinxu Wen
- Hebei Medical University, Shijiazhuang, 050051, Hebei Province, China
| | - Xiaoru Qin
- Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, 050051, Hebei Province, China
| | - Jiayi Zhang
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xiaoyong Wu
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xuemin Yan
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Kewen Lu
- Hebei Medical University, Shijiazhuang, 050051, Hebei Province, China
| | - Pei Yang
- Hebei Medical University, Shijiazhuang, 050051, Hebei Province, China
| | - Shuaichong Ji
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Xiangdong Zhao
- North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Yuexin Wang
- Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, 050051, Hebei Province, China.
| |
Collapse
|
9
|
Okano LM, Fonseca LMMD, Erthal ID, Malta TM. Epigenomic integrative analysis pinpoint master regulator transcription factors associated with tumorigenesis in squamous cell carcinoma of oral tongue. Genet Mol Biol 2023; 46:e20220358. [PMID: 37338302 DOI: 10.1590/1678-4685-gmb-2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Head and Neck Cancer (HNC) is a heterogeneous group of cancers, which includes cancers arising in the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx. Epidemiological studies have revealed that several factors such as tobacco and alcohol use, exposure to environmental pollutants, viral infection, and genetic factors are risk factors for developing HNC. The squamous cell carcinoma of oral tongue (SCCOT), which is significantly more aggressive than the other forms of oral squamous cell carcinoma, presents a propensity for rapid local invasion and spread, and a high recurrence rate. Dysregulation in the epigenetic machinery of cancer cells might help uncover the mechanisms of SCOOT tumorigenesis. Here, we used DNA methylation changes to identify cancer-specific enhancers that were enriched for specific transcription factor binding sites (TFBS), and potential master regulator transcription factors (MRTF) associated with SCCOT. We identified the activation of MRTFs associated with increased invasiveness, metastasis, epithelial-to-mesenchymal transition, poor prognosis, and stemness. On the other hand, we found the downregulation of MRTFs associated with tumor suppression. The identified MRTFs should be further investigated to clarify their role in oral cancer tumorigenesis and for their potential use as biological markers.
Collapse
Affiliation(s)
- Larissa Miyuki Okano
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Isabela Dias Erthal
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Tathiane Maistro Malta
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Li Z, Wei J, Chen B, Wang Y, Yang S, Wu K, Meng X. The Role of MMP-9 and MMP-9 Inhibition in Different Types of Thyroid Carcinoma. Molecules 2023; 28:molecules28093705. [PMID: 37175113 PMCID: PMC10180081 DOI: 10.3390/molecules28093705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9), one of the most investigated and studied biomarkers of the MMPs family, is a zinc-dependent proteolytic metalloenzyme whose primary function is degrading the extracellular matrix (ECM). It has been proved that MMP-9 expression elevates in multiple pathological conditions, including thyroid carcinoma. MMP-9 has a detectable higher level in malignant or metastatic thyroid tumor tissues than in normal or benign tissues and acts as an additional marker to distinguish different tumor stages because of its close correlations with clinical features, such as lymph node metastasis, TNM stage, tumor size and so on. Natural and non-natural MMP-9 inhibitors suppress its expression, block the progression of diseases, and play a role in therapy consequently. MMP-9 inhibitory molecules also assist in treating thyroid tumors by suppressing the proliferation, invasion, migration, metastasis, viability, adhesion, motility, epithelial-mesenchymal transition (EMT), and other risk factors of different thyroid cancer cells. In a word, discovering and designing MMP-9 inhibitors provide great therapeutic effects and promising clinical values in various types of thyroid carcinoma.
Collapse
Affiliation(s)
- Zhenshengnan Li
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoqi Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Yang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Kehui Wu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianying Meng
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Lin Y, Wang D, Zhao H, Li D, Li X, Lin L. Pou3f1 mediates the effect of Nfatc3 on ulcerative colitis-associated colorectal cancer by regulating inflammation. Cell Mol Biol Lett 2022; 27:75. [PMID: 36064319 PMCID: PMC9446766 DOI: 10.1186/s11658-022-00374-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ulcerative colitis-associated colorectal cancer (UC-CRC) is an important complication of ulcerative colitis. Pou3f1 (POU class 3 homeobox 1) is a critical regulator for developmental events and cellular biological processes. However, the role of Pou3f1 in the development of UC-CRC is unclear. Methods In vivo, a UC-CRC mouse model was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). Body weight, colon length, mucosal damage, tumor formation, and survival rate were assessed to determine the progression of UC-CRC. Western blot, quantitative real-time PCR, ELISA, immunohistochemistry, immunofluorescence and TUNEL were performed to examine the severity of inflammation and tumorigenesis. In vitro, LPS-treated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were used to study the role of Pou3f1 in inflammation. ChIP and luciferase reporter assays were used to confirm the interaction between Nfatc3 and Pou3f1. Results Pou3f1 expression was increased in the colons of UC-CRC mice, and its inhibition attenuated mucosal injury, reduced colon tumorigenesis and increased survival ratio. Knockdown of Pou3f1 suppressed cell proliferation and increased cell death in colon tumors. Both the in vivo and in vitro results showed that Pou3f1 depletion reduced the production of proinflammation mediators. In addition, ChIP and luciferase reporter assays demonstrated that Nfatc3 directly bound with the Pou3f1 promoter to induce its expression. The effect of Nfatc3 on the inflammatory response in macrophages was suppressed by Pou3f1 knockdown. Conclusion Overall, it outlines that Pou3f1 mediates the role of Nfatc3 in regulating macrophage inflammation and carcinogenesis in UC-CRC development. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00374-0.
Collapse
Affiliation(s)
- Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Hong Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Dongyue Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Respiratory, Ansteel Group General Hospital, Anshan, China
| | - Xinning Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Medical Oncology Ward, Tieling Central Hospital, Tieling, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.
| |
Collapse
|