1
|
Guo A, Chang Y, Lin J, Guo J, He Y, Wang C, Wu Z, Xing Y, Jin F, Deng Y. Resveratrol Enhances Anticancer Effects of Silybin on HepG2 Cells and H22 Tumor-bearing Mice via Inducing G2/M Phase Arrest and Increasing Bax/Bcl-2 Ratio. Comb Chem High Throughput Screen 2025; 28:89-98. [PMID: 38204247 DOI: 10.2174/0113862073263408231101105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Silybin, a major flavonoid extracted from the seeds of milk thistle, has a strong hepatoprotective but weak anti-hepatoma activity. Screening another natural ingredient and combining it with silybin is expected to improve the anti-hepatoma efficacy of silybin. OBJECTIVE The objective of this study was to investigate the synergistic anti-hepatoma effect of resveratrol and silybin on HepG2 cells and H22 tumor-bearing mice in hepatocellular carcinoma (HCC) in vitro and in vivo, respectively. METHODS Cell viability, scratch wound, clone formation, cell apoptosis, cell cycle, and western blot analysis of HepG2 cells were used to investigate the synergistic effects in vitro of the combination resveratrol with silybin. Growth rates, tumor weights, organ indexes, and histological pathological examination in H22 tumor-bearing mice were used to investigate the synergistic effects in vivo. RESULTS The combination of resveratrol (50 μg/mL) and silybin (100 μg/mL) significantly suppressed cell viability, whose combination index (CI) was 1.63 (>1.15), indicating the best synergism. The combination exhibited the synergistic effect in blocking the migration and proliferative capacity of HepG2 cells in the measurement in vitro. In particular, resveratrol enhanced the upregulation of Bcl-2 expression and the downregulation of Bax expression with a concurrent increase in the Bax/Bcl-2 ratio. The combination of resveratrol (50 mg/kg) and silybin (100 mg/kg) reduced the tumor weight, inhibited the growth rate, increased the organ indexes, and destroyed the tumor tissue morphology in H22 tumor-bearing mice. CONCLUSION Resveratrol was found to exhibit synergistic anti-cancer effects with silybin on HepG2 cells and H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Ailing Guo
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yuexing Chang
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Junjie Lin
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jia Guo
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yu He
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Ce Wang
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhihuan Wu
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingru Xing
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Feng Jin
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yun Deng
- Department of Pharmacy, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
2
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Ray PP, Islam MA, Islam MS, Han A, Geng P, Aziz MA, Mamun AA. A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment. Front Pharmacol 2024; 15:1349745. [PMID: 38487172 PMCID: PMC10937417 DOI: 10.3389/fphar.2024.1349745] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Natural compounds hold promise in the search for cancer therapies due to their unique chemical structures and combinations that may effectively combat cancer while minimizing toxicity and side effects compared to conventional treatments. Silibinin, a natural lignan, has been found to possess strong anti-cancer activity against several types of human cancers based on emerging research. This study aims to provide an overview of the therapeutic potential of silibinin in the treatment and prevention of cancers. A comprehensive search was conducted using various internet databases such as PubMed, Google Scholar, and ScienceDirect to identify relevant research papers. Silibinin has been shown to exhibit anticancer activity against several types of cancers, including liver, lungs, breast, prostate, colorectal, skin, and bladder cancers. Its multifaceted mechanisms of action contribute to its therapeutic effects. Silibinin exerts antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic activities, making it a promising candidate for cancer therapy. One of the key mechanisms underlying the anticancer effects of silibinin is its ability to modulate multiple signaling pathways involved in cancer development and progression. It can inhibit the activation of various oncogenic pathways, including PI3K/Akt, NF-κB, Wnt/β-catenin, and MAPK pathways, thereby suppressing cancer cell proliferation, inducing cell cycle arrest, and promoting apoptosis. Silibinin possesses great potential as an effective treatment agent for cancer. The multifaceted mechanisms of action, favorable safety profile, and potential synergistic effects of silibinin with conventional therapies make it an attractive candidate for further investigation and development as a cancer treatment. However, more extensive clinical studies are necessary to fully establish the efficacy, optimal dosage, and long-term effects of silibinin in cancer treatment.
Collapse
Affiliation(s)
- Pantha Prodip Ray
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Aixia Han
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| | - Md. Abdul Aziz
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| |
Collapse
|
4
|
Xi JJ, Cao Y, He RY, Zhang JK, Zhao YM, Tong Q, Bao JF, Dong YC, Zhuang RX, Huang JS, Chen Y, Liu SR. Design, Synthesis and Biological Evaluation of Glycosylated Derivatives of Silibinin as Potential Anti-Tumor Agents. Drug Des Devel Ther 2023; 17:2063-2076. [PMID: 37457888 PMCID: PMC10349574 DOI: 10.2147/dddt.s404036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Silibinin, a natural product extracted from the seeds of the Silybum marianum, is versatile with various pharmacological effects. However, its clinical application was strongly hampered by its low bioavailability and poor water solubility. Herein, a series of glycosylated silibinin derivatives were identified as novel anti-tumor agents. Materials and Methods The cell viability was evaluated by CCK8 assay. Furthermore, cell apoptosis and cell cycle progression were tested by flow cytometry. In addition, the pharmacokinetic assessment of compound 15 and silibinin through intravenous administration (i.v., 2 mg/kg) to ICR mice were performed. Results The synthesized compounds showed better water solubilities than silibinin. Among them, compound 15 exhibited inhibitory activity against DU145 cells with IC50 value of 1.37 ± 0.140 μM. Moreover, it arrested cell cycle at G2/M phase and induced apoptosis in DU145 cells. Additionally, compound 15 also displayed longer half-life (T1/2 = 128.3 min) in liver microsomes than that of silibinin (T1/2 = 82.5 min) and appropriate pharmacokinetic parameters in mice. Conclusion Overall, glycosylation of silibinin would be a valid strategy for the development of silibinin derivatives as anti-tumor agents.
Collapse
Affiliation(s)
- Jian-Jun Xi
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yu Cao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ruo-Yu He
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian-Kang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, People’s Republic of China
| | - Yan-Mei Zhao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiao Tong
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian-Feng Bao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yi-Chen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Rang-Xiao Zhuang
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jin-Song Huang
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzou, People’s Republic of China
| | - Shou-Rong Liu
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
6
|
Banerjee A, Sriramulu S, Catanzaro R, He F, Chabria Y, Balakrishnan B, Hari S, Ayala A, Muñoz M, Pathak S, Marotta F. Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement. Curr Mol Med 2023; 23:216-231. [PMID: 35297348 DOI: 10.2174/1566524022666220316102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/20/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Roberto Catanzaro
- Dept of Clinical and Experimental Medicine, Section of Gastroenterology, University of Catania, Catania, Italy
| | - Fang He
- Dept of Nutrition, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yashna Chabria
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Sruthi Hari
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antonio Ayala
- Biochemistry and Clinical Biochemistry Department, Faculty of Pharmacy, University of Seville, Spain
| | - Mario Muñoz
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and Vitality and Longevity Medical Science Commission, FEMTEC World Federation
| |
Collapse
|
7
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
8
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
9
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
10
|
Wang T, Zhang Q, Wang N, Liu Z, Zhang B, Zhao Y. Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Curr Med Chem 2021; 28:3107-3146. [PMID: 33050856 DOI: 10.2174/0929867327666201013162144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with nearly one million new cases and deaths every year. Owing to the complex pathogenesis, hidden early symptoms, rapidly developing processes, and poor prognosis, the morbidity and mortality of HCC are increasing yearly. With the progress being made in modern medicine, the treatment of HCC is no longer limited to traditional methods. Targeted therapy and immunotherapy have emerged to treat advanced and metastatic HCC in recent years. Since Sorafenib is the first molecular targeting drug against angiogenesis, targeted drugs for HCC are continually emerging. Moreover, immunotherapy plays a vital role in clinical trials. In particular, the application of immune checkpoint inhibitors, which have received increasing attention in the field of cancer treatment, is a possible research path. Interestingly, these two therapies generally complement each other at some stages of HCC, bringing new hope for patients with advanced HCC. In this paper, we discuss the research progress of targeted therapy and immunotherapy for HCC in recent years, which will provide a reference for the further development of drugs for HCC.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ziqi Liu
- Department of Pharmacy, the PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
11
|
Tighe SP, Akhtar D, Iqbal U, Ahmed A. Chronic Liver Disease and Silymarin: A Biochemical and Clinical Review. J Clin Transl Hepatol 2020; 8:454-458. [PMID: 33447529 PMCID: PMC7782115 DOI: 10.14218/jcth.2020.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is an under-recognized epidemic that continues to increase in prevalence and is a major health concern. Silymarin, the active compound of Silybum marianum (Milk thistle), has historically been used in CLD. A significant barrier to silymarin use is its poor bioavailability. Attempts at improving the bioavailability of silymarin have led to a better understanding of formulation methods, pharmacokinetics, dosing, and associated drug interactions. Clinically, silymarin exerts its hepatoprotective effects through antioxidative, antifibrotic, anti-inflammatory, antitoxin, and anticancerous mechanisms of actions. Despite the use of silymarin being extensively studied in alcoholic liver disease, metabolic-associated fatty liver disease, viral hepatitis, and drug-induced liver injury, the overall efficacy of silymarin remains unclear and more research is warranted to better elucidate the role of silymarin in CLD, specifically regarding its anti-inflammatory effects. Here, we review the current biochemical and clinical evidence regarding silymarin in CLD.
Collapse
Affiliation(s)
- Sean P. Tighe
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daud Akhtar
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Umair Iqbal
- Department of Gastroenterology and Hepatology, Geisinger Commonwealth School of Medicine, Danville, PA, USA
- *Correspondence to: Umair Iqbal, Department of Gastroenterology and Hepatology, Geisinger Commonwealth School of Medicine, Danville, PA 17821, USA. Tel: +1-570-271-6211, E-mail:
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Murali Iyangar R, Devaraj E. Silibinin Triggers the Mitochondrial Pathway of Apoptosis in Human Oral Squamous Carcinoma Cells. Asian Pac J Cancer Prev 2020; 21:1877-1882. [PMID: 32711410 PMCID: PMC7573425 DOI: 10.31557/apjcp.2020.21.7.1877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Silibinin, a natural polyphenolic flavonoid present in seed extracts of milk thistle (Silybum marianum). It has been shown to interact with various cancer-related cell signalling pathways in preclinical models, demonstrating promising anticancer effects in vitro and in vivo. Materials and Methods: The cytotoxic effect of silibinin was evaluated in human oral squamous carcinoma (SCC-25) cells by MTT assay. The apoptosis-related morphological changes were investigated by AO/EB dual staining. The cytochrome c, caspases-3, and -9, B-cell lymphoma-2 (Bcl-2), and B-cell associated X protein (Bax) gene expressions were analysed by PCR. Results: We have shown that silibinin treatment for 24 h in SCC-25 cells induced cytotoxicity in a concentration-dependent manner. The cytotoxic potential was due to the induction of apoptosis via the release of mitochondrial cytochrome c into the cytosol and subsequent activation of caspases-3 and -9. Dual staining assay was further confirmed the induction of early apoptosis upon silibinin treatment. Conclusion: The results from this study show that silibinin can be considered as a promising drug candidate for the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Radhika Murali Iyangar
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Fan G, Wei X, Xu X. Is the era of sorafenib over? A review of the literature. Ther Adv Med Oncol 2020; 12:1758835920927602. [PMID: 32518599 PMCID: PMC7252361 DOI: 10.1177/1758835920927602] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe diseases worldwide. For the different stages of HCC, there are different clinical treatment strategies, such as surgical therapy for the early stage, and transarterial chemoembolization (TACE) and selective internal radiation therapy (SIRT) for intermediate-stage disease. Systemic treatment, which uses mainly targeted drugs, is the standard therapy against advanced HCC. Sorafenib is an important first-line therapy for advanced HCC. As a classically effective drug, sorafenib can increase overall survival markedly. However, it still has room for improvement because of the heterogeneity of HCC and acquired resistance. Scientists have reported the acquired sorafenib resistance is associated with the anomalous expression of certain genes, most of which are also related with HCC onset and development. Combining sorafenib with inhibitors targeting these genes may be an effective treatment. Combined treatment may not only overcome drug resistance, but also inhibit the expression of carcinoma-related genes. This review focuses on the current status of sorafenib in advanced HCC, summarizes the inhibitors that can combine with sorafenib in the treatment against HCC, and provides the rationale for clinical trials of sorafenib in combination with other inhibitors in HCC. The era of sorafenib in the treatment of HCC is far from over, as long as we find better methods of medication.
Collapse
Affiliation(s)
- Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, 79 QingChun Road, Hangzhou, 310003, China
| |
Collapse
|
14
|
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030562. [PMID: 32121322 PMCID: PMC7139730 DOI: 10.3390/cancers12030562] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved biological phenomenon that maintains cellular homeostasis through the clearing of damaged cellular components under cellular stress and offers the cell building blocks for cellular survival. Aberrations in autophagy subsidize to various human pathologies, such as dementia, cardiovascular diseases, leishmaniosis, influenza, hepatic diseases, and cancer, including hepatocellular carcinoma (HCC). HCC is the fifth common mortal type of liver cancer globally, with an inhomogeneous topographical distribution and highest incidence tripled in men than women. Existing treatment procedures with liver cancer patients result in variable success rates and poor prognosis due to their drug resistance and toxicity. One of the pathophysiological mechanisms that are targeted during the development of anti-liver cancer drugs is autophagy. Generally, overactivated autophagy may lead to a non-apoptotic form of programmed cell death (PCD) or autophagic cell death or type II PCD. Emerging evidence suggests that manipulation of autophagy could induce type II PCD in cancer cells, acting as a potential tumor suppressor. Hence, altering autophagic signaling offers new hope for the development of novel drugs for the therapy of resistant cancer cells. Natural polyphenolic compounds, including flavonoids and non-flavonoids, execute their anticarcinogenic mechanism through upregulating tumor suppressors and autophagy by modulating canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) signaling pathways. Additionally, there is evidence signifying that plant polyphenols target angiogenesis and metastasis in HCC via interference with multiple intracellular signals and decrease the risk against HCC. The current review offers a comprehensive understanding of how natural polyphenolic compounds exhibit their anti-HCC effects through regulation of autophagy, the non-apoptotic mode of cell death.
Collapse
Affiliation(s)
- Chandramohan Kiruthiga
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| |
Collapse
|
15
|
Antal DS, Ardelean F, Avram S, Pavel IZ, Danciu C, Soica C, Dehelean C. Flavonolignans: One Step Further in the Broad-Spectrum Approach of Cancer. Anticancer Agents Med Chem 2020; 20:1817-1830. [PMID: 31976848 DOI: 10.2174/1871520620666200124112649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The small chemical class of flavonolignans encompasses unique hybrid molecules with versatile biological activities. Their anticancer effects have received considerable attention, and a large body of supporting evidence has accumulated. Moreover, their ability to interact with proteins involved in drug resistance, and to enhance the effects of conventional chemotherapeutics in decreasing cell viability make them influential partners in addressing cancer. OBJECTIVE The review provides an outline of the various ways in which flavonolignans advance the combat against cancer. While the main focus falls on flavonolignans from milk thistle, attention is drawn to the yet, underexplored potential of less known flavonolignan subgroups derived from isoflavonoids and aurones. METHODS Proceeding from the presentation of natural flavonolignan subtypes and their occurrence, the present work reviews these compounds with regard to their molecular targets in cancer, anti-angiogenetic effects, synergistic efficacy in conjunction with anticancer agents, reversal of drug resistance, and importance in overcoming the side effects of anticancer therapy. Recent advances in the endeavor to improve flavonolignan bioavailability in cancer are also presented. CONCLUSIONS Significant progress has been achieved in detailing the molecular mechanisms of silybin and its congeners in experimental models of cancer. The availability of novel formulations with improved bioavailability, and data from phase I clinical trials in cancer patients provide an encouraging basis for more extensive trials aimed at evaluating the benefits of Silybum flavonolignans in cancer management. On the other hand, further research on the antitumor efficacy of iso-flavonolignans and other subtypes of flavonolignans should be pursued.
Collapse
Affiliation(s)
- Diana S Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Florina Ardelean
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Z Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
16
|
Asgari V, Landarani-Isfahani A, Salehi H, Amirpour N, Hashemibeni B, Rezaei S, Bahramian H. The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochem Res 2019; 44:2695-2707. [DOI: 10.1007/s11064-019-02900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
|
17
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, Cho EJ, Lee JH, Kim YJ, Youn H, Yoon JH. Hexokinase-II Inhibition Synergistically Augments the Anti-tumor Efficacy of Sorafenib in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20061292. [PMID: 30875800 PMCID: PMC6471302 DOI: 10.3390/ijms20061292] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to examine whether inhibition of hexokinase (HK)-II activity enhances the efficacy of sorafenib in in-vivo models of hepatocellular carcinoma (HCC), and to evaluate the prognostic implication of HK-II expression in patients with HCC. We used 3-bromopyruvate (3-BP), a HK-II inhibitor to target HK-II. The human HCC cell line was tested as both subcutaneous and orthotopic tumor xenograft models in BALB/c nu/nu mice. The prognostic role of HK-II was evaluated in data from HCC patients in The Cancer Genome Atlas (TCGA) database and validated in patients treated with sorafenib. Quantitative real-time PCR, western blot analysis, and immunohistochemical staining revealed that HK-II expression is upregulated in the presence of sorafenib. Further analysis of the endoplasmic reticulum-stress network model in two different murine HCC models showed that the introduction of additional stress by 3-BP treatment synergistically increased the in vivo/vitro efficacy of sorafenib. We found that HCC patients with increased HK-II expression in the TCGA database showed poor overall survival, and also confirmed similar results for TCGA database HCC patients who had undergone sorafenib treatment. These results suggest that HK-II is a promising therapeutic target to enhance the efficacy of sorafenib and that HK-II expression might be a prognostic factor in HCC.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do 14584, Korea.
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Juri Na
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Kyungmin Kim
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul 03080, Korea.
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| |
Collapse
|
19
|
Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res 2018; 32:2202-2213. [PMID: 30080294 DOI: 10.1002/ptr.6171] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Milk thistle (MT; Silybum marianum), a member of the Asteraceae family, is a therapeutic herb with a 2,000-year history of use. MT fruits contain a mixture of flavonolignans collectively known as silymarin, being silybin (also named silibinin) the main component. This article reviews the chemistry of MT, the pharmacokinetics and bioavailability, the pharmacologically relevant actions for liver diseases (e.g., anti-inflammatory, immunomodulating, antifibrotic, antioxidant, and liver-regenerating properties) as well as the clinical potential in patients with alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, drug-induced liver injury, and mushroom poisoning. Overall, literature data suggest that, despite encouraging preclinical data, further well-designed randomized clinical trials are needed to fully substantiate the real value of MT preparations in liver diseases.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Natasa Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 2018; 16:220. [PMID: 30092792 PMCID: PMC6085698 DOI: 10.1186/s12967-018-1593-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC). METHODS A combinative strategy of big data mining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and computational biology was employed to dig HCC-related circRNAs and to explore their potential action mechanisms. A connectivity map (CMap) analysis was conducted to identify potential therapeutic agents for HCC. RESULTS Six differently expressed circRNAs were obtained from three Gene Expression Omnibus microarray datasets (GSE78520, GSE94508 and GSE97332) using the RobustRankAggreg method. Following the RT-qPCR corroboration, three circRNAs (hsa_circRNA_102166, hsa_circRNA_100291 and hsa_circRNA_104515) were selected for further analysis. miRNA response elements of the three circRNAs were predicted. Five circRNA-miRNA interactions including two circRNAs (hsa_circRNA_104515 and hsa_circRNA_100291) and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and hsa-miR-1276) were identified. Then, 1424 target genes of the above five miRNAs and 3278 differently expressed genes (DEGs) on HCC were collected. By intersecting the miRNA target genes and the DEGs, we acquired 172 overlapped genes. A protein-protein interaction network based on the 172 genes was established, with seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) determined from the network. The Gene Oncology, Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses revealed that the seven hubgenes were linked with some cancer-related biological functions and pathways. Additionally, three bioactive chemicals (decitabine, BW-B70C and gefitinib) based on the seven hubgenes were identified as therapeutic options for HCC by the CMap analysis. CONCLUSIONS Our study provides a novel insight into the pathogenesis and therapy of HCC from the circRNA-miRNA-mRNA network view.
Collapse
Affiliation(s)
- Dan-dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dong-yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dian-zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhen-bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|
21
|
Mao J, Yang H, Cui T, Pan P, Kabir N, Chen D, Ma J, Chen X, Chen Y, Yang Y. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol 2018; 832:39-49. [PMID: 29782854 DOI: 10.1016/j.ejphar.2018.05.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Silibinin, a nontoxic bioactive component in milk thistle, is used as a liver-protective drug in the clinic mainly because of its antioxidant and anti-inflammation activities. In this study, we studied the cytotoxic effects of silibinin combined with sorafenib on hepatocellular carcinoma (HCC). The results indicated that silibinin combined with sorafenib potently inhibited the proliferation of various HCC cells and induced significant apoptosis. In an HCC subcutaneous transplantation tumor model, the combination of silibinin and sorafenib significantly suppressed tumor growth compared with monotherapy. As determined by fluorescence staining and Western blots, the combination of the two drugs inhibited the phosphorylation of RAC-alpha serine/threonine-protein kinase (AKT) and signal transducer and activator of transcription 3 (STAT3) together with the expression of antiapoptotic proteins including myeloid leukemia cell differentiation protein Mcl-1 (Mcl-1) and apoptosis regulator Bcl-2 (Bcl-2), resulting in the death of cancer cells. We also found that the combination inhibited the formation and self-renewal of HCC stem cells by down-regulating the expression of stemness-related proteins, such as Homeobox protein NANOG (Nanog) and Krueppel-like factor 4 (Klf4). These results suggested that silibinin improved the efficacy of sorafenib in HCC therapy, indicating a clinical promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Jie Mao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Hongbao Yang
- New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Tingting Cui
- Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Pan Pan
- Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Nadia Kabir
- Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Duo Chen
- Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Jinyan Ma
- Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Xingyi Chen
- Translational Medicine lab, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China; Translational Medicine lab, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1α and hypoxia-mediated mitophagy. Oncotarget 2017; 8:91402-91414. [PMID: 29207653 PMCID: PMC5710933 DOI: 10.18632/oncotarget.20592] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022] Open
Abstract
The antiangiogenic effects of sustained sorafenib treatment in hepatocellular carcinoma (HCC) lead to the occurrence of hypoxia-mediated drug resistance resulting in low therapy efficiency and negative outcomes. Combined treatments with coadjuvant compounds to target the hypoxia-inducible factor-1α (HIF-1α) represent a promising therapeutic approach through which sorafenib efficiency may be improved. Melatonin is a well-documented oncostatic agent against different cancer types. Here, we evaluated whether melatonin could enhance sorafenib cytotoxicity and overcome the hypoxia-mediated resistance mechanisms in HCC. The pharmacological melatonin concentration (2 mM) potentiated the oncostatic effects of sorafenib (5 μM) on Hep3B cells even under hypoxia. Melatonin downregulated the HIF-1α protein synthesis through the inhibition of the mammalian target of rapamycin complex 1 (mTORC1)/ribosomal protein S6 kinase beta-1 (p70S6K)/ribosomal protein S6 (RP-S6) pathway, although the indole enhanced Akt phosphorylation by the mTORC1/C2 negative feedback. Furthermore, melatonin and sorafenib coadministration reduced the HIF-1α-mitophagy targets expression, impaired autophagosome formation and subsequent mitochondria and lysosomes colocalization. Together, our results indicate that melatonin improves the Hep3B sensitivity to sorafenib, preventing HIF-1α synthesis to block the cytoprotective mitophagy induced by the hypoxic microenvironment, an important element of the multifactorial mechanisms responsible for the chemotherapy failure.
Collapse
|
23
|
Pei Y, Sun X, Guo X, Yin H, Wang L, Tian F, Jing H, Liang X, Xu J, Shi P. FGF8 promotes cell proliferation and resistance to EGFR inhibitors via upregulation of EGFR in human hepatocellular carcinoma cells. Oncol Rep 2017; 38:2205-2210. [PMID: 28791365 DOI: 10.3892/or.2017.5887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), a member of the fibroblast growth factor (FGF) family, is upregulated in several human cancers, including HCC (HCC). Previous studies have demonstrated that FGF8 increased cell growth and invasion of tumor cells. In the present study we investigated whether FGF8 is involved in the cell proliferation and resistance to several drugs in human HCC cells. We stably overexpressed FGF8 by lentiviral transfection. In addition, we also added recombinant FGF8 instead of stably overexpressing FGF8 in human HCC cells. Stable overexpression of FGF8 or exogenous recombinant FGF8 resulted in significantly enhanced cell proliferation in human HCC cells. With the use of CellTiter-Glo assay for the determination of cell viability, we found that FGF8 increased the resistance to epidermal growth factor receptor (EGFR) inhibitors in human HCC cells. Additionally, the expression of EGFR was also upregulated by stably overexpressing FGF8 or exogenous recombinant FGF8. Yes-associated protein 1 (YAP1) was reported to upregulate the expression of EGFR. Moreover, we also found that FGF8 increased the expression of YAP1 and knockdown of YAP1 eliminated the upregulation of EGFR and the resistance to EGFR inhibition induced by FGF8. Our study provides evidence that FGF8 plays an important role in the resistance to EGFR inhibition of human HCC cells.
Collapse
Affiliation(s)
- Yuanmin Pei
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xueling Sun
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiwei Guo
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huashan Yin
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Le Wang
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fugu Tian
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hongxi Jing
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaobo Liang
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jun Xu
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcheng Shi
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
24
|
Sun Y, Guan Z, Zhao W, Jiang Y, Li Q, Cheng Y, Xu Y. Silibinin suppresses bladder cancer cell malignancy and chemoresistance in an NF-κB signal-dependent and signal-independent manner. Int J Oncol 2017; 51:1219-1226. [PMID: 28791405 DOI: 10.3892/ijo.2017.4089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/26/2017] [Indexed: 11/05/2022] Open
Abstract
Because bladder cancer (BCa) is the 9th most common malignant tumor and 13th leading cause of death due to cancer, therapeutic approaches have attracted a great deal of attention from both clinicians and BCa patients. Although the development of surgery and targeted drugs has brought new challenges for the traditional concept of BCa therapy, various types of chemotherapy remain the final treatment method for many BCa patients. However, chemoresistance inevitably appears, leading to the failure of chemotherapy. Silibinin, a polyphenolic flavonoid component isolated from the fruits or seeds of milk thistle, has been reported to play important roles in inhibiting tumor chemoresistance in breast cancer and head and neck squamous cell carcinomas. Our previous study indicated that silibinin inhibited BCa progression in some mechanisms but with no conclusion of chemoresistance inhibition. Therefore, in the present study, we dissected the role of silibinin in BCa progression and chemoresistance. Our results revealed that in BCa, chemodrug-induced chemoresistance was reversed in the presence of silibinin. Further mechanistic study indicated that silibinin suppressed chemoresistance and BCa malignancy in an NF-κB-dependent and -independent manner. In addition, all of the inhibitory effects were dose‑dependent. Thus, our results provide a potential use for silibinin in BCa therapeutics.
Collapse
Affiliation(s)
- Yi Sun
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Zhenfeng Guan
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Wencai Zhao
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yazhuo Jiang
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qing Li
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yongyi Cheng
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yonggang Xu
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
25
|
Bosch-Barrera J, Queralt B, Menendez JA. Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat Rev 2017; 58:61-69. [DOI: 10.1016/j.ctrv.2017.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
|
26
|
Morsi NG, Ali SM, Elsonbaty SS, Afifi AA, Hamad MA, Gao H, Elsabahy M. Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA. Pharm Dev Technol 2017; 23:387-399. [PMID: 28347210 DOI: 10.1080/10837450.2017.1312443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleic acids therapeutic efficiency is generally limited by their low stability and intracellular bioavailability, and by the toxicity of the carriers used to deliver them to the target sites. Aminated poly(glycerol methacrylate) polymers are biodegradable and pH-sensitive polymers that have been used previously to deliver antisense oligonucleotide and show high transfection efficiency. The purpose of this study is to compare the efficiency and toxicity of aminated linear poly(glycerol methacrylate) (ALT) biodegradable polymer to the most commonly used cationic degradable (i.e. chitosan) and non-degradable (i.e. polyethylenimine (PEI)) polymers for delivery of short interfering RNA (siRNA). ALT, PEI and chitosan polymers were able to form nanosized particles with siRNA. Size, size-distribution and zeta-potential were measured over a wide range of nitrogen-to-phosphate (N/P) ratios, and the stability of the formed nanoparticles in saline and upon freeze-drying was also assessed. No significant cytotoxicity at the range of the tested concentrations of ALT and chitosan nanoparticles was observed, whereas the non-degradable PEI showed significant toxicity in huh-7 hepatocyte-derived carcinoma cell line. The safety profiles of the degradable polymers (ALT and chitosan) over non-degradable PEI were demonstrated in vitro and in vivo. In addition, ALT nanoparticles were able to deliver siRNA in vivo with significantly higher efficiency than chitosan nanoparticles. The results in the present study give evidence of the great implications of ALT nanoparticles in biomedical applications due to their biocompatibility, low cytotoxicity, high stability and simple preparation method.
Collapse
Affiliation(s)
- Noha G Morsi
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Shimaa M Ali
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Sherouk S Elsonbaty
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Ahmed A Afifi
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Mostafa A Hamad
- b Department of Surgery, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Hui Gao
- c School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin , China
| | - Mahmoud Elsabahy
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt.,d Laboratory for Synthetic-Biologic Interactions, Department of Chemistry , Texas A&M University , College Station , TX , USA.,e Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,f Misr University for Science and Technology , 6th of October City , Egypt
| |
Collapse
|
27
|
Ezhilarasan D, Evraerts J, Sid B, Calderon PB, Karthikeyan S, Sokal E, Najimi M. Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression. Hepatobiliary Pancreat Dis Int 2017; 16:80-87. [PMID: 28119262 DOI: 10.1016/s1499-3872(16)60166-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis consequent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs. The present study was to gain insight into the molecular pathways involved in silibinin anti-fibrogenic effect. METHODS The study was conducted on LX-2 human stellate cells treated with three concentrations of silibinin (10, 50 and 100 μmol/L) for 24 and 96 hours. At the end of the treatment cell viability and proliferation were evaluated. Protein expression of p27, p21, p53, Akt and phosphorylated-Akt was evaluated by Western blotting analysis and Ki-67 protein expression was by immunocytochemistry. Sirtuin activity was evaluated by chemiluminescence based assay. RESULTS Silibinin inhibits LX-2 cell proliferation in dose- and time-dependent manner; we showed that silibinin upregulated the protein expressions of p27 and p53. Such regulation was correlated to an inhibition of both downstream Akt and phosphorylated-Akt protein signaling and Ki-67 protein expression. Sirtuin activity also was correlated to silibinin-inhibited proliferation of LX-2 cells. CONCLUSION The anti-proliferative effect of silibinin on LX-2 human stellate cells is via the inhibition of the expressions of various cell cycle targets including p27, Akt and sirtuin signaling.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Institut de Recherche Experimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Universite Catholique de Louvain, 1200, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cho Y, Lee YB, Lee JH, Lee DH, Cho EJ, Yu SJ, Kim YJ, Kim JI, Im JH, Lee JH, Oh EJ, Yoon JH. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14. PLoS One 2016; 11:e0160822. [PMID: 27494117 PMCID: PMC4975508 DOI: 10.1371/journal.pone.0160822] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/26/2016] [Indexed: 01/26/2023] Open
Abstract
Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Aptamers, Nucleotide
- Blotting, Western
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Female
- Flow Cytometry
- Galectins/genetics
- Galectins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Oligodeoxyribonucleotides/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Nucleolin
Collapse
Affiliation(s)
- Yuri Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National 26 University Boramae Medical Center, Seoul, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong In Kim
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong Hun Im
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung Hwan Lee
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eun Ju Oh
- Aptamer Initiative, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Zhu XX, Ding YH, Wu Y, Qian LY, Zou H, He Q. Silibinin: a potential old drug for cancer therapy. Expert Rev Clin Pharmacol 2016; 9:1323-1330. [PMID: 27362364 DOI: 10.1080/17512433.2016.1208563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Silibinin is mixture of flavonolignans extracted from milk thistle and often has been used in the treatment of acute and chronic liver disorders caused by toxins, drug, alcohol and hepatitis and gall bladder disorders for its antioxidant and hepatoprotective properties. Areas covered: However, increasing evidence suggest that silibinin is not solely limited in the treatment of these diseases. Further research suggests that silymarin may function diversely and may serve as a novel therapy for cancer therapy, such as lung cancer, prostatic cancer, colon cancer, breast cancer, bladder cancer and hepatocellular carcinoma by regulating cancer cells growth, proliferation, apoptosis, angiogenesis and many other mechanism. Expert commentary: In this review, in order to provide potential new treatment for these cancer, we summarize the recent anti-cancer findings of silibinin in these cancer and clarify the mechanisms of this effect.
Collapse
Affiliation(s)
- Xing-Xing Zhu
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Ya-Hui Ding
- b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Yi Wu
- c Department of Hematology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Lin-Yan Qian
- b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Hai Zou
- b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Qiang He
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| |
Collapse
|
30
|
Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:840542. [PMID: 26858957 PMCID: PMC4695650 DOI: 10.1155/2015/840542] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
We would like to highlight the application of natural products to hepatocellular carcinoma (HCC). We will focus on the natural products known as flavonoids, which target this disease at different stages of hepatocarcinogenesis. In spite of the use of chemotherapy and radiotherapy in treating HCC, patients with HCC still face poor prognosis because of the nature of multidrug resistance and toxicity derived from chemotherapy and radiotherapy. Flavonoids can be found in many vegetables, fruits, and herbal medicines that exert their different anticancer effects via different intracellular signaling pathways and serve as antioxidants. In this review, we will discuss seven common flavonoids that exert different biological effects against HCC via different pathways.
Collapse
|