1
|
Gallo M, Ferrari E, Giovati L, Pertinhez TA, Artesani L, Conti S, Ciociola T. The Variability of the Salivary Antimicrobial Peptide Profile: Impact of Lifestyle. Int J Mol Sci 2024; 25:11501. [PMID: 39519054 PMCID: PMC11547034 DOI: 10.3390/ijms252111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Saliva is crucial in maintaining oral health; its composition reflects the body's physiological and diseased state. Among salivary components, antimicrobial peptides (AMPs) stand out for their broad antimicrobial activities and role in modulating the oral microbiota and innate immune response. Local and systemic diseases can affect the levels of AMPs in saliva, making them attractive biomarkers. However, the large variability in their concentrations hampers their use in diagnostics. Knowledge of the various factors influencing the profile of salivary AMPs is essential for their use as biomarkers. Here, we examine how lifestyle factors such as physical activity, dietary supplementation, tobacco smoking, and psychological stress impact salivary AMP levels. By understanding these sources of variability, we can take a step forward in using AMPs for diagnostics and prognostics and develop new tailored and preventative approaches.
Collapse
Affiliation(s)
- Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Thelma A. Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Lorenza Artesani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Piraino L, Chen CY, Mereness J, Dunman PM, Ovitt C, Benoit D, DeLouise L. Identifying novel radioprotective drugs via salivary gland tissue chip screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548707. [PMID: 37503292 PMCID: PMC10369976 DOI: 10.1101/2023.07.12.548707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During head and neck cancer treatment, off-target ionizing radiation damage to the salivary glands commonly causes a permanent loss of secretory function. Due to the resulting decrease in saliva production, patients have trouble eating, speaking and are predisposed to oral infections and tooth decay. While the radioprotective antioxidant drug Amifostine is approved to prevent radiation-induced hyposalivation, it has intolerable side effects that limit its use, motivating the discovery of alternative therapeutics. To address this issue, we previously developed a salivary gland mimetic (SGm) tissue chip platform. Here, we leverage this SGm tissue chip for high-content drug discovery. First, we developed in-chip assays to quantify glutathione and cellular senescence (β-galactosidase), which are biomarkers of radiation damage, and we validated radioprotection using WR-1065, the active form of Amifostine. Following validation, we tested other reported radioprotective drugs, including, Edaravone, Tempol, N-acetylcysteine (NAC), Rapamycin, Ex-Rad, and Palifermin, confirming that all drugs but NAC and Ex-Rad exhibited robust radioprotection. Next, a Selleck Chemicals library of 438 FDA-approved drugs was screened for radioprotection. We discovered 25 hits, with most of the drugs identified with mechanisms of action other than antioxidant activity. Hits were down-selected using EC 50 values and pharmacokinetics and pharmacodynamics data from the PubChem database leading to testing of Phenylbutazone (anti-inflammatory), Enoxacin (antibiotic), and Doripenem (antibiotic) for in vivo radioprotection in mice using retroductal injections. Results confirm that Phenylbutazone and Enoxacin exhibited equivalent radioprotection to Amifostine. This body of work demonstrates the development and validation of assays using a SGm tissue chip platform for high-content drug screening and the successful in vitro discovery and in vivo validation of novel radioprotective drugs with nonantioxidant primary indications pointing to possible, yet unknown novel mechanisms of radioprotection.
Collapse
|
3
|
Lin SY, Zhou T, Cai S, Hu ZW, Zhong J, Dong L. Proteomic characteristics of saliva in patients with different subgroups of IgG4-RD. Front Immunol 2022; 13:1026921. [PMID: 36483554 PMCID: PMC9723444 DOI: 10.3389/fimmu.2022.1026921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Immunoglobulin G4-related disease (IgG4-RD) is a newly defined disease entity, with great heterogeneity among IgG4-RD subgroups with different organ involvement patterns. Identification of the proteomic characteristics of IgG4-RD subgroups will be critical for the understanding of the pathogenic mechanisms of IgG4-RD. METHOD In this study, we performed proteomic analysis using Tandem Mass Tags (TMT) technology with "high field" mass analyzer with improved resolution and sequencing speed to investigate the proteomic profile of saliva and plasma samples from ten untreated IgG4-RD patients and five healthy controls (HCs). Differentially expressed proteins (DEPs) were identified by "t test" function in R package. Functional enrichment analysis was used to investigate pathways enriched in IgG4-RD samples. RESULTS Most salivary DEPs identified in IgG4-RD patients compared with HCs were mainly enriched in neutrophil mediated GO bioprocess. Within the comparisons between four IgG4-RD subgroups, more DEPs were identified in the comparison of Mikulicz group and Head and neck group. Among four subgroups of IgG4-RD, Head and neck group showed the most distinctive proteomic expression pattern when compared with HCs. Moreover, "Neutrophil mediated process" related GO bioprocess was commonly identified between comparisons of Mikulicz group and Head and neck group, Head and neck group and Retroperitoneal aorta group, Head and neck group and HCs, IgG4-RD patients with saliva gland involvement and those without saliva gland involvement. Key DEPs that involved in this GO bioprocess were identified. Besides, we performed proteomic analysis for plasma samples between ten IgG4-RD and five HCs and there were several DEPs identified overlapped in saliva and plasma. CONCLUSION We identified multiple processes/factors and several signaling pathways in saliva that may be involved in the IgG4-RD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
5
|
Davidopoulou S, Diza E, Menexes G, Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol 2012; 57:865-9. [DOI: 10.1016/j.archoralbio.2012.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/15/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
|
6
|
Song B, Zhang L, Liu XJ, Ding C, Wu LL, Gan YH, Yu GY. Proteomic analysis of secretion from human transplanted submandibular gland replacing lacrimal gland with severe keratoconjunctivitis sicca. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:550-60. [DOI: 10.1016/j.bbapap.2012.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 12/17/2022]
|
7
|
Piras M, Hand AR, Tore G, Ledda GP, Piludu M. Ultrastructural localization of salivary mucins MUC5B and MUC7 in human labial glands. Eur J Oral Sci 2010; 118:14-8. [PMID: 20156260 DOI: 10.1111/j.1600-0722.2009.00700.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As a result of their presence throughout the mouth in the submucosa or between muscle fibers, minor salivary glands secrete directly and continuously into the oral cavity, providing mucosal surfaces with highly glycosylated proteins that are active in bacterial aggregation and in oral tissue lubrication. In this study, we investigated the ultrastructural localization of the MUC5B and MUC7 mucins in human labial glands by means of a postembedding immunogold technique. Thin sections of normal human labial glands, obtained during surgery, were incubated with polyclonal antibodies to human salivary mucins MUC5B and MUC7, and then with gold-labeled secondary antibodies. Specific MUC5B reactivity was found in the secretory granules of mucous cells of all glands examined, and was associated with the luminal membrane of duct cells. MUC7 labeling was observed in the granules of both mucous and seromucous secretory cells of the glandular parenchyma. Quantitative analyses demonstrated that seromucous granules have higher immunogold labeling densities for MUC7 than mucous granules. Our immunohistochemical data extend the results of previous light microscopic studies of MUC5B and MUC7 localizations, pointing out the significant contribution of human labial glands in the secretion process of these two mucins.
Collapse
Affiliation(s)
- Monica Piras
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | | | | | | | | |
Collapse
|
8
|
Piras M, Hand AR, Mednieks MI, Piludu M. Amylase and cyclic amp receptor protein expression in human diabetic parotid glands. J Oral Pathol Med 2010; 39:715-21. [DOI: 10.1111/j.1600-0714.2010.00898.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|