1
|
Tolo IE, Bajer PG, Mor SK, Phelps NBD. Disease ecology and host range of Cyprinid herpesvirus 3 (CyHV-3) in CyHV-3 endemic lakes of North America. JOURNAL OF FISH DISEASES 2023; 46:679-696. [PMID: 36966383 DOI: 10.1111/jfd.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/07/2023]
Abstract
Cyprinid herpesvirus-3 (CyHV-3) is an important pathogen of common carp (Cyprinus carpio, carp) causing significant economic and ecological impacts worldwide. The recent emergence of CyHV-3 in the Upper Midwest region of the United States has raised questions related to the disease ecology and host specificity of CyHV-3 in wild carp populations. To determine the prevalence of CyHV-3 in wild populations of fishes in Minnesota, we surveyed five lakes in 2019 in which the virus was known to have caused mass mortality events in carp from 2017 to 2018. A total of 28 species (n = 756 total fish) of native fishes and 730 carp were screened for the presence of CyHV-3 DNA using specific qPCR. None of the native fish tissues tested positive for CyHV-3 although the prevalence of CyHV-3 in carp was 10%-50% in the five lakes. A single lake (Lake Elysian) with a 50% DNA detection rate and evidence of ongoing transmission and CyHV-3-associated mortality was surveyed again in 2020 from April to September. During this period, none of the tissues from 24 species (n = 607 total fish) tested positive for CyHV-3 though CyHV-3 DNA and mRNA (indicating viral replication) was detected in carp tissues during the sampling period. CyHV-3 DNA was detected most often in brain samples without evidence of replication, potentially indicating that brain tissue is a site for CyHV-3 latency. Paired qPCR and ELISA testing for Lake Elysian in 2019-2020 identified young carp (especially males) to be the primary group impacted by CyHV-3-associated mortality and acute infections, but with no positive detections in juvenile carp. Seroprevalence of carp from Lake Elysian was 57% in 2019, 92% in April of 2020 and 97% in September 2020. These results further corroborate the host specificity of CyHV-3 to carp in mixed wild populations of fishes in Minnesota and provide additional insights into the ecological niche of CyHV-3 in shallow lake populations of carp in North America.
Collapse
Affiliation(s)
- Isaiah E Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Przemyslaw G Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Sunil K Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, Minnesota, USA
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
2
|
Kushala KB, Nithin MS, Girisha SK, Dheeraj SB, Sowndarya NS, Puneeth TG, Suresh T, Naveen Kumar BT, Vinay TN. Fish immune responses to natural infection with carp edema virus (Koi sleepy disease): An emerging fish disease in India. FISH & SHELLFISH IMMUNOLOGY 2022; 130:624-634. [PMID: 36126841 DOI: 10.1016/j.fsi.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Emerging pathogen, carp edema virus (CEV) causes koi sleepy disease (KSD) in Koi and common carp causing severe mortalities worldwide. In the present study, a total of 150 fish species belonging to eight different families were sampled from the ornamental fish retailers and farms, located in Karnataka, India. The OIE protocol viz., level-I, II and III diagnoses confirmed the infection of CEV in 10 koi fish. Interestingly, other fish species belonging to different fish family including cyprinidae family were negative to CEV. Further, CEV infection was confirmed by sequencing (partial 4a gene); it showed the similarity with that of CEV reported from India and Germany strains with similarity of 97.4-99.94% and belonged to genogroup IIa. TEM analysis of purified CEV, in vivo cohabitation and tissue infection experiments confirmed the CEV infection. In addition, viral load was significantly higher (106-7 copies) in koi collected from Dakshina Kannada than of Bengaluru (103-4 copies). To understand the host-pathogen interaction, different organs such as gill, kidney, liver and spleen from naturally (CEV) infected koi were used to study the immune gene responses by using eight innate and one adaptive immune response. Results indicated that TNF-α, RohTNF-α, iNOS, IFN-γ and IL-10, and catalyze β-2M of MHC class I pathway genes were upregulated in koi. Higher expression of immune genes during the CEV infection may have inhibited viral replication and mount an antigenic adaptive response. Similar to other viral infections, interferon-γ play an important role during poxvirus infections. Quantification of immune genes in infected fish will provide insights into the host responses and provide valuable information to devise intervention strategies to prevent and control disease due to CEV.
Collapse
Affiliation(s)
- K B Kushala
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - M S Nithin
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - S K Girisha
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India.
| | - S B Dheeraj
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - N S Sowndarya
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - T G Puneeth
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - T Suresh
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - T N Vinay
- Indian Council of Agricultural Research, Central Institute of Brackishwater Aquaculture, MRC Nagar, Chennai, Tamil Nadu, 600028, India
| |
Collapse
|
3
|
Adamek M, Teitge F, Baumann I, Jung-Schroers V, El Rahman SA, Paley R, Piackova V, Gela D, Kocour M, Rakers S, Bergmann SM, Ganter M, Steinhagen D. Koi sleepy disease as a pathophysiological and immunological consequence of a branchial infection of common carp with carp edema virus. Virulence 2021; 12:1855-1883. [PMID: 34269137 PMCID: PMC8288041 DOI: 10.1080/21505594.2021.1948286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gills of fish are involved in respiration, excretion and osmoregulation. Due to numerous interactions between these processes, branchial diseases have serious implications on fish health. Here, "koi sleepy disease" (KSD), caused by carp edema virus (CEV) infection was used to study physiological, immunological and metabolic consequences of a gill disease in fish. A metabolome analysis shows that the moderately hypoxic-tolerant carp can compensate the respiratory compromise related to this infection by various adaptations in their metabolism. Instead, the disease is accompanied by a massive disturbance of the osmotic balance with hyponatremia as low as 71.65 mmol L-1, and an accumulation of ammonia in circulatory blood causing a hyperammonemia as high as 1123.24 µmol L-1. At water conditions with increased ambient salt, the hydro-mineral balance and the ammonia excretion were restored. Importantly, both hyponatremia and hyperammonemia in KSD-affected carp can be linked to an immunosuppression leading to a four-fold drop in the number of white blood cells, and significant downregulation of cd4, tcr a2 and igm expression in gills, which can be evaded by increasing the ion concentration in water. This shows that the complex host-pathogen interactions within the gills can have immunosuppressive consequences, which have not previously been addressed in fish. Furthermore, it makes the CEV infection of carp a powerful model for studying interdependent pathological and immunological effects of a branchial disease in fish.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ilka Baumann
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura Egypt
| | - Richard Paley
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Veronica Piackova
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - David Gela
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Kocour
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Sebastian Rakers
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| | - Sven M Bergmann
- Institute of Infectology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Ganter
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Adamek M, Heling M, Bauer J, Teitge F, Bergmann SM, Kleingeld DW, Welzel A, Scuda N, Bachmann J, Louis CS, Böttcher K, Bräuer G, Steinhagen D, Jung-Schroers V. It is everywhere-A survey on the presence of carp edema virus in carp populations in Germany. Transbound Emerg Dis 2021; 69:2227-2241. [PMID: 34231974 DOI: 10.1111/tbed.14225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Carp edema virus (CEV) is the causative agent of koi sleepy disease (KSD), a serious gill disease affecting common carp, Cyprinus carpio, and its ornamental variety, koi. After recent detections of the virus in various countries around the world, KSD has emerged as a new global disease in carp. However, the prevalence of the infection in carp populations in a given geographical region has not been studied thoroughly. The present communication reports an investigation into the presence of CEV in carp and koi populations in Germany. For this purpose, gill samples collected from carp and koi populations suffering from gill diseases or collected for a routine examination of their health status were tested for the presence of CEV by PCR. In total, 651 fish samples from 401 carp or koi cases were examined in 2015 and 2016, additional 118 samples from previous studies were included in the examination. CEV was detected in archive samples from carp dating back to 2007, and in koi samples dating back to 2009. From 2015 to 2016, CEV was detected in 69% of cases from carp populations examined from the main carp-producing areas in Germany, and in 41% of the examined cases from koi populations from all over Germany. Clinical KSD occurred mainly from April to June in carp populations at water temperatures ranging from 8 to 12°C and in koi populations at water temperatures ranging from 18 to 22°C. Most fish from clinically affected carp or koi populations harboured high virus loads of above 10,000 copies of CEV-specific DNA per 250 ng DNA, while gills from fish of other fish species from the ponds, including goldfish, grass carp and European perch were found CEV negative or harboured a low virus load. A phylogenetic analysis revealed the presence of multiple CEV variants from genogroup I in carp and genogroup II in koi populations in Germany. Genetically identical genogroup I isolates were detected in carp from different geographical locations in Germany and in other European carp populations. Some German genogroup II variants were identical to variants previously recorded from koi in Asian and other European countries. The data presented here show that CEV is highly prevalent in German common carp and koi populations and implies the spreading of this virus by intense trading of common carp and koi without necessary risk mitigating measures. As infections with this virus may induce serious disease, CEV diagnostic should be included in health surveillance and disease monitoring programmes.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Max Heling
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Willem Kleingeld
- Lower Saxony State Office for Consumer Protection and Food Safety, Veterinary Task Force, Hannover, Germany
| | - Alice Welzel
- Lower Saxony Ministry for Food, Agriculture and Consumer Protection, Hannover, Germany
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | | | - Carola Sauter Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Grit Bräuer
- Saxony Animal Disease Fund, Dresden, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
5
|
Host Range of Carp Edema Virus (CEV) during a Natural Mortality Event in a Minnesota Lake and Update of CEV Associated Mortality Events in the USA. Viruses 2021; 13:v13030400. [PMID: 33802414 PMCID: PMC7998252 DOI: 10.3390/v13030400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mass mortality events of common carp (Cyprinus carpio, carp) associated with carp edema virus (CEV) alone or in coinfections with koi herpesvirus (KHV), is an emerging issue. Despite recent outbreaks of CEV in wild carp populations, the host range of North American species has not been well studied. To that end, we intensively sampled carp (n = 106) and co-habiting native fish species (n = 5 species; n = 156 total fish) from a CEV-suspect mass-mortality event of carp in a small Minnesota lake (Lake Swartout). Additionally, fecal and regurgitant samples (n = 73 each) from double-crested cormorants (Phalacrocorax auritus, DCCO) were sampled to test the potential of DCCO to act as a vector for virus transmission. CEV was confirmed to be widespread in the Lake Swartout carp population during the outbreak with high viral loads and histological confirmation, suggesting that CEV was the cause of the mortality event. There were no detections of CEV in any native fish species; however, DCCO regurgitant and fecal samples were positive for CEV DNA. In addition, three CEV-positive and one CEV + KHV-positive mortality events were confirmed with no observed mortality or morbidity of non-carp species in other lakes. This study provides evidence that CEV infection and disease may be specific to carp during mortality events with mixed-species populations, identifies DCCO as a potential vector for CEV, and further expands the known range of CEV, as well as coinfections with KHV, in North America.
Collapse
|
6
|
Pikulkaew S, Phatwan K, Banlunara W, Intanon M, Bernard JK. First Evidence of Carp Edema Virus Infection of Koi Cyprinus carpio in Chiang Mai Province, Thailand. Viruses 2020; 12:v12121400. [PMID: 33291286 PMCID: PMC7762178 DOI: 10.3390/v12121400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
The presence of carp edema virus (CEV) was confirmed in imported ornamental koi in Chiang Mai province, Thailand. The koi showed lethargy, loss of swimming activity, were lying at the bottom of the pond, and gasping at the water's surface. Some clinical signs such as skin hemorrhages and ulcers, swelling of the primary gill lamella, and necrosis of gill tissue, presented. Clinical examination showed co-infection by opportunistic pathogens including Dactylogyrus sp., Gyrodactylus sp. and Saprolegnia sp. on the skin and gills. Histopathologically, the gill of infected fish showed severe necrosis of epithelial cells and infiltrating of eosinophilic granular cells. Electron microscope examination detected few numbers of virions were present in the cytoplasm of gill tissue which showed an electron dense core with surface membranes worn by surface globular units. Molecular detection of CEV DNA from gill samples of fish was performed by polymerase chain reaction (PCR) and confirmed by nested-PCR. Phylogenetic analyses revealed that CEV isolate had 99.8% homology with the CEV isolated from South Korea (KY946715) and Germany (KY550420), and was assigned to genogroup IIa. In conclusion, this report confirmed the presence of CEV infection of koi Cyprinus carpio in Chiang Mai province, Thailand using pathological and molecular approaches.
Collapse
Affiliation(s)
- Surachai Pikulkaew
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Correspondence: ; Tel.: +66-(53)-948-023; Fax: +66-(53)-274-710
| | - Khathawat Phatwan
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Montira Intanon
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - John K. Bernard
- Department of Animal and Dairy Science, The University of Georgia, Tifton, GA 31793-5766, USA;
| |
Collapse
|
7
|
Saengsitthisak B, Chaisri W, Punyapornwithaya V, Mektrirat R, Klayraung S, Bernard JK, Pikulkaew S. Occurrence and Antimicrobial Susceptibility Profiles of Multidrug-Resistant Aeromonads Isolated from Freshwater Ornamental Fish in Chiang Mai Province. Pathogens 2020; 9:E973. [PMID: 33266430 PMCID: PMC7700646 DOI: 10.3390/pathogens9110973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antimicrobials are commonly used to prevent and treat disease in the ornamental fish industry. However, the indiscriminate and comprehensive overuse of unregulated antimicrobials without appropriate diagnostic examination could contribute to the development of antimicrobial-resistant strains of bacterial pathogens. Moreover, human infections caused by pathogens transmitted from fish or the aquatic environment are quite common. The frequent detection of antimicrobial resistance in ornamental fish and their environments are inevitable so as to decrease the transfer of antimicrobial-resistant bacteria from aquatic sources to other environments. This study evaluated the prevalence of common bacteria species and the antimicrobial susceptibility profile in ornamental fish that were sold in an ornamental fish shop in Chiang Mai, Thailand. Aeromonas spp. were the most dominant of the isolated species from the ornamental fish samples and accounted for 68.09% of the total. Other species detected included Vibrio spp., Pseudomonas spp., and Citrobacter spp. A high percentage of resistance to amoxicillin (93.75%), oxytetracycline (79.69%), and erythromycin (75.00%) was observed among the Aeromonas spp. The antimicrobial resistance information for ornamental fish is very limited, and the results from this study indicate that the Aeromonas spp. are highly resistant to several important antibiotics. The results suggest that additional steps should be taken to educate store owners to reduce the indiscriminate use of these antibiotics to decrease the antimicrobial resistance in ornamental fish to potentially improve public health.
Collapse
Affiliation(s)
- Banthita Saengsitthisak
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Faculty of Pharmacy, Payap University, Chiang Mai 50000, Thailand
| | - Wasana Chaisri
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (W.C.); (V.P.)
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (W.C.); (V.P.)
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Epidemiology Research Center of Infectious Disease, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Srikanjana Klayraung
- Division of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand;
| | - John K. Bernard
- Department of Animal and Dairy Science, The University of Georgia, Tifton, GA 31793-5766, USA;
| | - Surachai Pikulkaew
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (W.C.); (V.P.)
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
8
|
Zrnčić S, Oraić D, Zupičić IG, Pavlinec Ž, Brnić D, Rogić ŽA, Sučec I, Steinhagen D, Adamek M. Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. JOURNAL OF FISH DISEASES 2020; 43:673-685. [PMID: 32315089 DOI: 10.1111/jfd.13163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Common carp (Cyprinus carpio) is a very important fish species for warm-water aquaculture in Croatia. All Croatian carp farms are subjected to a surveillance programme for the presence of koi herpesvirus (KHV), causing a deadly disease called koi herpesvirus disease (KHVD). However, there is no surveillance for other viral pathogens of importance like carp edema virus (CEV), a causative agent of koi sleepy disease (KSD). During regular testing within the KHVD surveillance programme, we tested samples for CEV simultaneously. The screening indicated possible outbreaks of KHVD and KSD. During 2016, KHVD broke out in an isolated area and soon thereafter a KHV eradication programme was successfully performed. However, during 2018 and 2019, two additional mortality events occurred in lakes in the southern part of Croatia during the spring. Samples from both events tested positive for CEV. An epidemiological investigation confirmed the introduction of infected carps from an infected farm to one of the lakes. To prevent the spreading of CEV into open waters, it is of utmost importance to introduce CEV testing before fish movement or to perform regular testing of all carp farms in the country to determine CEV prevalence for the purpose of implementation of control measures.
Collapse
Affiliation(s)
- Snježana Zrnčić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Dražen Oraić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Ivana Giovanna Zupičić
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Željko Pavlinec
- Laboratory for Fish and Mollusc Diseases, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department Zagreb, Hrvatski Veterinarski Institut, Zagreb, Croatia
| | | | - Ivica Sučec
- Ministry of Agriculture, Fisheries Directorate, Zagreb, Croatia
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|