1
|
Alanova P, Alan L, Opletalova B, Bohuslavova R, Abaffy P, Matejkova K, Holzerova K, Benak D, Kaludercic N, Menabo R, Di Lisa F, Ostadal B, Kolar F, Pavlinkova G. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia. Acta Physiol (Oxf) 2024; 240:e14202. [PMID: 39016532 DOI: 10.1111/apha.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
AIM The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.
Collapse
Affiliation(s)
- Petra Alanova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Alan
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology, University of Padova, Padova, Italy
| | - Barbora Opletalova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Kristyna Holzerova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Roberta Menabo
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Bohuslav Ostadal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
2
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Fu F. The Significance of NO-Synthase, Reactive Oxygen Species, Kinases and KATP-Channels in the Development of the Infarct-Limiting Effect of Adaptation to Hypoxia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
4
|
Protective effect of piceatannol and bioactive stilbene derivatives against hypoxia-induced toxicity in H9c2 cardiomyocytes and structural elucidation as 5-LOX inhibitors. Eur J Med Chem 2019; 180:637-647. [DOI: 10.1016/j.ejmech.2019.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
|
5
|
Moya EA, Arias P, Iturriaga R. Nitration of MnSOD in the Carotid Body and Adrenal Gland Induced by Chronic Intermittent Hypoxia. J Histochem Cytochem 2018; 66:753-765. [PMID: 29775122 DOI: 10.1369/0022155418776229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), main feature of obstructive sleep apnea, produces nitro-oxidative stress, which contributes to potentiate carotid body (CB) chemosensory discharges and sympathetic-adrenal-axis activity, leading to hypertension. The MnSOD enzymatic activity, a key enzyme on oxidative stress control, is reduced by superoxide-induced nitration. However, the effects of CIH-induced nitration on MnSOD enzymatic activity in the CB and adrenal gland are not known. We studied the effects of CIH on MnSOD protein and immunoreactive (MnSOD-ir) levels in the CB, adrenal gland and superior cervical ganglion (SCG), and on 3-nitrotyrosine (3-NT-ir), CuZnSOD (CuZnSOD-ir), MnSOD nitration, and its enzymatic activity in the CB and adrenal gland from male Sprague-Dawley rats exposed to CIH for 7 days. CIH increased 3-NT-ir in CB and adrenal gland, whereas MnSOD-ir increased in the CB and in adrenal cortex, but not in the whole adrenal medulla or SCG. CIH nitrated MnSOD in the CB and adrenal medulla, but its activity decreased in the adrenal gland. CuZnSOD-ir remained unchanged in both tissues. All changes observed were prevented by ascorbic acid treatment. Present results show that CIH for 7 days produced MnSOD nitration, but failed to reduce its activity in the CB, because of the increased protein level.
Collapse
Affiliation(s)
- Esteban A Moya
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California.,Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, Wang H, Jaggi AS, Downey JM. Reactive Oxygen Species as Intracellular Signaling Molecules in the Cardiovascular System. Curr Cardiol Rev 2018; 14:290-300. [PMID: 29962348 PMCID: PMC6300799 DOI: 10.2174/1573403x14666180702152436] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Redox signaling plays an important role in the lives of cells. This signaling not only becomes apparent in pathologies but is also thought to be involved in maintaining physiological homeostasis. Reactive Oxygen Species (ROS) can activate protein kinases: CaMKII, PKG, PKA, ERK, PI3K, Akt, PKC, PDK, JNK, p38. It is unclear whether it is a direct interaction of ROS with these kinases or whether their activation is a consequence of inhibition of phosphatases. ROS have a biphasic effect on the transport of Ca2+ in the cell: on one hand, they activate the sarcoplasmic reticulum Ca2+-ATPase, which can reduce the level of Ca2+ in the cell, and on the other hand, they can inactivate Ca2+-ATPase of the plasma membrane and open the cation channels TRPM2, which promote Ca2+-loading and subsequent apoptosis. ROS inhibit the enzyme PHD2, which leads to the stabilization of HIF-α and the formation of the active transcription factor HIF. CONCLUSION Activation of STAT3 and STAT5, induced by cytokines or growth factors, may include activation of NADPH oxidase and enhancement of ROS production. Normal physiological production of ROS under the action of cytokines activates the JAK/STAT while excessive ROS production leads to their inhibition. ROS cause the activation of the transcription factor NF-κB. Physiological levels of ROS control cell proliferation and angiogenesis. ROS signaling is also involved in beneficial adaptations to survive ischemia and hypoxia, while further increases in ROS can trigger programmed cell death by the mechanism of apoptosis or autophagy. ROS formation in the myocardium can be reduced by moderate exercise.
Collapse
Affiliation(s)
| | - Leonid N. Maslov
- Address correspondence to this author at the Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of
Science, Tomsk, Russia; Tel: 3822 262174; Fax: 3822 555057;
E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li X, Liu Y, Ma H, Guan Y, Cao Y, Tian Y, Zhang Y. Enhancement of Glucose Metabolism via PGC-1α Participates in the Cardioprotection of Chronic Intermittent Hypobaric Hypoxia. Front Physiol 2016; 7:219. [PMID: 27375497 PMCID: PMC4896962 DOI: 10.3389/fphys.2016.00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background and Aims: Previous studies demonstrated that energy metabolism disturbance impairs cardiac function and chronic intermittent hypobaric hypoxia (CIHH) protects heart against ischemia/reperfusion injury. The present study aimed to test the hypothesis that CIHH protects the heart against ischemia/reperfusion (I/R) injury via improvement of cardiac glucose metabolism. Methods: Male Sprague-Dawley rats received CIHH treatment simulating 5000-m altitude for 28 days, 6 h per day in a hypobaric chamber or no treatment (control). Body weight, fasting blood glucose, blood lipid and glucose tolerance were measured. The left ventricular function of isolated hearts was evaluated during 30 min of ischemia and 60 min of reperfusion using Langendorff method. The mRNA and protein expression involved in cardiac energy metabolism was determined using quantitative PCR and Western blot techniques. Results: 1. There was no difference of body weight, fast blood glucose, blood lipid and glucose tolerance between control and CIHH rats under baseline condition (p > 0.05). 2. The recovery of left ventricular function after I/R was improved significantly in CIHH rats compared to control rats (p < 0.05). 3. The expression of cardiac GLUT4 and PGC-1α was increased but PDK4 gene expression was decreased by CIHH treatment at both mRNA and protein level. Also p-AMPK/AMPK ratio was increased in CIHH rats (p < 0.05). Conclusion: CIHH ameliorates I/R injury through improving cardiac glucose metabolism via upregulation of GLUT4, p-AMPK, and PGC-1α expressions, but downregulation of cardiacPDK4 expression.
Collapse
Affiliation(s)
- Xuyi Li
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yue Cao
- Department of Endocrinology, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| |
Collapse
|
8
|
Waskova-Arnostova P, Elsnicova B, Kasparova D, Hornikova D, Kolar F, Novotny J, Zurmanova J. Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria. J Appl Physiol (1985) 2015; 119:1487-93. [PMID: 26494452 DOI: 10.1152/japplphysiol.01035.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 10/15/2015] [Indexed: 12/25/2022] Open
Abstract
Chronic hypoxia increases the myocardial resistance to acute ischemia-reperfusion injury by affecting the mitochondrial redox balance. Hexokinase (HK) bears a high potential to suppress the excessive formation of reactive oxygen species because of its increased association with mitochondria, thereby inhibiting the membrane permeability transition pore opening and preventing cell death. The purpose of this study was to determine the effect of severe intermittent hypobaric hypoxia (7,000 m, 8 h/day, 5 wk) on the function and colocalization of HK isoforms with mitochondria in the left (LV) and right ventricles of rat myocardium. The real-time RT-PCR, Western blot, enzyme coupled assay, and quantitative immunofluorescence techniques were used. Our results showed significantly elevated expression of HK isoforms (HK1 and HK2) in the hypoxic LV. In addition, intermittent hypoxia increased the total HK activity and the association of HK isoforms with mitochondria in both ventricles. These findings suggest that HK may contribute to the cardioprotective phenotype induced by adaptation to severe intermittent hypobaric hypoxia.
Collapse
Affiliation(s)
- Petra Waskova-Arnostova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; and
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; and
| | - Dita Kasparova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; and
| | - Daniela Hornikova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; and
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; and
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; and
| |
Collapse
|
9
|
Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, Zurmanova J. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genomics 2015; 47:612-20. [PMID: 26465708 DOI: 10.1152/physiolgenomics.00058.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
It has been documented that adaptation to hypoxia increases myocardial tolerance to ischemia-reperfusion (I/R) injury depending on the regimen of adaptation. Reactive oxygen species (ROS) formed during hypoxia play an important role in the induction of protective cardiac phenotype. On the other hand, the excess of ROS can contribute to tissue damage caused by I/R. Here we investigated the relationship between myocardial tolerance to I/R injury and transcription activity of major antioxidant genes, transcription factors, and oxidative stress in three different regimens of chronic hypoxia. Adult male Wistar rats were exposed to continuous normobaric hypoxia (FiO2 0.1) either continuously (CNH) or intermittently for 8 h/day (INH8) or 23 h/day (INH23) for 3 wk period. A control group was kept in room air. Myocardial infarct size was assessed in anesthetized open-chest animals subjected to 20 min coronary artery occlusion and 3 h reperfusion. Levels of mRNA transcripts and the ratio of reduced and oxidized glutathione (GSH/GSSG) were analyzed by real-time RT-PCR and by liquid chromatography, respectively. Whereas CNH as well as INH8 decreased infarct size, 1 h daily reoxygenation (INH23) abolished the cardioprotective effect and decreased GSH/GSSG ratio. The majority of mRNAs of antioxidant genes related to mitochondrial antioxidant defense (manganese superoxide dismutase, glutathione reductase, thioredoxin/thioredoxin reductase, and peroxiredoxin 2) were upregulated in both cardioprotective regimens (CNH, INH8). In contrast, INH23 increased only PRX5, which was not sufficient to induce the cardioprotective phenotype. Our results suggest that the increased mitochondrial antioxidant defense plays an important role in cardioprotection afforded by chronic hypoxia.
Collapse
Affiliation(s)
- Dita Kasparova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Mraz
- National Institute of Public Health, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic;
| |
Collapse
|
10
|
Chytilová A, Borchert GH, Mandíková-Alánová P, Hlaváčková M, Kopkan L, Khan MAH, Imig JD, Kolář F, Neckář J. Tumour necrosis factor-α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. Acta Physiol (Oxf) 2015; 214:97-108. [PMID: 25760892 DOI: 10.1111/apha.12489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/06/2014] [Accepted: 03/09/2015] [Indexed: 11/29/2022]
Abstract
AIM It has been demonstrated that tumour necrosis factor-alpha (TNF-α) via its receptor 2 (TNFR2) plays a role in the cardioprotective effects of preconditioning. It is also well known that chronic hypoxia is associated with activation of inflammatory response. With this background, we hypothesized that TNF-α signalling may contribute to the improved ischaemic tolerance of chronically hypoxic hearts. METHODS Adult male Wistar rats were kept either at room air (normoxic controls) or at continuous normobaric hypoxia (CNH; inspired O2 fraction 0.1) for 3 weeks; subgroups of animals were treated with infliximab (monoclonal antibody against TNF-α; 5 mg kg(-1), i.p., once a week). Myocardial levels of oxidative stress markers and the expression of selected signalling molecules were analysed. Infarct size (tetrazolium staining) was assessed in open-chest rats subjected to acute coronary artery occlusion/reperfusion. RESULTS CNH increased myocardial TNF-α level and expression of TNFR2; this response was abolished by infliximab treatment. CNH reduced myocardial infarct size from 50.8 ± 4.3% of the area at risk in normoxic animals to 35.5 ± 2.4%. Infliximab abolished the protective effect of CNH (44.9 ± 2.0%). CNH increased the levels of oxidative stress markers (3-nitrotyrosine and malondialdehyde), the expression of nuclear factor κB and manganese superoxide dismutase, while these effects were absent in infliximab-treated animals. CNH-elevated levels of inducible nitric oxide synthase and cyclooxygenase 2 were not affected by infliximab. CONCLUSION TNF-α plays a role in the induction of ischaemia-resistant cardiac phenotype of CNH rats, possibly via the activation of protective redox signalling.
Collapse
Affiliation(s)
- A. Chytilová
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
- Department of Physiology; Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - G. H. Borchert
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - P. Mandíková-Alánová
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
- Center for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - M. Hlaváčková
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
- Department of Cell Biology; Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - L. Kopkan
- Center for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Md. A. Hye Khan
- Department of Pharmacology & Toxicology; Medical College of Wisconsin; Milwaukee WI USA
| | - J. D. Imig
- Department of Pharmacology & Toxicology; Medical College of Wisconsin; Milwaukee WI USA
| | - F. Kolář
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - J. Neckář
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
- Center for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| |
Collapse
|
11
|
Maslov LN, Naryzhnaya NV, Prokudina ES, Kolar F, Gorbunov AS, Zhang Y, Wang H, Tsibulnikov SY, Portnichenko AG, Lasukova TV, Lishmanov YB. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: Role of opioid receptors. Clin Exp Pharmacol Physiol 2015; 42:496-501. [DOI: 10.1111/1440-1681.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Frantisek Kolar
- Department of Developmental Cardiology; Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Yi Zhang
- Department of Physiology; Hebei Medical University; Shijiazhuang China
| | - Hongxin Wang
- Department of Pharmacology; Liaoning Medical College; Jinzhou City China
| | - Sergey Yu Tsibulnikov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Alla G Portnichenko
- Bogomoletz Institute of Physiology; National Academy of Sciences of Ukraine; Kiev Ukraine
| | | | - Yury B Lishmanov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| |
Collapse
|
12
|
Herrera EA, Farías JG, González-Candia A, Short SE, Carrasco-Pozo C, Castillo RL. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Mar Drugs 2015; 13:838-60. [PMID: 25658050 PMCID: PMC4344605 DOI: 10.3390/md13020838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/29/2023] Open
Abstract
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg−1·day−1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)—normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Stefania E Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Catalina Carrasco-Pozo
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
13
|
Resveratrol alleviates lung ischemia and reperfusion-induced pulmonary capillary injury through modulating pulmonary mitochondrial metabolism. Transplant Proc 2015; 46:1131-4. [PMID: 24815145 DOI: 10.1016/j.transproceed.2013.11.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/15/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Lung ischemia and reperfusion (I/R) injury is one of the major causes of postoperative pulmonary dysfunction after cardiopulmonary surgery and thoracic organ transplantation. Recent studies suggest that lung I/R injury may be associated with defects in pulmonary mitochondrial function, in addition to damage from reactive oxygen species. In this study, we examined effects of one lung I/R injury on the other lung, and the protective efficacy of resveratrol on mitochondrial biogenesis in lungs. METHODS Studies were performed in male Sprague-Dawley rats in 3 groups: sham-operated, lung I/R injury, and treated with resveratrol before lung I/R injury (20 mg/kg/d, orally). Lung ischemia was established by occluding the lung left hilum for 60 minutes, followed by releasing the occlusion and closing the chest. Four days after ischemia, we assessed the lung water content and protein concentration in lung lavage of the nonischemic lung; lung inflammation and pulmonary oxidative stress were assessed by leukocyte counts and tissue content of malondialdehyde (MDA), respectively. The level of mitochondrial biogenesis was determined according to PGC1-α mRNA expression. RESULTS The left lung I/R injury significantly suppressed right lung PGC1-α mRNA expression, increasing pulmonary oxidative stress, lung water content, and lavage leukocyte count and protein concentration (P < .05). Resveratrol treatment attenuated lung injury as well as increasing PGC1-α mRNA expression. CONCLUSIONS Resveratrol treatment protects lung against I/R injury through improving mitochondrial biogenesis and reducing oxidative stress and leukocyte infiltration.
Collapse
|
14
|
Rossato FA, Zecchin KG, La Guardia PG, Ortega RM, Alberici LC, Costa RAP, Catharino RR, Graner E, Castilho RF, Vercesi AE. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration. PLoS One 2014; 9:e101060. [PMID: 24964211 PMCID: PMC4071076 DOI: 10.1371/journal.pone.0101060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Collapse
Affiliation(s)
- Franco A. Rossato
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karina G. Zecchin
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Paolo G. La Guardia
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rose M. Ortega
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Luciane C. Alberici
- Departamento de Química e Física, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rute A. P. Costa
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rodrigo R. Catharino
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edgard Graner
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Roger F. Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aníbal E. Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
15
|
Magalhães J, Gonçalves IO, Lumini-Oliveira J, Marques-Aleixo I, Passos E, Rocha-Rodrigues S, Machado NG, Moreira AC, Rizo D, Viscor G, Oliveira PJ, Torrella JR, Ascensão A. Modulation of cardiac mitochondrial permeability transition and apoptotic signaling by endurance training and intermittent hypobaric hypoxia. Int J Cardiol 2014; 173:40-5. [PMID: 24602319 DOI: 10.1016/j.ijcard.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Modulation of the mitochondrial permeability transition pore (MPTP) and inhibition of the apoptotic signaling are critically associated with the cardioprotective phenotypes afforded by both intermittent hypobaric-hypoxia (IHH) and endurance-training (ET). We recently proposed that IHH and ET improve cardiac function and basic mitochondrial capacity, although without showing addictive effects. Here we investigate whether a combination of IHH and ET alters cardiac mitochondrial vulnerability to MPTP and related apoptotic signaling. METHODS Male Wistar rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1h/day/5 week treadmill-running), hypoxic-sedentary (HS, 6000 m, 5h/day/5 weeks) and hypoxic-exercised (HE) to study susceptibility to calcium-induced cardiac MPTP opening. Mitochondrial cyclophilin D (CypD), adenine nucleotide translocator (ANT), Bax and Bcl-2 protein contents were semi-quantified by Western blotting. Cardiac caspase 3-, 8- and 9-like activities were measured. Mitochondrial aconitase and superoxide dismutase (MnSOD) activity and malondialdehyde (MDA) and sulphydryl group (-SH) content were determined. RESULTS Susceptibility to MPTP decreased in NE and HS vs. NS and even further in HE. The ANT content increased in HE vs. NS. Bcl-2/Bax ratio increased in NE and HS compared to NS. Decreased activities in tissue caspase 3-like (HE vs. NS) and caspase 9-like (HS and HE vs. NS) were observed. Mitochondrial aconitase increased in NE and HS vs. NS. No alterations between groups were observed for caspase 8-like activity, MnSOD, CypD, MDA and -SH. CONCLUSIONS Data confirm that IHH and ET modulate cardiac mitochondria to a protective phenotype characterized by decreased MPTP induction and apoptotic signaling, although without visible addictive effects as initially hypothesized.
Collapse
Affiliation(s)
- J Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | - I O Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - J Lumini-Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal; Faculty of Health Sciences, University of Fernando Pessoa, Portugal
| | - I Marques-Aleixo
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - E Passos
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - S Rocha-Rodrigues
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - N G Machado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - A C Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - D Rizo
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - G Viscor
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - P J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - A Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
16
|
Wu NC, Chen TH, Yang YC, Liao FT, Wang JC, Wang JJ. N-acetylcysteine Improves Cardiac Contractility and Ameliorates Myocardial Injury in a Rat Model of Lung Ischemia and Reperfusion Injury. Transplant Proc 2013; 45:3550-4. [DOI: 10.1016/j.transproceed.2013.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Manukhina EB, Belkina LM, Terekhina OL, Abramochkin DV, Smirnova EA, Budanova OP, Mallet RT, Downey HF. Normobaric, intermittent hypoxia conditioning is cardio- and vasoprotective in rats. Exp Biol Med (Maywood) 2013; 238:1413-20. [PMID: 24189016 DOI: 10.1177/1535370213508718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Favorable versus detrimental cardiovascular responses to intermittent hypoxia conditioning (IHC) are heavily dependent on experimental or pathological conditions, including the duration, frequency and intensity of the hypoxia exposures. Recently, we demonstrated that a program of moderate, normobaric IHC (FIO2 9.5-10% for 5-10 min/cycle, with intervening 4 min normoxia, 5-8 cycles/day for 20 days) in dogs afforded robust cardioprotection against infarction and arrhythmias induced by coronary artery occlusion-reperfusion, but this protection has not been verified in other species. Accordingly, in this investigation cardio- as well as vasoprotection were examined in male Wistar rats completing the normobaric IHC program or a sham program in which the rats continuously breathed atmospheric air. Myocardial ischemia and reperfusion (IR) was imposed by occlusion and reperfusion of the left anterior descending coronary artery in in situ experiments and by subjecting isolated, perfused hearts to global ischemia-reperfusion. Cardiac arrhythmias and myocardial infarct size were quantified in in situ experiments. Endothelial function was evaluated from the relaxation to acetylcholine of norepinephrine-precontracted aortic rings taken from in situ IR experiments, and from the increase in coronary flow produced by acetylcholine in isolated hearts. IHC sharply reduced cardiac arrhythmias during ischemia and decreased infarct size by 43% following IR. Endothelial dysfunction in aorta was marked after IR in sham rats, but not significant in IHC rats. Similar findings were found for the coronary circulations of isolated hearts. These findings support the hypothesis that moderate, normobaric IHC is cardio- and vasoprotective in a rat model of IR.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- Laboratory of Adaptation, Institute for General Pathology and Pathophysiology, Moscow 125315, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Dynamic variations in mitochondrial shape have been related to function. However, tools to automatically classify and enumerate mitochondrial shapes are lacking, as are systematic studies exploring the relationship of such shapes to mitochondrial stress. Here we show that during increased generation of mitochondrial reactive oxygen species (mtROS), mitochondria change their shape from tubular to donut or blob forms, which can be computationally quantified. Imaging of cells treated with rotenone or antimycin, showed time and dose-dependent conversion of tubular forms to donut-shaped mitochondria followed by appearance of blob forms. Time-lapse images showed reversible transitions from tubular to donut shapes and unidirectional transitions between donut and blob shapes. Blobs were the predominant sources of mtROS and appeared to be related to mitochondrial-calcium influx. Mitochondrial shape change could be prevented by either pretreatment with antioxidants like N-acetyl cysteine or inhibition of the mitochondrial calcium uniporter. This work represents a novel approach towards relating mitochondrial shape to function, through integration of cellular markers and a novel shape classification algorithm.
Collapse
|
19
|
Li T, Brouwer M. Gene expression profile of hepatopancreas from grass shrimp Palaemonetes pugio exposed to cyclic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012. [PMID: 23201533 DOI: 10.1016/j.cbd.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Estuarine organisms often experience periods of cyclic hypoxia characterized by hypoxia in the early morning and normoxia in the afternoon. Here we examine the genomic responses of grass shrimp, Palaemonetes pugio, exposed to cyclic hypoxia in the laboratory. Differentially expressed genes in the hepatopancreas were determined in cyclic hypoxic vs. normoxic control groups after 1, 2, 5 and 10 days of exposure to cyclic hypoxia using microarrays printed with 661 annotated transcripts obtained from multiple EST (expressed sequence tag) libraries. Sampling on each day was conducted at two different time series, one in the morning (representing low concentration of dissolved oxygen (DO), designated C-AM) and one in the afternoon (representing high DO concentration, designated C-PM). Distinct differences were observed between the number and identity of specific genes that were significantly down- or up-regulated in shrimp collected at the low DO and high DO points of the cyclic DO cycle. However, cluster analysis showed that the overall response patterns of high (C-PM) and low DO (C-AM) exposures were in the same cluster at 1, 2, and 5 days. In contrast, the response patterns on different days were in different clusters. Day 1 was characterized by up-regulation of 17 unknown genes in the morning and a transient down-regulation of several hemocyanin genes, which returned to normoxic control levels in the afternoon. Days 2 and 5 showed significant down-regulation of 10 (C-AM) and 15 (C-PM) unknown genes, respectively. On day 10 the high DO samples showed a dramatic increase in the number of up-regulated genes, including several distinct hemocyanin genes, and this profile did not cluster with any of the other treatment groups. Vitellogenin, cathepsin L, cytochrome c oxidase subunit III, and fatty acid binding protein 10 were the signature down-regulated genes at day 10 (C-AM). According to GO annotation, the most abundant group of genes for both cyclic low (C-AM) and high (C-PM) DO exposure was associated with transport, defense response, and metabolic process. The differentially expressed genes were mapped to KEGG metabolic and regulatory pathways according to the gene distribution in Drosophila pathway database. Cyclic high (C-PM) DO affected a broad range of pathways compared to cyclic low (C-AM) DO.
Collapse
Affiliation(s)
- Tiandao Li
- Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, MS 39564, USA.
| | | |
Collapse
|