1
|
Rhind SG, Shiu MY, Vartanian O, Allen S, Palmer M, Ramirez J, Gao F, Scott CJM, Homes MF, Gray G, Black SE, Saary J. Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew. Brain Sci 2024; 14:1296. [PMID: 39766495 PMCID: PMC11674576 DOI: 10.3390/brainsci14121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND/OBJECTIVES Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration. METHODS This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls. Plasma samples were analyzed for biomarkers of glial activation (GFAP), axonal damage (NF-L, pNF-H), oxidative stress (PRDX-6), and neurodegeneration (T-tau), along with S100b, NSE, and UCHL-1. The biomarker concentrations were quantified using multiplexed immunoassays. RESULTS The aviators exhibited significantly elevated levels of GFAP, NF-L, PRDX-6, and T-tau compared to the CAF controls (p < 0.001), indicating increased glial activation, axonal injury, and oxidative stress. Trends toward higher levels of S100b, NSE, and UCHL-1 were observed but were not statistically significant. The elevated biomarker levels suggest cumulative brain damage, raising concerns about potential long-term neurological impairments. CONCLUSIONS Military aviators are at increased risk for neurobiological injury, including glial and axonal damage, oxidative stress, and early neurodegeneration. These findings emphasize the importance of proactive monitoring and further research to understand the long-term impacts of high-altitude flight on brain health and to develop strategies for mitigating cognitive decline and neurodegenerative risks in this population.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
| | - Oshin Vartanian
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Shamus Allen
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Miriam Palmer
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Joel Ramirez
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
- Graduate Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Fuqiang Gao
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Christopher J. M. Scott
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Meissa F. Homes
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Gary Gray
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Sandra E. Black
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
- Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joan Saary
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, ON M5T 0A1, Canada
| |
Collapse
|
2
|
Zhang X, Xie W, Du W, Liu Y, Lin J, Yin W, Yang L, Yuan F, Zhang R, Liu H, Ma H, Zhang J. Consistent differences in brain structure and functional connectivity in high-altitude native Tibetans and immigrants. Brain Imaging Behav 2023; 17:271-281. [PMID: 36694086 DOI: 10.1007/s11682-023-00759-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
It has been well-established that high-altitude (HA) environments affect the human brain; however, the differences in brain structural and functional networks between HA natives and acclimatized immigrants have not been well clarified. In this study, native HA Tibetans were recruited for comparison with Han immigrants (average of 2.3 ± 0.3 years at HA), with lowland residents recruited as controls. Cortical gray matter volume, thickness, and functional connectivity were investigated using magnetic resonance imaging data. In addition, reaction time and correct score in the visual movement task, hematology, and SpO2 were measured. In both Tibetans and HA immigrants vs. lowlanders, decreased SpO2, increased hematocrit and hemoglobin, and increased reaction time and correct score in the visual movement task were detected. In both Tibetans and HA immigrants vs. lowlanders, gray matter volumes and cortical thickness were increased in the left somatosensory and motor cortex, and functional connectivity was decreased in the visual, default mode, subcortical, somatosensory-motor, ventral attention, and subcortical networks. Furthermore, SpO2 increased, hematocrit and hemoglobin decreased, and gray matter volumes and cortical thickness increased in the visual cortex, left motor cortex, and right auditory cortex in native Tibetans compared to immigrants. Movement time and correct score in task were positively correlated with the thickness of the visual cortex. In conclusion, brain structural and functional network difference in both Tibetan natives and HA immigrants were largely consistent, with native Tibetans only showing more intense brain modulation. Different populations acclimatized to HA develop similar brain mechanisms to cope with hostile HA environmental factors.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Xie
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China
| | - Wenrui Du
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, 850000, China
| | - Lihui Yang
- Department of Endocrinology, Tibet Autonomous Region People's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region Women's and Children's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China.
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Kutz CJ, Kirby IJ, Grover IR, Tanaka HL. Aviation Decompression Sickness in Aerospace and Hyperbaric Medicine. Aerosp Med Hum Perform 2023; 94:11-17. [PMID: 36757235 DOI: 10.3357/amhp.6113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION: The U.S. Navy experienced a series of physiological events in aircrew involving primarily the F/A-18 airframe related to rapid decompression of cabin pressures, of which aviation decompression sickness (DCS) was felt to contribute. The underlying pathophysiology of aviation DCS is the same as that of diving-related. However, based on the innate multifactorial circumstances surrounding hypobaric DCS, in clinical practice it continues to be unpredictable and less familiar as it falls at the intersect of aerospace and hyperbaric medicine. This retrospective study aimed to review the case series diagnosed as aviation DCS in a collaborative effort between aerospace specialists and hyperbaricists to increase appropriate identification and treatment of hypobaric DCS.METHODS: We identified 18 cases involving high-performance aircraft emergently treated as aviation DCS at a civilian hyperbaric chamber. Four reviewers with dual training in aviation and hyperbaric medicine retrospectively reviewed cases and categorized presentations as "DCS" or "Alternative Diagnosis".RESULTS: Reviewers identified over half of presenting cases could be attributed to an alternative diagnosis. In events that occurred at flight altitudes below 17,000 ft (5182 m) or with rapid decompression pressure changes under 0.3 atm, DCS was less likely to be the etiology of the presenting symptoms.CONCLUSIONS: Aviation physiological events continue to be difficult to diagnose. This study aimed to better understand this phenomenon and provide additional insight and key characteristics for both flight physicians and hyperbaric physicians. As human exploration continues to challenge the limits of sustainable physiology, the incidence of aerospace DCS may increase and underscores our need to recognize and appropriately treat it.Kutz CJ, Kirby IJ, Grover IR, Tanaka HL. Aviation decompression sickness in aerospace and hyperbaric medicine. Aerosp Med Hum Perform. 2023; 94(1):11-17.
Collapse
|
4
|
Falla M, Giardini G, Angelini C. Recommendations for traveling to altitude with neurological disorders. J Cent Nerv Syst Dis 2021; 13:11795735211053448. [PMID: 34955663 PMCID: PMC8695750 DOI: 10.1177/11795735211053448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several neurological conditions might worsen with the exposure to high altitude (HA). The aim of this review was to summarize the available knowledge on the neurological HA illnesses and the risk for people with neurological disorders to attend HA locations. METHODS A search of literature was conducted for several neurological disorders in PubMed and other databases since 1970. The neurological conditions searched were migraine, different cerebrovascular disease, intracranial space occupying mass, multiple sclerosis, peripheral neuropathies, neuromuscular disorders, epileptic seizures, delirium, dementia, and Parkinson's disease (PD). RESULTS Attempts were made to classify the risk posed by each condition and to provide recommendations regarding medical evaluation and advice for or against traveling to altitude. Individual cases should be advised after careful examination and risk evaluation performed either in an outpatient mountain medicine service or by a physician with knowledge of HA risks. Preliminary diagnostic methods and anticipation of neurological complications are needed. CONCLUSIONS Our recommendations suggest absolute contraindications to HA exposure for the following neurological conditions: (1) Unstable conditions-such as recent strokes, (2) Diabetic neuropathy, (3) Transient ischemic attack in the last month, (4) Brain tumors, and 5. Neuromuscular disorders with a decrease of forced vital capacity >60%. We consider the following relative contraindications where decision has to be made case by case: (1) Epilepsy based on recurrence of seizure and stabilization with the therapy, (2) PD (± obstructive sleep apnea syndrome-OSAS), (3) Mild Cognitive Impairment (± OSAS), and (4) Patent foramen ovale and migraine have to be considered risk factors for acute mountain sickness.
Collapse
Affiliation(s)
- Marika Falla
- Institute of Mountain Emergency
Medicine, Eurac Research, Bolzano, Italy
- Center for Mind/Brain Sciences,
CIMeC, University of Trento, Rovereto, Italy
| | - Guido Giardini
- Mountain Medicine and Neurology
Centre, Valle D’Aosta Regional
Hospital, Aosta, Italy
| | | |
Collapse
|
5
|
Connolly DM, Lupa HT. Prospective Study of White Matter Health for an Altitude Chamber Research Program. Aerosp Med Hum Perform 2021; 92:215-222. [PMID: 33752784 DOI: 10.3357/amhp.5730.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: Hypobaric decompression has been associated with brain white matter injury. Relevant exposure limits are unknown, raising ethical concerns over safety of volunteers for altitude chamber research. To inform this, a prospective study of white matter status using brain Magnetic Resonance Imaging (MRI) was conducted before and after a 9-mo program of hypobaric research.METHODS: Volunteers underwent 3-D, volumetric, fluid attenuated inversion recovery (FLAIR) MRI at the University of Nottingham, UK, on study entry and again after their final exposure. MRI data were analyzed and reported independently at the University of Maryland, Baltimore, MD, USA. Entry criteria were 5 subcortical white matter hyperintensities (WMH) of total volume 0.08 mL.RESULTS: One volunteer failed screening with 63 WMH (total volume 2.38 mL). Eleven individuals completed 160 short-duration (< 1h) exposures (range 3 to 26) to 18,000 ft pressure altitude (maximum 40,000 ft), no more often than twice weekly. The cohort exhibited eight total WMH on study entry (total volume 0.166 mL) and five (mostly different) total WMH on exit (0.184 mL). Just one WMH (frontal lobe) was present on both entry and exit scans. Excess background WMH on MRI screening were associated with past mild traumatic brain injury (MTBI).CONCLUSIONS: One hypoxia familiarization plus multiple, brief, infrequent, nonhypoxic hypobaric exposures (with denitrogenation) have not promoted WMH in this small cohort. Less intensive programs of decompression stress do not warrant MRI screening. A negative past history of MTBI has strong negative predictive value for excess WMH in young healthy subjects (N 33).Connolly DM, Lupa HT. Prospective study of white matter health for an altitude chamber research program. Aerosp Med Hum Perform. 2021; 92(4):215222.
Collapse
|
6
|
Ottestad W, Hansen TA, Ksin JI. Hypobaric Decompression and White Matter Hyperintensities: An Evaluation of the NATO Standard. Aerosp Med Hum Perform 2021; 92:39-42. [PMID: 33357271 DOI: 10.3357/amhp.5710.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: In their seminal work, McGuire and colleagues reported an increased incidence of white matter hyperintensities (WMH) in a cohort of U2 pilots and hypobaric chamber personnel. WMH burden was higher in U2 pilots with previous reports of decompression sickness (DCS), and McGuire's reports have raised concerns regarding adverse outcomes in the aftermath of hypobaric exposures. Accordingly, a NATO working group has recently revised its standard recommendations regarding hypobaric exposures, including measures to mitigate the risk of WMH. Mandatory recovery time for up to 72 h between repeated exposures has been suggested on the basis of experimental evidence. However, we argue that the evidence is scarce which supports restricting repeated exposures to mitigate WMH. It is plausible that WMH is correlated with DCS and emphasis should be made on limiting the duration of exposures rather than restricting short and repeated exposures. The profiles in the NATO recommendations are meant to mitigate the risk of DCS. Still, they will potentially expose NATO Air Force and Special Operations personnel to flight profiles that can give rise to DCS incidence above 35%. Awaiting reliable data, we recommend limiting the duration of exposures and allowing for short repeated exposures.Ottestad W, Hansen TA, Ksin JI. Hypobaric decompression and white matter hyperintensities: an evaluation of the NATO standard. Aerosp Med Hum Perform. 2021; 92(1):3942.
Collapse
|
7
|
Chapleau RR, Martin CA, Hughes SR, Baldwin JC, Sladky J, Sherman PM, Grinkemeyer M. Apolipoprotein E promoter genotypes are not associated with white matter hyperintensity development in high-altitude careers. BMC Res Notes 2019; 12:630. [PMID: 31551090 PMCID: PMC6760100 DOI: 10.1186/s13104-019-4654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/17/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study sought to determine if there is an association between variants in the apolipoprotein E (ApoE) promoter regions and development of white matter hyperintensities (WMH) in military subjects who have been exposed to high altitude. In an earlier study, we found that ApoE status did not correlate with WMH development, and here we hypothesized that regulation of APOE protein expression may be protective. RESULTS Our cohort of 92 subjects encountered altitude exposures above 25,000 feet mean sea level through their occupations as pilots or altitude chamber technicians. Using Taqman-style polymerase chain reaction genotyping and t-tests and two-way analyses of variance we found no significant association between ApoE promoter genotypes and the presence, volume, or quantity of WMHs after high altitude exposure. Taken together, the observations that neither ApoE genotype status nor promoter status are associated with WMH properties, we believe that the mechanism of action for developing WMH does not derive from ApoE, nor would therapies for ApoE-mediated neurodegeneration likely benefit high altitude operators.
Collapse
Affiliation(s)
- Richard R Chapleau
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA.
| | - CharLee A Martin
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| | - Summer R Hughes
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| | - James C Baldwin
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| | - John Sladky
- Aeromedical Research Department, Operational Health and Performance Research Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA.,59th Medical Wing, Department of Neurology, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Paul M Sherman
- Aeromedical Research Department, Operational Health and Performance Research Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA.,59th Medical Wing, Department of Neuroradiology, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Michael Grinkemeyer
- Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, U.S. Air Force School of Aerospace Medicine, Dayton, OH, USA
| |
Collapse
|
8
|
Chen X, Li H, Zhang Q, Wang J, Zhang W, Liu J, Li B, Xin Z, Liu J, Yin H, Chen J, Kong Y, Luo W. Combined fractional anisotropy and subcortical volumetric abnormalities in healthy immigrants to high altitude: A longitudinal study. Hum Brain Mapp 2019; 40:4202-4212. [PMID: 31206892 DOI: 10.1002/hbm.24696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023] Open
Abstract
The study of individuals at high-altitude (HA) exposure provides an important opportunity for unraveling physiological and psychological mechanism of brain underlying hypoxia condition. However, this has rarely been assessed longitudinally. We aim to explore the cognitive and cerebral microstructural alterations after chronic HA exposure. We recruited 49 college freshmen who immigrated to Tibet and followed up for 2 years. Control group consisted of 49 gender and age-matched subjects from sea level. Neuropsychological tests were also conducted to determine whether the subjects' cognitive function had changed in response to chronic HA exposure. Surface-based cortical and subcortical volumes were calculated from structural magnetic resonance imaging data, and tract-based spatial statistics (TBSS) analysis of white matter (WM) fractional anisotropy (FA) based on diffusion weighted images were performed. Compared to healthy controls, the high-altitude exposed individuals showed significantly lower accuracy and longer reaction times in memory tests. Significantly decreased gray matter volume in the caudate region and significant FA changes in multiple WM tracts were observed for HA immigrants. Furthermore, differences in subcortical volume and WM integration were found to be significantly correlated with the cognitive changes after 2 years' HA exposure. Cognitive functions such as working memory and psychomotor function were found to be impaired during chronic HA. Differences of brain subcortical volumes and WM integration between HA and sea-level participants indicated potential impairments in the brain structural modifications and microstructural integrity of WM tracts after HA exposure.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Hong Li
- CAS Key Laboratory of Behavioral Sciences, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jian Liu
- Network Center, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Sciences, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| |
Collapse
|
9
|
McGuire SA, Ryan MC, Sherman PM, Sladky JH, Rowland LM, Wijtenburg SA, Hong LE, Kochunov PV. White matter and hypoxic hypobaria in humans. Hum Brain Mapp 2019; 40:3165-3173. [PMID: 30927318 DOI: 10.1002/hbm.24587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Occupational exposure to hypobaria (low atmospheric pressure) is a risk factor for reduced white matter integrity, increased white matter hyperintensive burden, and decline in cognitive function. We tested the hypothesis that a discrete hypobaric exposure will have a transient impact on cerebral physiology. Cerebral blood flow, fractional anisotropy of water diffusion in cerebral white matter, white matter hyperintensity volume, and concentrations of neurochemicals were measured at baseline and 24 hr and 72 hr postexposure in N = 64 healthy aircrew undergoing standard US Air Force altitude chamber training and compared to N = 60 controls not exposed to hypobaria. We observed that hypobaric exposure led to a significant rise in white matter cerebral blood flow (CBF) 24 hr postexposure that remained elevated, albeit not significantly, at 72 hr. No significant changes were observed in structural measurements or gray matter CBF. Subjects with higher baseline concentrations of neurochemicals associated with neuroprotection and maintenance of normal white matter physiology (glutathione, N-acetylaspartate, glutamate/glutamine) showed proportionally less white matter CBF changes. Our findings suggest that discrete hypobaric exposure may provide a model to study white matter injury associated with occupational hypobaric exposure.
Collapse
Affiliation(s)
- Stephen A McGuire
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas
| | - Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, 59MDW-USAFSAM/FHOH, San Antonio, Texas
| | - John H Sladky
- U.S. Air Force School of Aerospace Medicine, 59MDW-USAFSAM/FHOH, San Antonio, Texas
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter V Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Altbäcker A, Takács E, Barkaszi I, Kormos T, Czigler I, Balázs L. Differential impact of acute hypoxia on event related potentials: impaired task-irrelevant, but preserved task-relevant processing and response inhibition. Physiol Behav 2019; 206:28-36. [PMID: 30902633 DOI: 10.1016/j.physbeh.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
The current study investigated how experimentally induced acute normobaric hypoxia affects attentional control functions during easy, monotonous visual sustained attention and response inhibition (modified Continuous Performance Task) and executive control tasks (number-size Stroop task). Along with behavioral efficiency, task-relevant and task-irrelevant information processing were investigated by measuring event related brain potentials (ERP) evoked by target stimuli (Target P3), task-relevant stimuli with no response needed (NoGo P3), and task-irrelevant novel stimuli (Novelty P3) during acute hypoxia exposure. Normobaric hypoxia was induced by adjusting the O2 content of the breathing mixture to obtain 80% peripheral oxygen saturation, equivalent of 5500 m above sea level. Here we report decreased Novelty P3 during acute normobaric hypoxia exposure, while Target P3 and NoGo P3, as well as behavioral efficiency remained intact. Our paper is the first to provide evidence for impaired novelty processing along with intact task-relevant information processing and response inhibition during normobaric hypoxic exposure.
Collapse
Affiliation(s)
- Anna Altbäcker
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Endre Takács
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Institute of Psychology, Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Irén Barkaszi
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Kormos
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - László Balázs
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Chapleau RR, Martin CA, Hughes SR, Baldwin JC, Sladky J, Sherman PM, Grinkemeyer M. Evaluating apolipoprotein E genotype status and neuroprotective effects against white matter hyperintensity development in high-altitude careers. BMC Res Notes 2018; 11:764. [PMID: 30359295 PMCID: PMC6203269 DOI: 10.1186/s13104-018-3867-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Objective This study considers the use of a rapid molecular assay to evaluate apolipoprotein E (ApoE) status in military subjects who have been exposed to high altitude. We hypothesize that ApoE status may be protective against developing brain white matter hyperintensities (WMHs) after high altitude exposure. Results We tested 92 subjects who had been exposed to altitudes above 25,000 ft mean sea level, either as pilots or as altitude chamber technicians. We determined subject genetic status using rapid Taqman-style polymerase chain reaction genotyping and evaluated the association of ApoE subtype versus brain lesions using t-tests and two-way analyses of variance. Our results indicate that there is no significant association between ApoE genotype status and the presence of WMHs after high altitude exposure. We did observe a significantly higher number of hours spent at altitude for subjects with the ApoE E2 allele; however, the mechanism by which this may occur is not determined in this study. To more fully elucidate this effect, larger populations would be required to observe greater numbers of subjects with the E2 and E4 alleles.
Collapse
Affiliation(s)
- Richard R Chapleau
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, Dayton, OH, US.
| | - CharLee A Martin
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, Dayton, OH, US
| | - Summer R Hughes
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, Dayton, OH, US
| | - James C Baldwin
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, Dayton, OH, US
| | - John Sladky
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Operational Health and Performance Research Division, Wright-Patterson AFB, Dayton, OH, US.,59th Medical Wing, Department of Neurology, Joint Base San Antonio-Lackland, Houston, TX, US
| | - Paul M Sherman
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Operational Health and Performance Research Division, Wright-Patterson AFB, Dayton, OH, US.,59th Medical Wing, Department of Neuroradiology, Joint Base San Antonio-Lackland, Houston, TX, US
| | - Michael Grinkemeyer
- US Air Force School of Aerospace Medicine, Aeromedical Research Department, Applied Technology and Genomics Division, Wright-Patterson AFB, Dayton, OH, US
| |
Collapse
|
12
|
McGuire JA, Sherman PM, Dean E, Bernot JM, Rowland LM, McGuire SA, Kochunov PV. Utilization of MRI for Cerebral White Matter Injury in a Hypobaric Swine Model-Validation of Technique. Mil Med 2018; 182:e1757-e1764. [PMID: 29087921 DOI: 10.7205/milmed-d-16-00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Repetitive hypobaric exposure in humans induces subcortical white matter change, observable on magnetic resonance imaging (MRI) and associated with cognitive impairment. Similar findings occur in traumatic brain injury (TBI). We are developing a swine MRI-driven model to understand the pathophysiology and to develop treatment interventions. METHODS Five miniature pigs (Sus scrofa domestica) were repetitively exposed to nonhypoxic hypobaria (30,000 feet/FIO2 100%/transcutaneous PO2 >90%) while under general anesthesia. Three pigs served as controls. Pre-exposure and postexposure MRIs were obtained that included structural sequences, dynamic contrast perfusion, and diffusion tensor quantification. Statistical comparison of individual subject and group change was performed utilizing a two-tailed t test. FINDINGS No structural imaging change was noted on T2-weighted or three-dimensional fluid-attenuated inversion recovery imaging between MRI 1 and MRI 2. No absolute difference in dynamic contrast perfusion was observed. A trend (p = 0.084) toward increase in interstitial extra-axonal fluid was noted. When individual subjects were examined, this trend toward increased extra-axonal fluid paralleled a decrease in contrast perfusion rate. DISCUSSION/IMPACT/RECOMMENDATIONS This study demonstrates high reproducibility of quantitative noninvasive MRI, suggesting MRI is an appropriate assessment tool for TBI and hypobaric-induced injury research in swine. The lack of fluid-attenuated inversion recovery change may be multifactorial and requires further investigation. A trend toward increased extra-axonal water content that negatively correlates with dynamic contrast perfusion implies generalized axonal injury was induced. This study suggests this is a potential model for hypobaric-induced injury as well as potentially other axonal injuries such as TBI in which similar subcortical white matter change occurs. Further development of this model is necessary.
Collapse
Affiliation(s)
- Jennifer A McGuire
- Conte Center, Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913
| | - Erica Dean
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913
| | - Jeremy M Bernot
- Department of Neuroradiology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Room 7A45, Joint Base San Antonio-Lackland AFB, TX 78236
| | - Laura M Rowland
- Conte Center, Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228
| | - Stephen A McGuire
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913
| | - Peter V Kochunov
- Conte Center, Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228
| |
Collapse
|
13
|
McGuire SA, Wijtenburg SA, Sherman PM, Rowland LM, Ryan M, Sladky JH, Kochunov PV. Reproducibility of quantitative structural and physiological MRI measurements. Brain Behav 2017; 7:e00759. [PMID: 28948069 PMCID: PMC5607538 DOI: 10.1002/brb3.759] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Quantitative longitudinal magnetic resonance imaging and spectroscopy (MRI/S) is used to assess progress of brain disorders and treatment effects. Understanding the significance of MRI/S changes requires knowledge of the inherent technical and physiological consistency of these measurements. This longitudinal study examined the variance and reproducibility of commonly used quantitative MRI/S measurements in healthy subjects while controlling physiological and technical parameters. METHODS Twenty-five subjects were imaged three times over 5 days on a Siemens 3T Verio scanner equipped with a 32-channel phase array coil. Structural (T1, T2-weighted, and diffusion-weighted imaging) and physiological (pseudocontinuous arterial spin labeling, proton magnetic resonance spectroscopy) data were collected. Consistency of repeated images was evaluated with mean relative difference, mean coefficient of variation, and intraclass correlation (ICC). Finally, a "reproducibility rating" was calculated based on the number of subjects needed for a 3% and 10% difference. RESULTS Structural measurements generally demonstrated excellent reproducibility (ICCs 0.872-0.998) with a few exceptions. Moderate-to-low reproducibility was observed for fractional anisotropy measurements in fornix and corticospinal tracts, for cortical gray matter thickness in the entorhinal, insula, and medial orbitofrontal regions, and for the count of the periependymal hyperintensive white matter regions. The reproducibility of physiological measurements ranged from excellent for most of the magnetic resonance spectroscopy measurements to moderate for permeability-diffusivity coefficients in cingulate gray matter to low for regional blood flow in gray and white matter. DISCUSSION This study demonstrates a high degree of longitudinal consistency across structural and physiological measurements in healthy subjects, defining the inherent variability in these commonly used sequences. Additionally, this study identifies those areas where caution should be exercised in interpretation. Understanding this variability can serve as the basis for interpretation of MRI/S data in the assessment of neurological disorders and treatment effects.
Collapse
Affiliation(s)
- Stephen A. McGuire
- Aeromedical Research DepartmentU.S. Air Force School of Aerospace MedicineWright‐Patterson AFBDaytonOHUSA
- Department of Neurology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
- Department of Neuroradiology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Paul M. Sherman
- Aeromedical Research DepartmentU.S. Air Force School of Aerospace MedicineWright‐Patterson AFBDaytonOHUSA
- Department of Neuroradiology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
| | - Laura M. Rowland
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Meghann Ryan
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - John H. Sladky
- Department of Neurology59 Medical WingJoint Base San Antonio‐LacklandSan AntonioTXUSA
| | - Peter V. Kochunov
- Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
14
|
Chen X, Zhang Q, Wang J, Liu J, Zhang W, Qi S, Xu H, Li C, Zhang J, Zhao H, Meng S, Li D, Lu H, Aschner M, Li B, Yin H, Chen J, Luo W. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Hum Brain Mapp 2017; 38:3865-3877. [PMID: 28480993 DOI: 10.1002/hbm.23635] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cognitive and neuroimaging changes under chronic high-altitude exposure have never been followed up and dynamically assessed. OBJECTIVES To investigate the cognitive and brain structural/functional alterations associated with chronic high-altitude exposure. METHODS Sixty-nine college freshmen that were immigrating to Tibet were enrolled and followed up for two years. Neuropsychological tests, including verbal/visual memory and simple/recognition reaction time, were utilized to determine whether the subjects' cognitive function had changed in response to chronic high-altitude exposure. Structural magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were used to quantify brain gray matter (GM) volumes, regional homogeneity (ReHo) and functional connectivity (FC) alterations before and after exposure. Areas with changes in both GM and ReHo were used as seeds in the inter-regional FC analysis. RESULTS The subjects showed significantly lower accuracy in memory tests and longer reaction times after exposure, and neuroimaging analysis showed markedly decreased GM volumes and ReHo in the left putamen. FC analysis seeding of the left putamen showed significantly weakened FC with the superior temporal gyrus, anterior/middle cingulate gyrus and other brain regions. In addition, decreased ReHo was found in the superior temporal gyrus, superior parietal lobule, anterior cingulate gyrus and medial frontal gyrus, while increased ReHo was found in the hippocampus. Differences in ReHo/FC before and after high-altitude exposure in multiple regions were significantly correlated with the cognitive changes. CONCLUSION Cognitive functions such as working memory and psychomotor function are impaired during chronic high-altitude exposure. The putamen may play an important role in chronic hypoxia-induced cognitive impairment. Hum Brain Mapp 38:3865-3877, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanshan Meng
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Dan Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York
| | - Bin Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Ofir D, Yanir Y, Mullokandov M, Aviner B, Arieli Y. Evidence for the infiltration of gas bubbles into the arterial circulation and neuronal injury following "yo-yo" dives in pigs. J Appl Physiol (1985) 2016; 121:1059-1064. [PMID: 27539496 DOI: 10.1152/japplphysiol.00392.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
"Yo-yo" diving may place divers at a greater risk of neurologic decompression illness (DCI). Using a rat model, we previously demonstrated that "yo-yo" diving has a protective effect against DCI. In the current study, we evaluated the risk of neurologic DCI following "yo-yo" dives in a pig model. Pigs were divided into four groups. The Control group (group A) made a square dive, without excursions to the surface ("peeps"). Group B performed two "peeps," group C performed four "peeps," and group D did not dive at all. All dives were conducted on air to 5 atm absolute, for 30-min bottom time. Echocardiography was performed to detect cardiac gas bubbles before the dive, immediately after, and at 90-min postdive. Motor performance was observed during the 5-h postdive period. Symptoms increased dramatically following a dive with four "peeps." Gas bubbles were detected in the right ventricle of all animals except for the sham group and in the left ventricle only after the four-peep dive. Neuronal cell injury was found in the spinal cord in each of the three experimental groups, tending to decrease with an increase in the number of "peeps." A four-peep "yo-yo" dive significantly increased the risk of neurologic DCI in pigs. Following a four-peep dive, we detected a higher incidence of bubbles in the left ventricle, supporting the common concern regarding an increased risk of neurologic DCI, albeit there was no direct correlation with the frequency of "red neurons" in the spinal cord.
Collapse
Affiliation(s)
- Dror Ofir
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Yoav Yanir
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Michael Mullokandov
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Ben Aviner
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Yehuda Arieli
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| |
Collapse
|
16
|
Kochunov P, Fu M, Nugent K, Wright SN, Du X, Muellerklein F, Morrissey M, Eskandar G, Shukla DK, Jahanshad N, Thompson PM, Patel B, Postolache TT, Strauss KA, Shuldiner AR, Mitchell BD, Hong LE. Heritability of complex white matter diffusion traits assessed in a population isolate. Hum Brain Mapp 2016; 37:525-35. [PMID: 26538488 PMCID: PMC4718876 DOI: 10.1002/hbm.23047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Diffusion weighted imaging (DWI) methods can noninvasively ascertain cerebral microstructure by examining pattern and directions of water diffusion in the brain. We calculated heritability for DWI parameters in cerebral white (WM) and gray matter (GM) to study the genetic contribution to the diffusion signals across tissue boundaries. METHODS Using Old Order Amish (OOA) population isolate with large family pedigrees and high environmental homogeneity, we compared the heritability of measures derived from three representative DWI methods targeting the corpus callosum WM and cingulate gyrus GM: diffusion tensor imaging (DTI), the permeability-diffusivity (PD) model, and the neurite orientation dispersion and density imaging (NODDI) model. These successively more complex models represent the diffusion signal modeling using one, two, and three diffusion compartments, respectively. RESULTS We replicated the high heritability of the DTI-based fractional anisotropy (h(2) = 0.67) and radial diffusivity (h(2) = 0.72) in WM. High heritability in both WM and GM tissues were observed for the permeability-diffusivity index from the PD model (h(2) = 0.64 and 0.84), and the neurite density from the NODDI model (h(2) = 0.70 and 0.55). The orientation dispersion index from the NODDI model was only significantly heritable in GM (h(2) = 0.68). CONCLUSION DWI measures from multicompartmental models were significantly heritable in WM and GM. DWI can offer valuable phenotypes for genetic research; and genes thus identified may reveal mechanisms contributing to mental and neurological disorders in which diffusion imaging anomalies are consistently found. Hum Brain Mapp 37:525-535, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Mao Fu
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Katie Nugent
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Susan N. Wright
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Xiaoming Du
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Florian Muellerklein
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Mary Morrissey
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - George Eskandar
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Dinesh K Shukla
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Neda Jahanshad
- Keck School of Medicine of USCImaging Genetics CenterMarina Del ReyCalifornia
| | - Paul M. Thompson
- Keck School of Medicine of USCImaging Genetics CenterMarina Del ReyCalifornia
| | - Binish Patel
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Teodor T. Postolache
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMaryland
| | | | - Alan R. Shuldiner
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Braxton D. Mitchell
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
- Veterans Affairs Maryland Health Care SystemGeriatric Research and Education Clinical CenterBaltimoreMaryland
| | - L. Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMaryland
| |
Collapse
|
17
|
Foster GE, Davies-Thompson J, Dominelli PB, Heran MKS, Donnelly J, duManoir GR, Ainslie PN, Rauscher A, Sheel AW. Changes in cerebral vascular reactivity and structure following prolonged exposure to high altitude in humans. Physiol Rep 2015; 3:3/12/e12647. [PMID: 26660556 PMCID: PMC4760444 DOI: 10.14814/phy2.12647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although high‐altitude exposure can lead to neurocognitive impairment, even upon return to sea level, it remains unclear the extent to which brain volume and regional cerebral vascular reactivity (CVR) are altered following high‐altitude exposure. The purpose of this study was to simultaneously determine the effect of 3 weeks at 5050 m on: (1) structural brain alterations; and (2) regional CVR after returning to sea level for 1 week. Healthy human volunteers (n = 6) underwent baseline and follow‐up structural and functional magnetic resonance imaging (MRI) at rest and during a CVR protocol (end‐tidal PCO2 reduced by −10, −5 and increased by +5, +10, and +15 mmHg from baseline). CVR maps (% mmHg−1) were generated using BOLD MRI and brain volumes were estimated. Following return to sea level, whole‐brain volume and gray matter volume was reduced by 0.4 ± 0.3% (P < 0.01) and 2.6 ± 1.0% (P < 0.001), respectively; white matter was unchanged. Global gray matter CVR and white matter CVR were unchanged following return to sea level, but CVR was selectively increased (P < 0.05) in the brainstem (+30 ± 12%), hippocampus (+12 ± 3%), and thalamus (+10 ± 3%). These changes were the result of improvement and/or reversal of negative CVR to positive CVR in these regions. Three weeks of high‐altitude exposure is reflected in loss of gray matter volume and improvements in negative CVR.
Collapse
Affiliation(s)
- Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Jodie Davies-Thompson
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Paolo B Dominelli
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Manraj K S Heran
- Diagnostic and Therapeutic Neuroradiology, Vancouver General Hospital University of British Columbia, Vancouver, Canada
| | - Joseph Donnelly
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Gregory R duManoir
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Alexander Rauscher
- Department of Radiology, UBC MRI Research Centre University of British Columbia, Vancouver, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Occupation and the risk of chronic toxic leukoencephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:73-91. [PMID: 26563784 DOI: 10.1016/b978-0-444-62627-1.00006-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the hundreds of environmental insults capable of inducing nervous system injury, a small number can produce clinically significant damage to the brain white matter. The use of magnetic resonance imaging (MRI) in affected individuals has greatly illuminated this previously obscure area of neurotoxicology. Toxic leukoencephalopathy has acute and chronic forms, in both of which cognitive dysfunction is the major clinical manifestation. Chronic toxic leukoencephalopathy (CTL) has been most thoroughly described in individuals with intense and prolonged exposure to leukotoxins, but the consequences of lesser degrees of exposure are not well understood. Rare cases of CTL have been reported in workers exposed to culpable leukotoxins, but study of this syndrome is hindered by many confounds such as uncertain level of toxin exposure, the presence of multiple toxins, vague dose-response relationship, comorbid medical or neurologic disorders, psychiatric illness, and legal issues. The risk of CTL in workers is low, although it is not possible to determine quantitative risk estimates. More knowledge can be expected with the application of advanced MRI techniques to the assessment of workers who may have been exposed to known or potential leukotoxins. Preventive measures for avoiding workplace CTL will be informed by clinical assessment involving the use of advanced neuroimaging and neuropsychologic evaluation in combination with accurate measurement of leukotoxin exposure.
Collapse
|
19
|
Blatteau JE, David HN, Vallée N, Meckler C, Demaistre S, Lambrechts K, Risso JJ, Abraini JH. Xenon Blocks Neuronal Injury Associated with Decompression. Sci Rep 2015; 5:15093. [PMID: 26469983 PMCID: PMC4606806 DOI: 10.1038/srep15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.
Collapse
Affiliation(s)
- Jean-Eric Blatteau
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Hélène N David
- Centre de recherche Hôtel-Dieu de Lévis, CSSS Alphonse-Desjardins, Lévis, QC, Canada.,Université Laval, Département d'Anesthésiologie, Québec, QC, Canada
| | - Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Cedric Meckler
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Sebastien Demaistre
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Kate Lambrechts
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France.,Laboratoire motricité humaine, éducation, sport, santé (LAMHESS), Université de Toulon UFR STAPS, BP 20132, 83957 La Garde, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Jacques H Abraini
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France.,Université Laval, Département d'Anesthésiologie, Québec, QC, Canada.,Normandie-Université, Université de Caen - Basse Normandie, Caen, France
| |
Collapse
|
20
|
Kang KW, Kim JT, Choi WH, Park WJ, Shin YH, Choi KH. Patent foramen ovale and asymptomatic brain lesions in military fighter pilots. Clin Neurol Neurosurg 2014; 125:9-14. [DOI: 10.1016/j.clineuro.2014.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
|
21
|
McGuire SA, Sherman PM, Wijtenburg SA, Rowland LM, Grogan PM, Sladky JH, Robinson AY, Kochunov PV. White matter hyperintensities and hypobaric exposure. Ann Neurol 2014; 76:719-26. [PMID: 25164539 DOI: 10.1002/ana.24264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Demonstrate that occupational exposure to nonhypoxic hypobaria is associated with subcortical white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery magnetic resonance imaging (MRI). METHODS Eighty-three altitude chamber personnel (PHY), 105 U-2 pilots (U2P), and 148 age- controlled and health-matched doctorate degree controls (DOC) underwent high-resolution MRI. Subcortical WMH burden was quantified as count and volume of subcortical WMH lesions after transformation of images to the Talairach atlas-based stereotactic frame. RESULTS Subcortical WMHs were more prevalent in PHY (volume p = 0.011/count p = 0.019) and U2P (volume p < 0.001/count p < 0.001) when compared to DOC, whereas PHY were not significantly different than U2P. INTERPRETATION This study provides strong evidence that nonhypoxic hypobaric exposure may induce subcortical WMHs in a young, healthy population lacking other risk factors for WMHs and adds this occupational exposure to other environmentally related potential causes of WMHs. Ann Neurol 2014;76:719-726.
Collapse
Affiliation(s)
- Stephen A McGuire
- US Air Force School of Aerospace Medicine, Aerospace Medicine Consultation Division, Wright-Patterson Air Force Base, OH; Department of Neurology, University of Texas Health Sciences Center, San Antonio, TX; Department of Neurology, 59th Medical Wing, Lackland Air Force Base, TX
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kochunov P, Chiappelli J, Wright SN, Rowland LM, Patel B, Wijtenburg SA, Nugent K, McMahon RP, Carpenter WT, Muellerklein F, Sampath H, Hong LE. Multimodal white matter imaging to investigate reduced fractional anisotropy and its age-related decline in schizophrenia. Psychiatry Res 2014; 223:148-56. [PMID: 24909602 PMCID: PMC4100065 DOI: 10.1016/j.pscychresns.2014.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/18/2014] [Accepted: 05/08/2014] [Indexed: 01/14/2023]
Abstract
We hypothesized that reduced fractional anisotropy (FA) of water diffusion and its elevated aging-related decline in schizophrenia patients may be caused by elevated hyperintensive white matter (HWM) lesions, by reduced permeability-diffusivity index (PDI), or both. We tested this hypothesis in 40/30 control/patient participants. FA values for the corpus callosum were calculated from high angular resolution diffusion tensor imaging (DTI). Whole-brain volume of HWM lesions was quantified by 3D-T2w-fluid-attenuated inversion recovery (FLAIR) imaging. PDI for corpus callosum was ascertained using multi b-value diffusion imaging (15 b-shells with 30 directions per shell). Patients had significantly lower corpus callosum FA values, and there was a significant age-by-diagnosis interaction. Patients also had significantly reduced PDI but no difference in HWM volume. PDI and HWM volume were significant predictors of FA and captured the diagnosis-related variance. Separately, PDI robustly explained FA variance in schizophrenia patients, but not in controls. Conversely, HWM volume made equally significant contributions to variability in FA in both groups. The diagnosis-by-age effect of FA was explained by a PDI-by-diagnosis interaction. Post hoc testing showed a similar trend for PDI of gray mater. Our study demonstrated that reduced FA and its accelerated decline with age in schizophrenia were explained by pathophysiology indexed by PDI, rather than HWM volume.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Susan N. Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Benish Patel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Katie Nugent
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Robert P. McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - William T. Carpenter
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Florian Muellerklein
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| |
Collapse
|
23
|
Blatteau JE, David HN, Vallée N, Meckler C, Demaistre S, Risso JJ, Abraini JH. Cost-efficient method and device for the study of stationary tissular gas bubble formation in the mechanisms of decompression sickness. J Neurosci Methods 2014; 236:40-3. [PMID: 25064190 DOI: 10.1016/j.jneumeth.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Current in vivo methods cannot distinguish between the roles of vascular and stationary tissular gas bubbles in the mechanisms of decompression sickness (DCS). NEW METHOD To answer this question, we designed a normobaric-hyperbaric chamber for studying specifically the contribution of stationary tissular gas bubbles in the mechanisms of DCS in individually-superfused tissue samples. For validating our method, we investigated in rat brain slices exposed to 0.4MPa air absolute pressure whether fast decompression rate - the most important cause of cerebral DCS - may induce an increase of lactate dehydrogenase (LDH), a marker of cell injury, compared to slow decompression rate. RESULTS We provide a technical description of our pressure chamber and show that fast decompression rate of 0.3MPamin(-1) induced a rapid and sustained increase of LDH release compared to slow compression rate of 0.01MPamin(-1) (P<0.0001). COMPARISON WITH EXISTING METHODS There is no current method for studying stationary tissular gas bubbles. CONCLUSIONS This report describes the first method for studying specifically in tissue samples the role of stationary tissular gas bubbles in the mechanisms of DCS. Advantageously, according to this method (i) biological markers other than LDH could be easily studied; (ii) tissue samples could be taken not only from the brain but also from any part of the animal's body known of interest in DCS research, allowing performing tissue compartment research, a major question in the physics and theory of decompression research; and (iii) histological studies could be performed from the tissue samples.
Collapse
Affiliation(s)
- Jean-Eric Blatteau
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche, Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France.
| | - Hélène N David
- Centre de recherche Hôtel-Dieu de Lévis, Centre Hospitalier Affilié Universitaire, CSSS Alphonse-Desjardins, Lévis, G6V 3Z1 QC, Canada; Université Laval, Département d'Anesthésiologie, Québec, QC, Canada.
| | - Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche, Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Cedric Meckler
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche, Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Sebastien Demaistre
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche, Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche, Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France
| | - Jacques H Abraini
- Institut de Recherche Biomédicale des Armées, Équipe Résidente de Recherche, Subaquatique Opérationnelle, BP 600 Toulon Cedex 9, France; Université Laval, Département d'Anesthésiologie, Québec, QC, Canada; Normandie-Université, Université de Caen - Basse Normandie, Caen, France
| |
Collapse
|
24
|
McGuire SA, Tate DF, Wood J, Sladky JH, McDonald K, Sherman PM, Kawano ES, Rowland LM, Patel B, Wright SN, Hong E, Rasmussen J, Willis AM, Kochunov PV. Lower neurocognitive function in U-2 pilots: Relationship to white matter hyperintensities. Neurology 2014; 83:638-45. [PMID: 25008397 DOI: 10.1212/wnl.0000000000000694] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Determine whether United States Air Force (USAF) U-2 pilots (U2Ps) with occupational exposure to repeated hypobaria had lower neurocognitive performance compared to pilots without repeated hypobaric exposure and whether U2P neurocognitive performance correlated with white matter hyperintensity (WMH) burden. METHODS We collected Multidimensional Aptitude Battery-II (MAB-II) and MicroCog: Assessment of Cognitive Functioning (MicroCog) neurocognitive data on USAF U2Ps with a history of repeated occupational exposure to hypobaria and compared these with control data collected from USAF pilots (AFPs) without repeated hypobaric exposure (U2Ps/AFPs MAB-II 87/83; MicroCog 93/80). Additional comparisons were performed between U2Ps with high vs low WMH burden. RESULTS U2Ps with repeated hypobaric exposure had significantly lower scores than control pilots on reasoning/calculation (U2Ps/AFPs 99.4/106.5), memory (105.5/110.9), information processing accuracy (102.1/105.8), and general cognitive functioning (103.5/108.5). In addition, U2Ps with high whole-brain WMH count showed significantly lower scores on reasoning/calculation (high/low 96.8/104.1), memory (102.9/110.2), general cognitive functioning (101.5/107.2), and general cognitive proficiency (103.6/108.8) than U2Ps with low WMH burden (high/low WMH mean volume 0.213/0.003 cm(3) and mean count 14.2/0.4). CONCLUSION In these otherwise healthy, highly functioning individuals, pilots with occupational exposure to repeated hypobaria demonstrated lower neurocognitive performance, albeit demonstrable on only some tests, than pilots without repeated exposure. Furthermore, within the U2P population, higher WMH burden was associated with lower neurocognitive test performance. Hypobaric exposure may be a risk factor for subtle changes in neurocognition.
Collapse
Affiliation(s)
- Stephen A McGuire
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore.
| | - David F Tate
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Joe Wood
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - John H Sladky
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Kent McDonald
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Paul M Sherman
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Elaine S Kawano
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Laura M Rowland
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Beenish Patel
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Susan N Wright
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Elliot Hong
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Jennifer Rasmussen
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Adam M Willis
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| | - Peter V Kochunov
- From the US Air Force School of Aerospace Medicine (S.A.M., J.W., K.M., E.S.K.), Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH; Department of Neurology (S.A.M., J.R.), University of Texas Health Sciences Center, San Antonio; Departments of Neuroradiology (P.M.S.) and Neurology (S.A.M., J.H.S., A.M.W.), 59th Medical Wing, Lackland AFB; Henry Jackson Foundation for the Advancement of Military Medicine (D.F.T.), San Antonio, TX; and Maryland Psychiatric Research Center (L.M.R., B.P., S.N.W., E.H., P.V.K.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|
25
|
McGuire S, Sherman P, Profenna L, Grogan P, Sladky J, Brown A, Robinson A, Rowland L, Hong E, Patel B, Tate D, Kawano ES, Fox P, Kochunov P. White matter hyperintensities on MRI in high-altitude U-2 pilots. Neurology 2013; 81:729-35. [PMID: 23960192 DOI: 10.1212/wnl.0b013e3182a1ab12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. METHODS We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. RESULTS U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. CONCLUSION Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible.
Collapse
Affiliation(s)
- Stephen McGuire
- U.S. Air Force School of Aerospace Medicine, Aerospace Medicine Consultation Division, Wright-Patterson AFB, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hodkinson PD, Risdall JE. RE: Hernandez, R., Blanco, S., Peragon, J., Pedrosa, J. A., & Peinado, M. A. (2012). Hypobaric hypoxia and reoxygenation induce proteomic profile changes in the rat brain cortex. Neuromolecular Medicine, doi:10.1007/s12017-012-8197-7. Neuromolecular Med 2013; 16:1-2. [PMID: 23864548 DOI: 10.1007/s12017-013-8246-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Peter D Hodkinson
- Division of Anaesthesia, University of Cambridge, Box 93 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK,
| | | |
Collapse
|