1
|
Mu X, Wu W, Wang S, Su X, Guan H, Guan X, Lu X, Li Z. Smoking affects symptom improvement in schizophrenia: a prospective longitudinal study of male patients with first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:34. [PMID: 38491003 PMCID: PMC10943037 DOI: 10.1038/s41537-024-00449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Patients with schizophrenia (SCZ) smoke up to three times more than general people. However, there are conflicting results regarding the relationship between tobacco smoke and clinical symptom severity in SCZ. The aim of this study was to assess the impact of smoking on clinical symptoms after antipsychotic treatment in a 12-week cohort study after controlling for confounding factors. One hundred and forty-five male patients with drug-naïve first-episode (DNFE) SCZ received antipsychotic monotherapy for 12 weeks. Symptom severity was assessed at baseline and at week 12 by the Positive and Negative Syndrome Scale (PANSS). We found no differences in clinical symptoms among male smokers with SCZ compared with male nonsmokers. However, male smokers showed greater improvement in negative symptoms after 12 weeks of treatment, controlling for age, years of education, onset age, and baseline body mass index (BMI). Our study showed that after 12 weeks of treatment with antipsychotics, male smokers showed greater improvement in negative symptoms than male nonsmokers.
Collapse
Affiliation(s)
- Xishu Mu
- Hebei Province Veterans Hospital, Baoding, China
| | - Wenjing Wu
- Qingdao Mental Health Center, Qingdao, China
| | - Sisi Wang
- Qingdao Mental Health Center, Qingdao, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | | | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xiaobing Lu
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Ambrosen KS, Fredriksson F, Anhøj S, Bak N, van Dellen E, Dominicus L, Lemvigh CK, Sørensen ME, Nielsen MØ, Bojesen KB, Fagerlund B, Glenthøj BY, Oranje B, Hansen LK, Ebdrup BH. Clustering of antipsychotic-naïve patients with schizophrenia based on functional connectivity from resting-state electroencephalography. Eur Arch Psychiatry Clin Neurosci 2023; 273:1785-1796. [PMID: 36729135 PMCID: PMC10713774 DOI: 10.1007/s00406-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Schizophrenia is associated with aberrations in the Default Mode Network (DMN), but the clinical implications remain unclear. We applied data-driven, unsupervised machine learning based on resting-state electroencephalography (rsEEG) functional connectivity within the DMN to cluster antipsychotic-naïve patients with first-episode schizophrenia. The identified clusters were investigated with respect to psychopathological profile and cognitive deficits. Thirty-seven antipsychotic-naïve, first-episode patients with schizophrenia (mean age 24.4 (5.4); 59.5% males) and 97 matched healthy controls (mean age 24.0 (5.1); 52.6% males) underwent assessments of rsEEG, psychopathology, and cognition. Source-localized, frequency-dependent functional connectivity was estimated using Phase Lag Index (PLI). The DMN-PLI was factorized for each frequency band using principal component analysis. Clusters of patients were identified using a Gaussian mixture model and neurocognitive and psychopathological profiles of identified clusters were explored. We identified two clusters of patients based on the theta band (4-8 Hz), and two clusters based on the beta band (12-30 Hz). Baseline psychopathology could predict theta clusters with an accuracy of 69.4% (p = 0.003), primarily driven by negative symptoms. Five a priori selected cognitive functions conjointly predicted the beta clusters with an accuracy of 63.6% (p = 0.034). The two beta clusters displayed higher and lower DMN connectivity, respectively, compared to healthy controls. In conclusion, the functional connectivity within the DMN provides a novel, data-driven means to stratify patients into clinically relevant clusters. The results support the notion of biological subgroups in schizophrenia and endorse the application of data-driven methods to recognize pathophysiological patterns at earliest stage of this syndrome.
Collapse
Affiliation(s)
- Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Fanny Fredriksson
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Simon Anhøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | | | - Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Livia Dominicus
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Lars K Hansen
- Department of Applied Mathematics and Computer Science, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Hebel T, Langguth B, Schecklmann M, Schoisswohl S, Staudinger S, Schiller A, Ustohal L, Sverak T, Horky M, Kasparek T, Skront T, Hyza M, Poeppl T, Riester M, Schwemmer L, Zimmermann S, Sakreida K. Rationale and study design of a trial to assess rTMS add-on value for the amelioration of negative symptoms of schizophrenia (RADOVAN). Contemp Clin Trials Commun 2022; 26:100891. [PMID: 35128142 PMCID: PMC8804178 DOI: 10.1016/j.conctc.2022.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/21/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Background Methods Discussion Trial registration number Data dissemination
Collapse
Affiliation(s)
- T. Hebel
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
- Corresponding author.
| | - B. Langguth
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - M. Schecklmann
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - S. Schoisswohl
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - S. Staudinger
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - A. Schiller
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - L. Ustohal
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
- Applied Neurosciences Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - T. Sverak
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
| | - M. Horky
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
| | - T. Kasparek
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
| | - T. Skront
- Department of Psychiatry, University Hospital in Ostrava, 17. Listopadu 1790, 708 52, Ostrava, Czech Republic
| | - M. Hyza
- Department of Psychiatry, University Hospital in Ostrava, 17. Listopadu 1790, 708 52, Ostrava, Czech Republic
| | - T.B. Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - M.L. Riester
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - L. Schwemmer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - S. Zimmermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - K. Sakreida
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| |
Collapse
|
5
|
Alamian G, Pascarella A, Lajnef T, Knight L, Walters J, Singh KD, Jerbi K. Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia. Neuroimage Clin 2020; 28:102485. [PMID: 33395976 PMCID: PMC7691748 DOI: 10.1016/j.nicl.2020.102485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia. Recent electrophysiology studies suggest that long-range temporal correlation (LRTC) in the amplitude dynamics of neural oscillations captures the integrity of transferred information in the healthy brain. Thus, in this study, 25 schizophrenia patients and 25 controls (8 females/group) were recorded during two five-minutes of resting-state magnetoencephalography (once with eyes-open and once with eyes-closed). We used source-level analyses to investigate temporal dysconnectivity in patients by characterizing LRTCs across cortical and sub-cortical brain regions. In addition to standard statistical assessments, we applied a machine learning framework using support vector machine to evaluate the discriminative power of LRTCs in identifying patients from healthy controls. We found that neural oscillations in schizophrenia patients were characterized by reduced signal memory and higher variability across time, as evidenced by cortical and subcortical attenuations of LRTCs in the alpha and beta frequency bands. Support vector machine significantly classified participants using LRTCs in key limbic and paralimbic brain areas, with decoding accuracy reaching 82%. Importantly, these brain regions belong to networks that are highly relevant to the symptomology of schizophrenia. These findings thus posit temporal dysconnectivity as a hallmark of altered information processing in schizophrenia, and help advance our understanding of this pathology.
Collapse
Affiliation(s)
- Golnoush Alamian
- CoCo Lab, Department of Psychology, Université de Montréal, Canada.
| | | | - Tarek Lajnef
- CoCo Lab, Department of Psychology, Université de Montréal, Canada
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, UK
| | - James Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Karim Jerbi
- CoCo Lab, Department of Psychology, Université de Montréal, Canada; MEG Center, University of Montreal, Canada; UNIQUE Centre (Unifying AI and Neuroscience - Québec), Quebec, Canada; Mila (Quebec AI Institute), Montreal, QC, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
A systematic review and narrative synthesis of data-driven studies in schizophrenia symptoms and cognitive deficits. Transl Psychiatry 2020; 10:244. [PMID: 32694510 PMCID: PMC7374614 DOI: 10.1038/s41398-020-00919-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
To tackle the phenotypic heterogeneity of schizophrenia, data-driven methods are often applied to identify subtypes of its symptoms and cognitive deficits. However, a systematic review on this topic is lacking. The objective of this review was to summarize the evidence obtained from longitudinal and cross-sectional data-driven studies in positive and negative symptoms and cognitive deficits in patients with schizophrenia spectrum disorders, their unaffected siblings and healthy controls or individuals from general population. Additionally, we aimed to highlight methodological gaps across studies and point out future directions to optimize the translatability of evidence from data-driven studies. A systematic review was performed through searching PsycINFO, PubMed, PsycTESTS, PsycARTICLES, SCOPUS, EMBASE and Web of Science electronic databases. Both longitudinal and cross-sectional studies published from 2008 to 2019, which reported at least two statistically derived clusters or trajectories were included. Two reviewers independently screened and extracted the data. In this review, 53 studies (19 longitudinal and 34 cross-sectional) that conducted among 17,822 patients, 8729 unaffected siblings and 5520 controls or general population were included. Most longitudinal studies found four trajectories that characterized by stability, progressive deterioration, relapsing and progressive amelioration of symptoms and cognitive function. Cross-sectional studies commonly identified three clusters with low, intermediate (mixed) and high psychotic symptoms and cognitive profiles. Moreover, identified subgroups were predicted by numerous genetic, sociodemographic and clinical factors. Our findings indicate that schizophrenia symptoms and cognitive deficits are heterogeneous, although methodological limitations across studies are observed. Identified clusters and trajectories along with their predictors may be used to base the implementation of personalized treatment and develop a risk prediction model for high-risk individuals with prodromal symptoms.
Collapse
|
7
|
Duan X, He C, Ou J, Wang R, Xiao J, Li L, Wu R, Zhang Y, Zhao J, Chen H. Reduced Hippocampal Volume and Its Relationship With Verbal Memory and Negative Symptoms in Treatment-Naive First-Episode Adolescent-Onset Schizophrenia. Schizophr Bull 2020; 47:64-74. [PMID: 32691057 PMCID: PMC7825026 DOI: 10.1093/schbul/sbaa092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating neuroimaging evidence has shown remarkable volume reductions in the hippocampi of patients with schizophrenia. However, the relationship among hippocampal morphometry, clinical symptoms, and cognitive impairments in schizophrenia is still unclear. In this study, high-resolution structural magnetic resonance imaging data were acquired in 36 patients with adolescent-onset schizophrenia (AOS, age range: 13-18 years) and 30 age-, gender-, and education-matched typically developing controls (TDCs). Hippocampal volume was assessed automatically through volumetric segmentation and measurement. After adjusting for total intracranial volume, we found reduced hippocampal volume in individuals with AOS compared with TDCs, and the hippocampal volume was positively correlated with verbal memory and negatively correlated with negative symptoms in AOS. In addition, mediation analysis revealed the indirect effect of hippocampal volume on negative symptoms via verbal memory impairment. When the negative symptoms were represented by 2 dimensions of deficits in emotional expression (EXP) and deficits in motivation and pleasure (MAP), the indirect effect was significant for EXP but not for MAP. Our findings provide further evidence of hippocampal volume reduction in AOS and highlight verbal memory impairment as a mediator to influence the relationship between hippocampal morphometry and negative symptoms, especially the EXP dimension of negative symptoms, in individuals with AOS.
Collapse
Affiliation(s)
- Xujun Duan
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Changchun He
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China
| | - Runshi Wang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jinming Xiao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Lei Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China
| | - Huafu Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China,To whom correspondence should be addressed; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; tel: 028-83208238, fax: 86-28-83208238, e-mail:
| |
Collapse
|
8
|
Hagenmuller F, Heekeren K, Roser P, Haker H, Theodoridou A, Walitza S, Rössler W, Kawohl W. Early Somatosensory Processing Over Time in Individuals at Risk to Develop Psychosis. Front Psychiatry 2019; 10:47. [PMID: 30890966 PMCID: PMC6413704 DOI: 10.3389/fpsyt.2019.00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: Somatosensory evoked potentials (SEPs) enable the investigation of thalamocortical and early cortical processing. Previous studies reported alterations of SEPs in patients with schizophrenia as well as in individuals in the prodromal stage. Moreover, cannabis use as an environmental risk factor for the development of schizophrenia has been demonstrated to influence SEP parameters in individuals at risk to develop psychosis. The aim of this study was to explore the course of SEP changes and the impact of concomitant cannabis use in individuals at risk to develop psychosis who sought medical help. Methods: Median nerve SEPs including high-frequency oscillations (HFOs) superimposed on the primary cortical response (N20) were investigated using multichannel EEG in individuals (n = 54 at baseline) remaining at risk to develop psychosis at follow-up after 1 year (high-risk: n = 19; ultra-high-risk: n = 27) vs. subjects with conversion to psychosis (n = 8) and a healthy control group (n = 35). Longitudinal and cross-sectional analyses of SEP components as estimated by dipole source analysis were performed. Results: The longitudinal development of the N20 strength depended on cannabis use. In cannabis non-users, a greater decrease of N20 strengths over time was associated with more negative symptoms at baseline. At baseline, converters did not differ from subjects remaining at risk. At follow-up, converters showed increased low- and high-frequency activity than at-risk subjects and did not differ from controls. Conclusion: The results of this study lead to the suggestion that the deficits in early somatosensory processing in individuals at risk to develop psychosis may not represent a marker for a genetic risk for psychosis but rather reflect state-dependent factors such as negative symptoms. On the other hand, the transition to psychosis seems to represent an interstage between reduced sensory registration from the at-risk state and gating deficits in the chronic state.
Collapse
Affiliation(s)
- Florence Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Patrik Roser
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| | - Helene Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany
| | - Wolfram Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| |
Collapse
|
9
|
Davidson CA, Kiat JE, Tarasenko M, Ritchie AJ, Molfese D, Spaulding WD. Exploring electrophysiological correlates of social cognition in subclinical schizotypy. Personal Ment Health 2018; 12:179-191. [PMID: 29603664 DOI: 10.1002/pmh.1413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 01/24/2023]
Abstract
Impairments in social cognition and associated abnormalities in brain function are well documented in psychotic disorders. They may represent neurodevelopmental vulnerabilities and may therefore be present in less severe or even subclinical conditions of the schizophrenia spectrum, such as schizotypy. Schizotypy has features highly suggestive of social cognitive impairments, but little is known about possible related abnormalities of brain function. This exploratory pilot study examines electrophysiological event-related potentials (ERPs) implicated in schizophrenia, in 23 undergraduates with a range of subclinical schizotypal characteristics. ERPs were recorded in response to emotional face stimuli in an experimental paradigm designed to assess very early stages of social stimulus processing. Three ERPs were assessed, P100, N170 and P300. P100 and P300 were found to be related to multiple schizotypal features, but N170 was not. The results support occurrence of social cognitive impairments linked to abnormal brain function across the schizophrenia spectrum. Copyright © 2018 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - John E Kiat
- Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - A Jocelyn Ritchie
- Psychology, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Dennis Molfese
- Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
10
|
Abstract
Persistent negative and cognitive symptoms in patients with schizophrenia pose a significant challenge to clinicians. Being a heterogeneous cluster of symptoms with potentially distinct underlying pathogenesis, it is important to examine novel therapies based on emerging neurobiological evidence. Eszopiclone is known to enhance the deficient sleep spindles that are related to impairments in learning and memory in schizophrenia. In this report we highlight the potential utility of eszopiclone in treating persistent negative symptoms in a patient with chronic schizophrenia. The unintended N-of-1 design that spanned out over a period of 24weeks demonstrated improvements in negative symptoms while the patient was on eszopiclone and worsening of these symptoms while unintentionally being off eszopiclone treatment. These observations suggest a reasonable degree of specificity of our patient's response to eszopiclone, thus warranting future sleep-EEG guided systematic studies.
Collapse
Affiliation(s)
- Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India.
| | - Vinutha Ravishankar
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Jagadisha Thirthalli
- Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Kilicaslan EE, Esen AT, Kasal MI, Ozelci E, Boysan M, Gulec M. Childhood trauma, depression, and sleep quality and their association with psychotic symptoms and suicidality in schizophrenia. Psychiatry Res 2017; 258:557-564. [PMID: 28916298 DOI: 10.1016/j.psychres.2017.08.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/18/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
This study involved the examination of the relationship between childhood trauma and both psychotic symptoms and suicidality in patients with schizophrenia after controlling for the possible confounding factors, such as clinical features, depression, and sleep quality. The Childhood Trauma Questionnaire-Short Form, Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale for Schizophrenia (CDSS), Pittsburgh Sleep Quality Index (PSQI), and the suicidality subscale of Mini-International Neuropsychiatric Interview (MINI) were administered to 199 patients with schizophrenia. We used sequential multiple stepwise regression analyses in which positive symptoms, negative symptoms, overall psychopathology, total symptoms of schizophrenia, and suicidality were dependent variables. Depressive symptomatology and childhood physical abuse significantly contributed to positive, negative, general psychopathology, and global schizophrenia symptomatology. Interestingly, general psychopathology scores were negatively associated with childhood physical neglect. Also, subjective sleep quality significantly contributed to positive schizophrenia symptoms. Although prior suicide attempts and depression were significant antecedents of suicidal ideation, no association between suicidality and both childhood trauma and sleep was found. Childhood physical abuse could have an impact on psychopathology in schizophrenia. In addition to childhood trauma, depression, sleep disturbances, and clinical features should be considered and inquired about in the course of clinical care of schizophrenia patients.
Collapse
Affiliation(s)
- Esin Evren Kilicaslan
- Izmir Katip Celebi University, Atatürk Education and Training Hospital, Psychiatry Department, Izmir, Turkey.
| | - Asli Tugba Esen
- University of Health Sciences, Izmir Tepecik Education and Training Hospital, Psychiatry Department, Izmir, Turkey
| | - Meltem Izci Kasal
- Izmir Katip Celebi University, Atatürk Education and Training Hospital, Psychiatry Department, Izmir, Turkey
| | - Erdal Ozelci
- Izmir Katip Celebi University, Atatürk Education and Training Hospital, Psychiatry Department, Izmir, Turkey
| | - Murat Boysan
- Yuzuncu Yil University, Faculty of Literature, Psychology Department, Van, Turkey
| | - Mustafa Gulec
- Izmir Katip Celebi University, Atatürk Education and Training Hospital, Psychiatry Department, Izmir, Turkey
| |
Collapse
|
12
|
He H, Lu J, Yang L, Zheng J, Gao F, Zhai Y, Feng J, Fan Y, Ma X. Repetitive transcranial magnetic stimulation for treating the symptoms of schizophrenia: A PRISMA compliant meta-analysis. Clin Neurophysiol 2017; 128:716-724. [PMID: 28315614 DOI: 10.1016/j.clinph.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the efficacies of 1-Hz (low frequency) and 10-Hz (high frequency) repetitive transcranial magnetic stimulation (rTMS) in treating auditory hallucinations and negative symptoms of schizophrenia, respectively. METHODS Electronic databases were searched to identify relevant literature. Standard mean difference (SMD) and 95% confidence interval (CI) values were used to evaluate the effects of rTMS. The stability and sensitivity of the results, the source of heterogeneity, and the recommended grade of the evidence were also analyzed. RESULTS Thirteen studies of 1-Hz rTMS were included. The auditory hallucinations improved more in the rTMS group than in the sham group (SMD=-0.29, 95%CI=-0.57 to -0.01). However, this result was not stable after sensitivity analysis, and publication bias had a substantial impact on the results. Meta-analysis performed for seven studies of 10-Hz rTMS found that improvement of negative symptoms did not differ significantly between the real rTMS and sham groups. Finally, the grade of evidence for this meta-analysis was found to be low. CONCLUSION Although there may appear to be a therapeutic effect for 1-Hz rTMS on auditory hallucinations of schizophrenia, this needs to be confirmed by large-scale randomized controlled trials before this finding can be recommended in clinical practice. SIGNIFICANCE 1-Hz rTMS might have an effect on auditory hallucinations of schizophrenia.
Collapse
Affiliation(s)
- Hairong He
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jun Lu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lihong Yang
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jie Zheng
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yajing Zhai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junqin Feng
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
13
|
Keil J, Roa Romero Y, Balz J, Henjes M, Senkowski D. Positive and Negative Symptoms in Schizophrenia Relate to Distinct Oscillatory Signatures of Sensory Gating. Front Hum Neurosci 2016; 10:104. [PMID: 27014035 PMCID: PMC4789458 DOI: 10.3389/fnhum.2016.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/25/2016] [Indexed: 02/02/2023] Open
Abstract
Oscillatory activity in neural populations and temporal synchronization within these populations are important mechanisms contributing to perception and cognition. In schizophrenia, perception and cognition are impaired. Aberrant gating of irrelevant sensory information, which has been related to altered oscillatory neural activity, presumably contributes to these impairments. However, the link between schizophrenia symptoms and sensory gating deficits, as reflected in oscillatory activity, is not clear. In this electroencephalography study, we used a paired-stimulus paradigm to investigate frequency-resolved oscillatory activity in 22 schizophrenia patients and 22 healthy controls. We found sensory gating deficits in patients compared to controls, as reflected in reduced gamma-band power and alpha-band phase synchrony difference between the first and the second auditory stimulus. We correlated these markers of neural activity with a five-factor model of the Positive and Negative Syndrome Scale. Gamma-band power sensory gating was positively correlated with positive symptoms. Moreover, alpha-band phase synchrony sensory gating was negatively correlated with negative symptoms. A cluster analysis revealed three schizophrenia phenotypes, characterized by (i) aberrant gamma-band power and high positive symptoms, (ii) aberrant alpha-band phase synchrony, low positive, and low negative symptom scores or (iii) by intact sensory gating and high negative symptoms. Our study demonstrates that aberrant neural synchronization, as reflected in gamma-band power and alpha-band phase synchrony, relates to the schizophrenia psychopathology. Different schizophrenia phenotypes express distinct levels of positive and negative symptoms as well as varying degrees of aberrant oscillatory neural activity. Identifying the individual phenotype might improve therapeutic interventions in schizophrenia.
Collapse
Affiliation(s)
- Julian Keil
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Yadira Roa Romero
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Johanna Balz
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Melissa Henjes
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Daniel Senkowski
- Multisensory Integration Group, Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
14
|
EEG correlates of a mental arithmetic task in patients with first episode schizophrenia and schizoaffective disorder. Clin Neurophysiol 2015; 126:2090-8. [DOI: 10.1016/j.clinph.2014.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023]
|
15
|
Goerke M, Müller NG, Cohrs S. Sleep-dependent memory consolidation and its implications for psychiatry. J Neural Transm (Vienna) 2015; 124:163-178. [PMID: 26518213 DOI: 10.1007/s00702-015-1476-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Both sleep disturbance and memory impairment are very common in psychiatric disorders. Since sleep has been shown to play a role in the process of transferring newly acquired information into long-term memory, i.e., consolidation, it is important to highlight this link in the context of psychiatric disorders. Along these lines, after providing a brief overview of healthy human sleep, current neurobiological models on sleep-dependent memory consolidation and resultant opportunities to manipulate the memory consolidation process, recent findings on sleep disturbances and sleep-dependent memory consolidation in patients with insomnia, major depression, schizophrenia, and post-traumatic stress disorder are systematically reviewed. Furthermore, possible underlying neuropathologies and their implications on therapeutic strategies are discussed. This review aims at sensitizing the reader for recognizing sleep disturbances as a potential contributor to cognitive deficits in several disorders, a fact which is often overlooked up to date.
Collapse
Affiliation(s)
- Monique Goerke
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Psychiatry and Psychotherapy, University of Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Notger G Müller
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Stefan Cohrs
- Department of Psychiatry and Psychotherapy, University of Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
16
|
Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 2015; 1344:12-26. [DOI: 10.1111/nyas.12745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert E. Featherstone
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Mary F. McMullen
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Katelyn R. Ward
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jakyung Bang
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jane Xiao
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Steven J. Siegel
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|