1
|
Shakoor N, Adeel M, Ahmad MA, Zain M, Waheed U, Javaid RA, Haider FU, Azeem I, Zhou P, Li Y, Jilani G, Xu M, Rinklebe J, Rui Y. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100252. [PMID: 36891261 PMCID: PMC9988428 DOI: 10.1016/j.ese.2023.100252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Zain
- Department of Botany, University of Lakki Marwat, KP, 28420, Pakistan
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary & Animal Sciences, Jhang-campus, Lahore, 54000, Pakistan
| | - Rana Arsalan Javaid
- Crop Science Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Yuan Y, Jiang X, Wang X, Chen N, Li S. Toxicological impacts of excessive lithium on largemouth bass (Micropterus salmoides): Body weight, hepatic lipid accumulation, antioxidant defense and inflammation response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156784. [PMID: 35724795 DOI: 10.1016/j.scitotenv.2022.156784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The unreasonably anthropogenic activities make lithium a widespread pollutant in aquatic environment, and this metallic element can enter the food chain to influence humans. Therefore, the study was designed to explore the influence of dietary lithium supplementation on body weight, lipid deposition, antioxidant capacity and inflammation response of largemouth bass. Multivariate statistical analysis confirmed the toxicological impacts of excessive lithium on largemouth bass. Specifically, excessive dietary lithium (≥87.08 mg/kg) significantly elevated weight gain and feed intake of largemouth bass. Meanwhile, overload lithium inclusion aggravated the accumulation of hepatic lipid and serum lithium. Gene expression results showed that lithium inclusion, especially overload lithium, promoted the transcription of lipogenesis related genes, PPARγ, ACC and FAS, inhibited the expression of fatty acid oxidation related genes, PPARα and ACO, and lipolysis related genes, HSL and MGL. Meanwhile, high lithium inclusion caused the oxidative stress, which was partly through the inhibition of Nrf2/Keap1 pathway. Moreover, dietary lithium inclusion significantly depressed the activity of hepatic lysozyme, and promoted the transcription of proinflammation factors, TNF-α, 5-LOX, IL-1β and IL-8, which was suggested to be regulated by the p38 MAPK pathway. Our findings suggested that overload lithium resulted in increased body weight, hepatic lipid deposition, oxidative stress and inflammation response. The results obtained here provided novel insights on the toxicological impacts of excessive lithium on aquatic animals.
Collapse
Affiliation(s)
- Yuhui Yuan
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China
| | - Xueluan Jiang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China
| | - Xiaoyuan Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
He H, Qiao D, Zhang L, Yao Y, Shao H, Qin A, Qian K. Antiviral Effect of Lithium Chloride on Replication of Marek's Disease Virus in Chicken Embryonic Fibroblasts. Int J Mol Sci 2021; 22:12375. [PMID: 34830257 PMCID: PMC8623539 DOI: 10.3390/ijms222212375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate the antiviral effect of lithium chloride (LiCl) on the replication of Marek's disease virus (MDV) in chicken embryonic fibroblast (CEF) cells, real-time PCR, Western blotting, plaque counting, and indirect immunofluorescence experiments were performed at different time points of LiCl treated CEF cells with virus infection. The results demonstrated that LiCl could affect multiple steps of virus replication and inhibit viral gene expression and protein synthesis in a dose- and time-dependent manner. Moreover, LiCl could directly affect viral infectivity as well. In addition, LiCl significantly affected the gene expression of IFN-β related genes in virus-infected cells. These results indicate that LiCl significantly inhibits MDV replication and proliferation in CEF cells and it has the potential to be used as an antiviral agent against MDV.
Collapse
Affiliation(s)
- Huifeng He
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Dandan Qiao
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Lu Zhang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK;
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (H.H.); (L.Z.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China;
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Wong SK, Chin KY, Ima-Nirwana S. The Skeletal-Protecting Action and Mechanisms of Action for Mood-Stabilizing Drug Lithium Chloride: Current Evidence and Future Potential Research Areas. Front Pharmacol 2020; 11:430. [PMID: 32317977 PMCID: PMC7154099 DOI: 10.3389/fphar.2020.00430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Lithium, the lightest natural-occurring alkali metal with an atomic number of three, stabilizes the mood to prevent episodes of acute manic and depression. Multiple lines of evidence point to lithium as an anti-suicidal, anti-viral, anti-cancer, immunomodulatory, neuroprotective and osteoprotective agent. This review article provides a comprehensive review of studies investigating the bone-enhancing effects of lithium and its possible underlying molecular mechanisms. Most of the animal experimental studies reported the beneficial effects of lithium in defective bones but not in healthy bones. In humans, the effects of lithium on bones remain heterogeneous. Mechanistically, lithium promotes osteoblastic activities by activating canonical Wingless (Wnt)/beta (β)-catenin, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and bone morphogenetic protein-2 (BMP-2) transduction pathways but suppresses osteoclastic activities by inhibiting the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and calcium signaling cascades. In conclusion, lithium confers protection to the skeleton but its clinical utility awaits further validation from human clinical trials.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Kreuzer M, Müller S, Mazzolini L, Messikommer RE, Gangnat IDM. Are dual-purpose and male layer chickens more resilient against a low-protein-low-soybean diet than slow-growing broilers? Br Poult Sci 2020; 61:33-42. [PMID: 31550927 DOI: 10.1080/00071668.2019.1671957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/02/2019] [Indexed: 01/09/2023]
Abstract
1. Although fattening dual-purpose types or male layer hybrid chickens appears more ethical than the common practice of culling day-old male layer chicks, the lower feed efficiency of these birds raises concerns. Replacing feed ingredients that compete with food production by those of lower value for human nutrition would be beneficial.2. Lohmann Dual (LD), a modern dual-purpose type, Lohmann Brown (LB), a male layer hybrid, and Hubbard JA 957 (HU), a slow-growing broiler type, were fattened for nine weeks on two diets (control or -20% crude protein; n = 6 × 12 birds). Growth, carcass and meat quality were analysed.3. Growth performance of HU exceeded that of LD and especially of LB. The growth depression caused by the low-protein diet fed to LD (-7%) was only half of that found in HU (-13%). The LD fed the control diet had the same feed efficiency as the HU fed the low-protein diet. Even the LB had a lower performance and feed efficiency with the low-protein diet in growth. There was a gradient in carcass properties (weight, dressing percentage, breast meat yield, breast proportion and breast angle) from HU to LD to LB, with some additional adverse effects of the low-protein diet especially in HU. There were some breed differences in fatty acid profile in the intramuscular fat.4. In conclusion, the dual-purpose type used complied with regulations for Swiss organic poultry systems in terms of growth rate and was found to respond less when fed a low-protein diet than the slow-growing broiler type. The LB males were inferior in all growth and carcass quality traits. Future studies need to determine the exact protein and amino acid requirements of dual-purpose and layer hybrid chickens and the economic feasibility of the systems, especially for organic farming.
Collapse
Affiliation(s)
- M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - S Müller
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - L Mazzolini
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - R E Messikommer
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - I D M Gangnat
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
6
|
Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients. Sci Rep 2017; 7:44260. [PMID: 28290481 PMCID: PMC5349607 DOI: 10.1038/srep44260] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
The primary cilium is an outward projecting antenna-like organelle with an important role in bone mechanotransduction. The capacity to sense mechanical stimuli can affect important cellular and molecular aspects of bone tissue. Idiopathic scoliosis (IS) is a complex pediatric disease of unknown cause, defined by abnormal spinal curvatures. We demonstrate significant elongation of primary cilia in IS patient bone cells. In response to mechanical stimulation, these IS cells differentially express osteogenic factors, mechanosensitive genes, and signaling genes. Considering that numerous ciliary genes are associated with a scoliosis phenotype, among ciliopathies and knockout animal models, we expected IS patients to have an accumulation of rare variants in ciliary genes. Instead, our SKAT-O analysis of whole exomes showed an enrichment among IS patients for rare variants in genes with a role in cellular mechanotransduction. Our data indicates defective cilia in IS bone cells, which may be linked to heterogeneous gene variants pertaining to cellular mechanotransduction.
Collapse
|