1
|
Santos MJB, Rabello CBV, Wanderley JSS, Ludke MCMM, Barros MR, Costa FS, Santos CS, Fireman AK. Levels of substitution of inorganic mineral to amino acids complexed minerals on old laying hens. Sci Rep 2024; 14:24803. [PMID: 39438582 PMCID: PMC11496821 DOI: 10.1038/s41598-024-75897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
This study was conducted with the objective of evaluating the impact of replacing inorganic mineral sources (IM) with amino acid complexed minerals (AACM) in laying hens' diets on performance, egg quality, bone, and intestinal health. The effects of 4 different diets with varying levels of AACM substitution were evaluated on 400 Lohmann White hens aged 78-98 weeks. The control diet contained only IM sources at levels of 60, 60, 7, 40, 0.2, and 2 mg/kg of Zn, Mn, Cu, Fe, Se, and I, respectively. The other treatments were made by a total substitution of IM with AACM, as follows: AACM70-70% of IM levels; AACM50-50% of IM levels; and AACM40-40% of IM levels. Orthogonal polynomial contrasts and Dunnett's test were used to determine their impact (P < 0.05). The treatment AACM40 improved egg production, egg weight, egg mass, and feed conversion ratio (P < 0.05). Hens that received AACM40 also produced the thickest eggshells and better tibial bone density (P < 0.01). Histomorphometry analyses demonstrated significant effects of AACM treatments. The optimal supplementation levels of 24, 24, 2.8, 16, 0.08, and 0.8 mg/kg of Zn, Mn, Cu, Fe, Se, and I, respectively.
Collapse
Affiliation(s)
- Marcos J B Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil.
| | - Carlos B V Rabello
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Jamille S S Wanderley
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Maria C M M Ludke
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Mércia R Barros
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Fabiano S Costa
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Clariana S Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
2
|
Yang S, Deng H, Zhu J, Shi Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals (Basel) 2024; 14:1637. [PMID: 38891684 PMCID: PMC11170995 DOI: 10.3390/ani14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.
Collapse
Affiliation(s)
- Songfeng Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing 526000, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
3
|
Han X, Kong J, Zheng C, Yan X, Qiu T, Chen Z, Zhang H. The effects of a mixture of small peptide chelating minerals and inorganic minerals on the production performance and tissue deposition of broiler chickens. Front Vet Sci 2024; 11:1380911. [PMID: 38706756 PMCID: PMC11066274 DOI: 10.3389/fvets.2024.1380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Due to the limited bioavailability of inorganic trace minerals, their utilization in poultry production has led to problems such as environmental contamination and inefficient resource utilization. It was investigated whether replacing inorganic trace minerals (ITM) with a blend of organic small peptide-chelated trace minerals (MIX) would improve production performance, selected biochemical parameters, antioxidant capacity, mineral deposition in liver, heart, and tibia, as well as mineral content in feces of broilers. A total of 432 healthy 21-day-old 817 broilers were randomly divided into 4 groups with 6 replicates per group and 18 chickens per replicate. The control group received a basal diet supplemented with 1,000 mg/kg of inorganic trace minerals as sulfate. The experimental groups received basal diets supplemented with 200, 400, and 600 mg/kg of mixed trace mineral elements (50% sulfate +50% small peptide-chelate) for a trial period of 30 days, divided into two stages: 21-35 days and 36-50 days. The results indicate that on the 50th day, compared with the 1,000 mg/kg ITM group, the levels of serum cholesterol, urea nitrogen, and malondialdehyde in the 200, 400, and 600 mg/kg MIX groups decreased (p < 0.01), while the levels of serum glutathione peroxidase in the 200, 400, and 600 mg/kg MIX groups increased (p < 0.05). Compared to the ITM group, the addition of organic small peptide chelated trace minerals mixed with inorganic trace minerals can reduce the levels of zinc and manganese in feces (p < 0.01). Furthermore, the iron content in the heart and tibia of the 600 mg/kg MIX group also significantly decreased (p < 0.05). There were no differences in growth performance and slaughter performance among the groups (p > 0.05). This study shows that replacing inorganic minerals with low-dose MIX (200, 400, and 600 mg/kg) can reduce the levels of zinc and manganese in feces, with no negative impact on growth and slaughter performance.
Collapse
Affiliation(s)
- Xiaofeng Han
- School of Life Science and Engineering, Foshan University, Foshan, China
- Wen’s Foodstuffs Group Co., Ltd., Yunfu, China
| | - Jing Kong
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chaojun Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xia Yan
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhiyong Chen
- Foshan Guangmuxing Feed Co., Ltd., Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
4
|
Bakhshalinejad R, Torrey S, Kiarie EG. Comparative efficacy of hydroxychloride and organic sources of zinc, copper, and manganese on egg production and concentration of trace minerals in eggs, plasma, and excreta in female broiler breeders from 42 to 63 weeks of age. Poult Sci 2024; 103:103522. [PMID: 38350392 PMCID: PMC10875615 DOI: 10.1016/j.psj.2024.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/15/2024] Open
Abstract
Comparative efficacy of hydroxychloride (HC) and organic (OR) sources of Zn, Cu and Mn on performance of broiler breeders (BB) between 42 and 63 weeks of age (WOA) was investigated. A total of 408 ♀ Ross 708 and 48 ♂ Yield Plus cockerels were placed in pens (17 ♀ and 2 ♂) housed in 2 rooms (12 pens/room) and allocated to one of 2 diets in a completely randomized block design (n=12). The diets had similar nutrient specifications but differed in Zn, Cu, and Mn sources: 1) HO, a blend of 80% HC and 20% OR sources, and 2) OR, 100% OR sources. Birds were fed and managed according to breeder guidelines. The egg count was recorded daily and categorized as normal or abnormal. Egg yolk color, albumen height, Haugh unit, eggshell thickness, and eggshell breaking strength were assessed every 4 wk. Individual hen body weight (BW) was recorded at 5-wk intervals to determine BW uniformity. At 52 and 63 WOA, the eggs and excreta samples were collected. At the end of the trial, 4 hens per pen were bled for plasma concentration of trace minerals and organs (liver, gizzard, spleen, kidney, and thymus) weight. There were no interactions between source and age on any parameters (P > 0.05). There were no main effects of source on egg production, eggshell quality, BW, and organs weight (P > 0.05). Hens fed HO diets had darker yolk compared to those fed OR diets (P = 0.014). The concentration of Zn in the eggs of OR BB was higher (P = 0.022) than for HO birds. However, there were no dietary effects on the concentration of trace minerals in the egg, plasma, and excreta (P > 0.05). The results indicated that a mixture of HC and O as sources for Zn, Cu, and Mn was as effective as OR sources in supporting egg production, egg quality, and trace mineral utilization in broiler breeders.
Collapse
Affiliation(s)
- Reza Bakhshalinejad
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stephanie Torrey
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Trouw Nutrition North America, Puslinch, Ontario, Canada
| | - Elijah G Kiarie
- Department of Animal Bioscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
5
|
Lu J, Jiang DC, Ma M, Wang Q, Guo J, Wang XG, Dou TC, Li YF, Hu YP, Wang KH, Qu L. Effects of manganese glycine on eggshell quality, eggshell ultrastructure, and elemental deposition in aged laying hens. Animal 2024; 18:101126. [PMID: 38552601 DOI: 10.1016/j.animal.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Poor eggshell quality of eggs laid by aged laying hens is the major problem affecting the length of the rearing period in the laying hen industry. Trace elements are required and play vital roles in the eggshell quality of laying hens. Appropriate dose of organic microelements is environmentally friendly and sufficient to satisfy the needs of hens because of their greater bioavailability and lower excretion than inorganic forms. The aim of this experiment was to investigate the effects of manganese (Mn) glycine (MG) on eggshell quality, elemental deposition, and eggshell ultrastructure in aged laying hens. A total of 720 Hy-Line Brown hens 70 weeks old were assigned equally to four groups with six replicates of 30 birds each. The hens were fed basal diets (without Mn supplementation) supplemented with 120 mg/kg of Mn from manganese sulfate monohydrate (MSM), or 40, 80, or 120 mg/kg Mn from MG for 12 weeks. Dietary supplementation with 80 mg/kg Mn from MG resulted in the greatest eggshell strength after 6 weeks of treatment (P = 0.047), and in greater eggshell strength than observed in the MSM control after 12 weeks of treatment (P = 0.025). After 12 weeks of treatment, the eggs of hens in the MG groups showed lower mammillary layer thickness in the blunt end, equator, and acute end than observed in the MSM control group (P < 0.001). With the exception of the blunt ends of eggs from hens in the 120 mg/kg MG group, the eggs of hens in the MG groups, compared with the MSM control group, exhibited a lower mammillary layer ratio, and greater palisade layer ratio and effective layer ratio in the blunt end, equator, and acute end (P < 0.001). Dietary supplementation with 80 mg/kg Mn from MG, compared with the MSM control and 40 and 120 mg/kg MG, resulted in the greatest palisade layer thickness and effective layer thickness, and the lowest mammillary layer thickness in the equator (P < 0.001, P = 0.001, P < 0.001, respectively). Furthermore, supplementation with 80 mg/kg Mn from MG exhibited the greatest ratio of the palisade layer and effective layer, and the lowest mammillary layer ratio in the blunt end and equator (all P < 0.001). The Mn content of eggshells in hens-fed diets supplemented with 80 and 120 mg/kg Mn from MG was greater than that in the MSM control and 40 mg/kg MG groups (P = 0.035). Dietary supplementation with 80 or 120 mg/kg Mn from MG resulted in greater tibia Mn content than observed in the 40 mg/kg MG group (P = 0.019), and greater yolk Mn content than observed in the 40 mg/kg MG and MSM control groups (P = 0.018). In conclusion, dietary supplementation with 80 mg/kg Mn from MG, compared with the MSM control (120 mg/kg Mn), may increase the deposition efficiency of Mn, alter eggshell elemental composition, improve eggshell ultrastructure, and enhance eggshell strength in aged laying hens.
Collapse
Affiliation(s)
- J Lu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - D C Jiang
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - M Ma
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Q Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - J Guo
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X G Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - T C Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y F Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y P Hu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - K H Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - L Qu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China.
| |
Collapse
|
6
|
Palanisamy V, PC S, Pineda L, Han Y. Effect of supplementing hydroxy trace minerals (Cu, Zn, and Mn) on egg quality and performance of laying hens under tropical conditions. Anim Biosci 2023; 36:1709-1717. [PMID: 37402462 PMCID: PMC10623049 DOI: 10.5713/ab.22.0416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE A pivotal study was designed to investigate the effect of Hydroxy (HYC) Cu, Zn, and Mn on egg quality and laying performance of chickens under tropical conditions. METHODS A total of 1,260 Babcock White laying hens (20-wk-old) were randomly assigned to one of 4 treatments with 15 replicates of 21 hens each in a Randomized Complete Block Design. The birds were reared for 16 weeks and were fed the corn-soybean meal diets supplemented with one of the following mineral treatments: T1, inorganic (INO, 15 ppm CuSO4, 80ppm MnSO4 and 80 ppm ZnO); T2, Hydroxy-nutritional level (HYC-Nut, 15 ppm Cu, 80 ppm Mn, 80 ppm Zn from Hydroxy); T3, Hydroxy-Low (HYC-Low, 15 ppm Cu, 60 ppm Mn, 60 ppm Zn from Hydroxy); T4, Hydroxy plus inorganic (HYC+INO, 7.5 ppm HYC Cu+7.5 ppm CuSO4, 40 ppm HYC ZnO+40 ppm ZnSO4, 40 ppm HYC Mn+40 ppm MnSO4). The egg production was recorded daily, while the feed consumption, feed conversion ratio (FCR) and egg mass were determined at the end of each laying period. The egg quality parameters were assayed in eggs collected over 48 h in each laying period. RESULTS Overall, no significant effect of treatments was observed on percent egg production, egg weight and FCR (p>0.05). Feed intake was significantly lower in birds fed Hydroxy plus inorganic (p<0.05) diet. The supplementation of HYC-Low significantly increased the egg mass compared to the other treatments (p<0.05). HYC supplementation alone or in combination with INO elicited a positive effect on shell thickness, shell weight, shell weight per unit surface area, yolk colour, albumen and yolk index for a certain period (p<0.05), but not throughout the whole laying period. CONCLUSION Dietary supplementation of HYC-Low (15-60-60 mg/kg) showed similar effects on production performance and egg quality characteristics in laying hens as compared to 15-80-80 mg/kg of Cu-Zn-Mn from inorganic sources. This indicates that sulphate based inorganic trace minerals can effectively be substituted by lower concentration of hydroxyl minerals.
Collapse
Affiliation(s)
- Vasan Palanisamy
- Department of Animal Nutrition, Veterinary College and Research Institute, Namakkal, Tamil Nadu Veterinary and Animal Sciences University, Tamil Nadu 637002,
India
| | - Sakthivel PC
- Department of Animal Nutrition, Veterinary College and Research Institute, Namakkal, Tamil Nadu Veterinary and Animal Sciences University, Tamil Nadu 637002,
India
| | - Lane Pineda
- Trouw Nutrition R&D, 3811, MH Amersfoort,
The Netherlands
| | - Yanming Han
- Trouw Nutrition R&D, 3811, MH Amersfoort,
The Netherlands
| |
Collapse
|
7
|
Ghassemi Nejad J, Vakili R, Sobhani E, Sangari M, Mokhtarpour A, Hosseini Ghafari SA. Worldwide Research Trends for Chelates in Animal Science: A Bibliometric Analysis. Animals (Basel) 2023; 13:2374. [PMID: 37508152 PMCID: PMC10376876 DOI: 10.3390/ani13142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to look at research trends in the application of CTM in animal nutrition in order to identify current and emerging challenges, as well as to examine the intellectual structure of the subject. The intellectual structure of CTM was examined using keyword and reference analysis. The research community includes all research and review articles published in journals indexed in the Web of Science database during the years 1990-2022. The results showed that the terms zinc, co-occurring 331 times, performance (324 times), and copper 216 (times) were the main and hotspots of research in the field of chelate. The data suggest that the most important keywords during the study period were zinc, copper, pig, bovine, metabolism, and bioavailability. The terms health, muscle, beef, trace elements, and dietary supplements represent emerging topics in CTM, as research began to focus on these areas during the years 2017-2022. The country with the greatest number of published articles was the United States of America. This bibliometric analysis showed that countries are focusing on the effects of CTM on the health and musculature of cattle through dietary supplementation with trace elements. According to the identified hot and emerging topics, this research can serve as a roadmap for a global comprehensive scientific plan and policy.
Collapse
Affiliation(s)
- Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Reza Vakili
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar 7635168111, Iran
| | - Ehsan Sobhani
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar 7635168111, Iran
- Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University, Mashhad 9177948564, Iran
| | - Mahmood Sangari
- Department Library and Information Science, University of Birjand, Birjand 9717434765, Iran
| | - Amir Mokhtarpour
- Special Domestic Animals Institute, Research Institute of Zabol, Zabol 9861335856, Iran
| | - Seyed Ali Hosseini Ghafari
- The Agricultural Faculty, Agricultural Sciences and Resource Management in the Tropics and Subtropics (ARTS), University of Bonn, D-53115 Bonn, Germany
| |
Collapse
|
8
|
Zarghi H, Hassanabadi A, Barzegar N. Effect of organic and inorganic manganese supplementation on performance and eggshell quality in aged laying hens. Vet Med Sci 2023; 9:1256-1268. [PMID: 36920852 DOI: 10.1002/vms3.1116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Manganese (Mn) is an important trace element for laying hen's nutrition, which is required in small amounts in the diet. Its deficiency results in lowered production performance and eggshell quality. OBJECTIVES This experiment was conducted to investigate the influence of different sources and levels of Mn on egg production performance and eggshell quality in aged laying hens. METHODS A total of 720, 83-week-old Hy-Line W-36 laying hens were fed a non-Mn supplemented basal diet for 4-week (to ime Mn-exhaustion of body) and then were allocated to a completely randomized design with 10 treatments, six replicates and 12 birds each. Concentration of Mn in the non-Mn supplemented basal diet was 10.34 mg/kg (treatment 1), the added doses of dietary Mn were included 30, 60, and 90 mg/kg of three different sources (Mn-oxide, Mn-sulphate, and Mn-organic) for treatments 2-10, respectively. The experiment lasted for 12 week. RESULTS Dietary supplementation with either organic or inorganic Mn sources significantly enhanced egg production (EP), egg mass (EM), feed conversion ratio (FCR), and relative eggshell weight (RESW) compared with the non-Mn supplemented diet. However, the experimental diets did not influence feed intake (FI), egg weight, and other eggshell quality traits. Based on the broken line regression models, the performance traits were optimized at 30-40 mg/kg Mn concentration when supplemented by Mn-sulphate or Mn-organic. Although, it was 80-90 mg/kg when supplemented by Mn-oxide. The relative bio-efficacy of inorganic Mn sources include Mn-oxide and Mn-sulphate in compare with Mn-organic were estimated 45% and 87% (for EP trait), 30% and 94% (for EM trait), 36% and 99% (for FCR trait), and 37% and 78% (for RESW trait), respectively. CONCLUSIONS In the aged laying hens, Mn requirement is higher than the NRC's recommendation. Sulphate and organic sources of Mn are more effective than Mn-oxide.
Collapse
Affiliation(s)
- Heydar Zarghi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Hassanabadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafise Barzegar
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Noetzold T, Vieira S, Xavier B, Olabarriaga Y, Fireman A. Supplemental effects of amino acid-complexed trace minerals on broiler breeder hen performance. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Chen X, Ma XM, Yang CW, Jiang SZ, Huang LB, Li Y, Zhang F, Jiao N, Yang WR. Low Level of Dietary Organic Trace Elements Improve the Eggshell Strength, Trace Element Utilization, and Intestinal Function in Late-Phase Laying Hens. Front Vet Sci 2022; 9:903615. [PMID: 35711798 PMCID: PMC9197127 DOI: 10.3389/fvets.2022.903615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the effects of organic trace elements (Cu, Fe, Zn, and Mn) on performance, egg quality, trace elements utilization, and intestinal function in late-phase laying hens. A total of 1,080 laying hens (Hy-line brown, 65 weeks old) were randomly assigned to four treatments with six replications of 45 layers each. The basal diet was prepared without adding exogenous trace elements. The control group was fed with a basal diet supplemented with 600 mg/kg of inorganic trace elements. The three treatment groups were fed basal diets supplemented with 300, 450, and 600 mg/kg organic trace elements (OTE300, 450, and 600), respectively. The results showed that there was no significant difference in growth performance among all treatments. However, OTE450 significantly improved the eggshell strength of laying hens (p < 0.05), but had no significant effects on haugh unit, egg yolk weight, eggshell weight, and eggshell thickness, compared with other groups. Moreover, compared with the control group, OTE450 significantly increased the contents of copper, iron, and zinc in serum (p < 0.05). Meanwhile, all of the trace elements had a lower deposition in the feces in organic trace elements groups (p < 0.05). Histological analysis showed that the addition of organic trace elements could significantly improve the villus height and villus concealment ratio (p < 0.05). In addition, the messenger RNA (mRNA) and protein expressions of divalent metal transporter 1 (DMT1), zinc transporter 1 (ZnT-1), and ferroportin 1 (FPN1) were the highest in the OTE450 group. In conclusion, OTE450 could improve egg quality, intestinal function, and trace element utilization efficiency. Thus, this study provides a theoretical basis for the application of low levels of organic trace elements in laying hens.
Collapse
Affiliation(s)
- Xing Chen
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Xiang-ming Ma
- Dongying Science and Technology Innovation Service Center, Dongying, China
| | - Chong-Wu Yang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Shu-zhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Li-bo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Yang Li
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Fan Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Ning Jiao
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
- *Correspondence: Ning Jiao
| | - Wei-ren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
- Wei-ren Yang
| |
Collapse
|
11
|
Zhang Y, Wang S, Huang X, Li K, Ruan D, Xia W, Wang S, Chen W, Zheng C. Comparative effects of inorganic and organic manganese supplementation on productive performance, egg quality, tibial characteristics, serum biochemical indices, and fecal Mn excretion of laying ducks. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Zhang KK, Han MM, Dong YY, Miao ZQ, Zhang JZ, Song XY, Feng Y, Li HF, Zhang LH, Wei QY, Xu JP, Gu DC, Li JH. Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal 2021; 15:100401. [PMID: 34794097 DOI: 10.1016/j.animal.2021.100401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022] Open
Abstract
In the egg production industry, trace elements are required as additional dietary supplements to play vital roles in performance and egg quality. Compared to inorganic microelements (ITs), appropriate dose of organic trace microelements (OTs) are environmentally friendly and sufficient to satisfy the needs of hens. In order to evaluate the extent to which low-dose OTs replace whole ITs, the effects of organic copper, zinc, manganese, and iron compound on the performance, eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens were investigated. A total of 1 080 57-week-old Jing Hong laying hens were assigned to five groups with six replicates of 36 layers each for an 8-week experimental period. The birds were fed either a basal diet (control treatment (CT)) or the basal diet supplemented with commercial levels of inorganic trace elements (IT 100%) or the equivalent organic trace elements at 20%, 30%, and 50% of the inorganic elements (OT 20%, OT 30%, and OT 50%, respectively). Results showed that compared with those in the CT treatment, feeding hens with inorganic or organic microelement diet had significant effects on the eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens (P < 0.05). The eggshell strength and ratio between OT 30%, OT 50%, and IT 100% were similar at weeks 4 and 8, and the eggshell thickness of these groups was also similar at weeks 6 and 8. At week 8, the eggshell colour in OT 50% was darker than that in IT 100%. The mineral content in the eggshells of OT 50% and IT 100% significantly increased (P < 0.001), with no significant difference in effective thickness, mammillary thickness, and mammillary knob width between groups. There were no differences in the malondialdehyde content, total antioxidant capacity, and total superoxide dismutase activity in serum between OT 30%, OT 50%, and IT100%. While the catalase activities, the interleukin-1β, interleukin-10, immunoglobulin G, and immunoglobulin M concentrations in serum were not significantly different between OT 50% and IT 100%. The mineral contents in the faeces of the organic groups were considerably reduced compared with those in IT 100% (P < 0.001). In conclusion, dietary supplementation with 30-50% organic compound microelements has the potential to replace 100% inorganic microelements in the hen industry for improving eggshell quality, mineral deposition in the eggshell, antioxidant capacity, and immune function, and reducing emissions to the environment without negative effects on laying performance.
Collapse
Affiliation(s)
- K K Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - M M Han
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Y Dong
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Z Q Miao
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J Z Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - X Y Song
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - H F Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - L H Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Q Y Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J P Xu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - D C Gu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - J H Li
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
13
|
Dos Santos EO, Freitas ER, Nepomuceno RC, Watanabe PH, Souza DH, Fernandes DR, de Abreu Freitas C, do Nascimento GAJ, Aguiar GC, de Melo MCA. Organic zinc and manganese and 25-hydroxycholecalciferol improves eggshell thickness in late-phase laying hens. Trop Anim Health Prod 2021; 53:529. [PMID: 34727238 DOI: 10.1007/s11250-021-02959-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the effects of organic micromineral zinc (Zn) and manganese (Mn) and 25-hydroxycholecalciferol supplementation in late-phase laying hens' diets on performance, egg quality, lipid stability of fresh and stored eggs, and bone quality. The treatments were a basal diet and diets supplemented with 32 mg Zn-Met/kg diet; 26 mg Mn-Met/kg diet; 32 mg Zn-Met/kg diet and 26 mg Mn-Met/kg diet; 1500 IU 25-hydroxycholecalciferol/kg diet; 32 mg Zn-Met/kg diet; 26 mg Mn-Met/kg diet; and 1500 IU 25-hydroxycholecalciferol/kg diet. On performance, the birds supplemented with organic manganese had the lowest feed intake. Regarding egg quality, the birds supplemented with Zn-Met and Mn-Met, with 25-hydroxycholecalciferol alone, and with Zn-Met, Mn-Met and 25-hydroxycholecalciferol presented a greater eggshell thickness than those receiving the basal diet. Lipid stability of the yolk varied only according to storage time. No effect of supplementation was observed on bone quality. Supplementation with Zn-Met and Mn-Met, or associated with 25-hydroxycholecalciferol, or 25-hydroxycholecalciferol alone, improved eggshell thickness in aged white layers. However, the associated or isolated supplementation with these nutrients did not influence performance, lipid stability of fresh and stored egg yolk or bone quality.
Collapse
Affiliation(s)
| | | | | | | | - Davyd Herik Souza
- Animal Science Department, Federal University of Ceará, Fortaleza, CE, 60356-001, Brazil
| | | | | | | | - Germana Costa Aguiar
- Animal Science Department, Federal University of Ceará, Fortaleza, CE, 60356-001, Brazil
| | | |
Collapse
|
14
|
Jiang Q, Sun J, He Y, Ma Y, Zhang B, Han Y, Wu Y. Hydroxychloride trace elements improved eggshell quality partly by modulating uterus histological structure and inflammatory cytokines expression in aged laying hens. Poult Sci 2021; 100:101453. [PMID: 34624774 PMCID: PMC8503664 DOI: 10.1016/j.psj.2021.101453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The objectives of this study were to investigate the effectiveness of dietary zinc, copper, and manganese hydroxychloride (HC) supplementation on performance, minerals deposition, serum parameters, eggshell ultrastructure, uterus histological structure, and inflammatory cytokines in aged hens. A total of 560 Hyline Brown layers at 62 wk of age were randomly allotted into 3 groups (CON, basal diet without extra minerals supplemented; Sulphate and HC, basal diet with sulphate or hydroxychloride zinc, copper, and manganese supplementation at levels of 80, 15, and 80 mg/kg, respectively). The trial lasted for 16 wk consisting of 4 wk depletion period and 12 wk testing period. The results indicated that dietary hydroxychloride trace elements increased egg weight (P < 0.05) when compared with CON group and improved average Haugh unit and albumen height (P < 0.05) when compared with Sulphate group from 70 to 73 wk. Trace element supplementation significantly increased eggshell strength, ceruloplasmin content in serum, and modified crystallographic structure of eggshell (P < 0.05) that included effective layer height, palisade height, mammillary layer width, and mammillary internal area ratio, but the results did not differ regarding the trace mineral sources used. Furthermore, hens fed with hydroxychloride trace element showed the highest mucosal fold height (P < 0.05) and epithelial height (P = 0.053) in eggshell gland, as well as mRNA expression of TNF-α (P < 0.05) and IL-22 (P = 0.094). It is concluded that supplementation of Zn, Cu, and Mn mixture modified eggshell quality partly through enhancing histological structure and immune responses of uterus. Hydroxychloride source of Zn, Cu, and Mn excelled sulphate in its beneficial effects for birds.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jingjing Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Yanming Han
- Trouw Nutrition R&D, Amersfoort, the Netherlands
| | - Yuanyuan Wu
- Trouw Nutrition R&D, Amersfoort, the Netherlands
| |
Collapse
|
15
|
Zhang YN, Wang S, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Abouelezz KFM, Zheng CT. Estimation of dietary manganese requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, and serum biochemical and antioxidant indices. Poult Sci 2020; 99:5752-5762. [PMID: 33142493 PMCID: PMC7647759 DOI: 10.1016/j.psj.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
This study was aimed at estimating the dietary manganese (Mn) requirement for laying duck breeders. A total of 504 Longyan duck breeders (body weight: 1.20 ± 0.02 kg) aged 17 wk were randomly allocated to 6 treatments. The birds were fed with a basal diet (Mn, 17.5 mg/kg) or diets supplemented with 20, 40, 80, 120, or 160 mg/kg of Mn (as MnSO4·H2O) for 18 wk. Each treatment had 6 replicates of 14 ducks each. As a result of this study, dietary Mn supplementation did not affect the productive performance of laying duck breeders in the early laying period (17–18 wk), but affected egg production, egg mass, and feed conversion ratio (FCR) from 19 to 34 wk (P < 0.05), and there was a linear and quadratic effect of supplement level (P < 0.05). The proportion of preovulatory ovarian follicles increased (P < 0.01) linearly and quadratically, and atretic follicles (weight and percentage) decreased (P < 0.05) quadratically with dietary Mn supplementation. The density and breaking strength of tibias increased (quadratic; P < 0.05), the calcium content of tibias decreased (linear, quadratic; P < 0.01), and Mn content increased (linear, quadratic; P < 0.001) with increase in Mn. The addition of Mn had a quadratic effect on serum contents of estradiol, prolactin, progesterone, luteinizing hormone, and follicle-stimulating hormone (P < 0.001). Dietary Mn supplementation decreased serum contents of total protein (linear, P < 0.05), glucose (quadratic, P < 0.05), total bilirubin, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and calcium (linear, quadratic; P < 0.05). The serum total antioxidant capacity and total and Mn-containing superoxide dismutase activities increased (linear, quadratic; P < 0.001), and malondialdehyde content decreased (linear, quadratic; P < 0.001) in response to Mn supplemental levels. The dietary Mn requirements, in milligram per kilogram for a basal diet containing 17.5 mg/kg of Mn, for Longyan duck breeders from 19 to 34 wk of age were estimated to be 84.2 for optimizing egg production, 85.8 for egg mass, and 95.0 for FCR. Overall, dietary Mn supplementation, up to 160 mg/kg of feed, affected productive performance, tibial characteristics, and serum biochemical and antioxidant status of layer duck breeders. Supplementing this basal diet (17.5 mg/kg of Mn) with 85 to 95 mg/kg of additional Mn was adequate for laying duck breeders during the laying period.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
16
|
Zhang YN, Xu RS, Min L, Ruan D, Kim HY, Hong YG, Chen W, Wang S, Xia WG, Luo X, Xie CY, Shang XG, Zheng CT. Effects of ${\rm \small L}$-methionine on growth performance, carcass quality, feather traits, and small intestinal morphology of Pekin ducks compared with conventional ${\rm \small {DL}}$-methionine. Poult Sci 2020; 98:6866-6872. [PMID: 31350999 PMCID: PMC8913982 DOI: 10.3382/ps/pez438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
The research studied the effects ofl-methionine (l-Met) on growth performance, carcass quality, feather traits, and small intestinal morphology of Pekin ducks compared with conventionaldl-methionine (dl-Met). A total of 1080, 1-day-old male Pekin ducks were randomly allotted to 9 groups with 6 replicate pens of 20 birds each. During the starter phase (1 to 14 d), ducks were fed a basal diet (Met, 0.30%) or that supplemented with dl-Met or l-Met at 0.05, 0.10, 0.15, or 0.20% of feed. During the grower phase (15 to 35 d), ducks were fed a basal diet (Met, 0.24%) or that supplemented with dl- Met or l-Met at 0.04, 0.08, 0.12, or 0.16% of feed. Compared with ducks fed the basal diet, supplementation with either dl- Met or l-Met increased the body weight (BW) of ducks at days 14 and 35, increased average daily gain (ADG) and average daily feed intake (ADFI), decreased F:G at the starter phase, and increased ADG over the whole 35-d period (P < 0.05). The efficacy of l-Met compared to dl- Met was 140.1% for 14-d BW, 137.6% for ADG and 121.0% for F:G for days 1 to 14. Ducks fed diets supplemented with l-Met had greater proportion of leg muscle, higher than in ducks provided with dl- Met (P < 0.05). The breast muscle proportion was enhanced with dl- Met rather than l- Met supplementation (P < 0.01). The back feathers score and fourth primary wing feather length were increased with dl- Met or l-Met supplementation (P < 0.01), and there was increased efficacy of l-Met relative to dl- Met for back feathers score (153.1%). Dietary dl- Met or l- Met supplementation increased villus height of ileal mucosa of ducks at days 14 and 35 (P < 0.01). Overall, dietary l-Met or dl- Met supplementation affected the growth performance of ducks during the starter phase, and improved the feather traits and small intestinal morphology. The efficacy of l-Met to dl- Met ranged from 120 to 140% for growth performance of young ducks (1 to 14 d) and was 153% for the feather traits of ducks (35 d).
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - R S Xu
- Institute of Life Science and Engineering, Foshan University, Foshan 528200, China
| | - L Min
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - H Y Kim
- CJ CheilJedang Research Institute of Biotechnology, Suwon 16495, South Korea
| | - Y G Hong
- CJ CheilJedang Research Institute of Biotechnology, Suwon 16495, South Korea
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - X Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| | - C Y Xie
- CJ International Trading CO., LTD, Shanghai, China 201105
| | - X G Shang
- Institute of Life Science and Engineering, Foshan University, Foshan 528200, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China 510640
| |
Collapse
|
17
|
Jasek A, Parr T, Coufal CD, Lee JT. Research Note: Evaluation of manganese hydroxychloride in 45-wk-old white leghorn layers using yolk and shell manganese content. Poult Sci 2020; 99:1084-1087. [PMID: 32029144 PMCID: PMC7587850 DOI: 10.1016/j.psj.2019.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of the current study was to evaluate increasing levels of manganese hydroxychloride (MHC) in 45-wk-old white leghorn laying hens, using yolk and shell manganese (Mn) content as a potential marker for Mn concentration. A total of 80, 45-wk-old white leghorns were assigned to 6 dietary treatments, each consisting of 14 individually caged laying hens, with the exception of the reference diet containing 10 individually caged laying hens. The experiment consisted of a reference diet that contained 70 ppm of supplemental inorganic Mn in the form of Mn oxide and 5 experimental treatments each containing 0, 15, 30, 60, and 90 ppm supplemental MHC. Experimental birds were subjected to a 21 D depletion phase in which no supplemental Mn was included in the diet; however, during this time reference fed birds were fed the control diet (70 ppm Mn). After the 21 D depletion phase, the depleted birds were fed experimental diets for a 35 D evaluation period. Yolk and shell Mn content were analyzed at the end of the depletion phase and during the experimental phase on day 5, 10, 15, 25, and 35. During the experimental phase, Mn was replenished in the yolk and shell in all experimental treatments containing supplemental Mn; however, dose and time impacted the rate of replenishment. The yolk tended to be more sensitive to variations in Mn level as increases in Mn inclusion significantly (P < 0.05) increased concentration. These data demonstrate the ability to deplete and replenish Mn, and the use of egg yolk Mn concentration as measurement for determining changes in dietary Mn. At the conclusion of the experiment at 35 D, 60 ppm of Mn hydroxychloride seemed to be adequate in replenishing Mn to the level of the reference.
Collapse
Affiliation(s)
- A Jasek
- Poultry Science Department, Texas A&M AgriLife Research, College Station, TX 77843, USA.
| | - Terri Parr
- Micronutrients USA LLC, Indianapolis, IN 46241, USA
| | - C D Coufal
- Poultry Science Department, Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - J T Lee
- Poultry Science Department, Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
18
|
Qiu JL, Zhou Q, Zhu JM, Lu XT, Liu B, Yu DY, Lin G, Ao T, Xu JM. Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poult Sci 2019; 99:1483-1490. [PMID: 32115033 PMCID: PMC7587740 DOI: 10.1016/j.psj.2019.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the effects of low inclusion levels of organic trace minerals (iron, copper, manganese, and zinc) on performance, eggshell quality, serum hormone levels, and enzyme activities of laying hens during the late laying period. A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic trace minerals at commercial levels (CON), a basal diet supplemented with inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet supplemented with proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted 56 D (8 wk). Compared with the CON group, the ITM group showed decrease in (P < 0.05) egg production, eggshell strength, eggshell palisade layer, palisade layer ratio, serum estrogen, luteinizing hormone, glycosaminoglycan concentration, and carbonic anhydrase activity and increase in (P < 0.05) egg loss and mammillary layer ratio. However, the TRT group almost kept all the indices close to the CON group (P > 0.05). Furthermore, hens fed with low inclusion levels of organic trace minerals had smaller mammillary knobs (P < 0.05) than those in the CON and ITM groups. In conclusion, hens fed with low inclusion levels of proteinated trace minerals had better performance and eggshell strength than those fed with identical levels of inorganic compounds; organic trace minerals improved eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period.
Collapse
Affiliation(s)
- J L Qiu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Q Zhou
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - J M Zhu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - X T Lu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - B Liu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - D Y Yu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - G Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - T Ao
- Center for Applied Nutrigenomics and Applied Animal Nutrition, Alltech, Nicholasville, KY 40356, USA
| | - J M Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Olukosi OA, van Kuijk SJA, Han Y. Sulfate and hydroxychloride trace minerals in poultry diets - comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poult Sci 2019; 98:4961-4971. [PMID: 31075168 PMCID: PMC6748738 DOI: 10.3382/ps/pez261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/18/2019] [Indexed: 11/24/2022] Open
Abstract
Two experiments investigated the effect of sulfate and hydroxychloride trace minerals (TM), Zn, Cu, and Mn, in laying hens and broiler chickens. In Expt. 1, Lohmann Brown pullets (total of 1,344) at 21 wk of age were used for a 24-wk experiment. Each of the two treatments had 32 replicates with 21 hens per replicate. At 45 wk of age, three eggs per cage were randomly selected and used for internal quality assessment. In Expt. 2, Ross 308 broilers (total of 1,080) were allocated to two treatments. Each treatment had 30 replicates with 15 chicks per replicate. On day 28, after weighing, three birds were randomly selected from 15 randomly selected pens per treatment. The birds were euthanized and blood was collected for analysis for uric acid, C-reactive protein and methylmalonic acid. Samples were also taken from pectoralis muscle of each chicken and analyzed for mRNA expression of protein synthesis or hydrolysis genes. On day 35, 7 birds per pen were used for carcass evaluation. In Expt. 1, egg weight was greater (P < 0.01) in birds receiving sulfate TM from week 16 (of experiment) onwards whereas the percentage of cracked eggs was lower (P < 0.01) in hens receiving hydroxychloride TM. Percentage hen-day production tended to be greater (P < 0.10) in hens receiving hydroxychloride TM in weeks 4 to 8 only. In Expt. 2, birds receiving hydroxychloride TM had greater (P < 0.05) weight gain and tended to have greater (P < 0.10) feed intake on day 35. Expression of the gene, PSMA1, was lower (P < 0.05) whereas plasma level of uric acid and methyl malonic acid tended to be lower (P < 0.10) in birds receiving hydroxychloride TM. It was concluded that hydroxychloride TM reduced egg loss in hens at peak production and that improved growth performance response in broilers can be partly explained by reduction in proteolytic activities in the pectoralis muscle and greater resilience to oxidative stress.
Collapse
Affiliation(s)
- Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.,Monogastric Science Research Centre, SRUC, Edinburgh, EH9 3JG, UK
| | | | - Yanming Han
- Trouw Nutrition R&D, Amersfoort, 3800 AG, the Netherlands
| |
Collapse
|
20
|
|
21
|
Adapting trace mineral nutrition of birds for optimising the environment and poultry product quality. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ramos-Vidales D, Gómez-Verduzco G, Cortes-Cuevas A, Del Río-García JC, Fernández-Tinoco S, Chárraga-Aguilar S, Ávila-González E. Organic trace minerals on productive performance, egg quality and immune response in Bovans White laying hens. J Anim Physiol Anim Nutr (Berl) 2019; 103:1484-1491. [PMID: 31350792 DOI: 10.1111/jpn.13156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/28/2022]
Abstract
This study was performed in 360 laying Bovans White hens and aimed to evaluate the effect of Carbo-Amino-Phosphate-Chelates (CAFQ) as a mineral premix and its 30% reduction by compared to inorganic trace minerals (ITM) concerning its performance, egg quality, tibia breaking strength and immunity. Sixty-week-old hens were assigned into three treatments with 10 replicates of 12 birds each. Treatments were as follows: (a) (100% ITM), (b) (100% CAFQ) and (c) (70% CAFQ). Based on the results obtained during 12 weeks, under the current test conditions, improved yolk colour (p < 0.05); shell breaking strength (p < 0.05); and storage time (p < 0.05) were observed in hens fed with a diet reduced by 70% in CAFQ inclusion showed similar performance behaviour and better egg breaking strength regarding with ITM, suggesting the possibility of minimizing the inclusion of trace minerals in laying hen diets improving environmental impact, in contrast to the use of inorganic sources of minerals.
Collapse
Affiliation(s)
- David Ramos-Vidales
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola (CEIEPAv), Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Tláhuac, Ciudad de México, México
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Arturo Cortes-Cuevas
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola (CEIEPAv), Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Tláhuac, Ciudad de México, México
| | - Juan Carlos Del Río-García
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México. Cuautitlán Izcalli, Edo, México
| | | | | | - Ernesto Ávila-González
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola (CEIEPAv), Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Tláhuac, Ciudad de México, México
| |
Collapse
|
23
|
Qiu J, Lu X, Ma L, Hou C, He J, Liu B, Yu D, Lin G, Xu J. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:588-596. [PMID: 31480181 PMCID: PMC7054597 DOI: 10.5713/ajas.19.0270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the effects of low doses of organic trace minerals (iron, copper, manganese, and zinc) on productive performance, egg quality, yolk and tissue mineral retention, and fecal mineral excretion of laying hens during the late laying period. METHODS A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replicates per treatment and 15 birds per replicate. The dietary treatments included feeding a basal diet + inorganic trace minerals at commercial levels (CON), a basal diet + inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet + proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted for 56 days. RESULTS Compared to CON, ITM decreased (p<0.05) egg production, daily egg mass, albumen height, eggshell strength, yolk Fe concentration, serum alkaline phosphatase activity and total protein, and increased (p<0.05) egg loss and feed to egg ratio. Whereas with productive performance, egg quality, yolk mineral retention, and serum indices there were no differences (p>0.05) between CON and TRT. The concentrations of Fe and Mn in the tissue and tibia were changed notably in ITM relative to CON and TRT. Both ITM and TRT reduced (p<0.05) fecal mineral excretion compared to CON. CONCLUSION These results indicate that dietary supplementation of low-dose organic trace minerals reduced fecal mineral excretion without negatively impacting hen performance and egg quality.
Collapse
Affiliation(s)
- Jialing Qiu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xintao Lu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianxiang Ma
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanchuan Hou
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junna He
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bing Liu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Jiming Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Cui YM, Zhang HJ, Zhou JM, Wu SG, Zhang C, Qi GH, Wang J. Effects of long-term supplementation with amino acid-complexed manganese on performance, egg quality, blood biochemistry and organ histopathology in laying hens. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Zhu Z, Yan L, Hu S, An S, Lv Z, Wang Z, Wu Y, Zhu Y, Zhao M, Gu C, Zhang A. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Arch Anim Nutr 2019; 73:324-337. [PMID: 31192701 DOI: 10.1080/1745039x.2019.1620050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This experiment was conducted to evaluate the effects of different sources and levels of trace elements on growth performance, carcass composition and mineral excretion levels of broilers. In a completely randomised experimental design, 900 one-day-old male Ross-308 broilers were assigned to 5 treatments, with 6 replicates of 30 birds each. The control group (CITE) was fed with a basal diet containing regular inclusion levels of inorganic trace elements. Treatment groups were supplied with reduced levels (30% and 50% of the regular level) of inorganic (ITE) or organic trace elements (OTE), respectively. Groups 50% ITE, 30% OTE and 50% OTE diets had equivalent average daily gain (ADG), average daily feed intake (ADFI), feed to gain ratio (F/G ratio) and mortality rate compared with group CITE in any phase. However, compared with group CITE chicks in group 30% ITE have lower ADG and ADFI and higher F/G ratio. The carcass yields were not affected by dietary treatments. Compared with group CITE, in groups 30% ITE, 50% ITE, 30% OTE and 50% OTE the shear force values of the breast muscle were only 71.8%, 83.4%, 63.5% and 59.4% (p < 0.05), respectively. Birds received diets containing reduced levels of trace elements had diminished excretions of Mn and Zn throughout the entire period (p < 0.01). In conclusion, the reduced supplementation of trace elements had no or slightly negative impact on growth performance, carcass yield and meat quality, but decreased faecal mineral excretion. Moreover, the trace element supply as OTE played a limited role on performance and excretion and was only partly beneficial for animal performance in case the trace element supply was reduced to 30%.
Collapse
Affiliation(s)
- Zhengpeng Zhu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Lei Yan
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Shengdi Hu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Sha An
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Zunzhou Lv
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Zhengguo Wang
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Yueming Wu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Yutao Zhu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Min Zhao
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Changsong Gu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Aoran Zhang
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| |
Collapse
|
26
|
Jankowski J, Ognik K, Stępniowska A, Zduńczyk Z, Kozłowski K. The effect of the source and dose of manganese on the performance, digestibility and distribution of selected minerals, redox, and immune status of turkeys. Poult Sci 2019; 98:1379-1389. [PMID: 30265350 DOI: 10.3382/ps/pey467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to determine the effect of various levels of manganese added to the diet of growing turkeys in the conventional form of MnO or in the form of NP-Mn2O3 nanoparticles on growth performance, absorption, and accumulation of Mn, Zn, and Cu, and antioxidant and immune status. The experiment was conducted on 1080 one-day-old Hybrid Converter turkeys randomly assigned to 6 groups with 10 replications, in a two-factor design with three dosages of manganese - 100, 50, and 10 mg/kg, and two sources-manganese oxide (MnO) and manganese nanoparticles (NP-Mn2O3). Neither reducing the addition of Mn from 100 to 50 or even 10 mg/kg of the diet nor replacing MnO with NP-Mn2O3 had a negative effect on the growth performance of the turkeys. Replacing MnO with NP-Mn2O3 in the turkey diet improved ileal digestibility of Mn and decreased accumulation of Cu in the liver and breast muscle. The study showed that irrespective of the form used, reducing the level of Mn supplementation of the diet from the 100 mg/kg recommended by British United Turkey to 50 or 10 mg/kg decreased its ileal digestibility and increased its accumulation in the liver, breast muscle, and skin. Reducing the addition of Mn to the turkey diet increased intestinal absorption of Zn and reduced accumulation of Zn and Cu in the liver, breast muscle, and skin. It did not increase oxidation processes in the liver or breast muscle of the turkeys. Reducing the addition of Mn to the turkey diet stimulated the immune system, which was manifested by stimulation of B cells to produce immunoglobulin M and by the release of the cytokine IL-6, but did not intensify apoptosis. The results of the study indicate that the recommended manganese supplement in turkey diets can be reduced. The use of manganese nanoparticles in turkey feeding requires further study.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Zenon Zduńczyk
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences. Tuwima 10, 10-748 Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
27
|
Spears JW. Boron, Chromium, Manganese, and Nickel in Agricultural Animal Production. Biol Trace Elem Res 2019; 188:35-44. [PMID: 30259263 DOI: 10.1007/s12011-018-1529-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
This paper provides an overview of research that has been conducted with manganese (Mn), chromium (Cr), nickel (Ni), and boron (B) in poultry, swine, and ruminants. Manganese is an essential trace mineral that functions as an enzyme component and enzyme activator. A deficiency of Mn results in a variety of bone abnormalities, and Mn deficiency signs have been observed under practical conditions in poultry and cattle. Chromium can potentiate the action of insulin, but whether Cr is an essential trace mineral is controversial. Insulin sensitivity has been enhanced by Cr in cattle, swine, and broilers. Responses to Cr supplementation have been variable. Production responses to Cr supplementation have been most consistent in animals exposed to various stressors (heat, cold, weaning, etc). The legality of supplementing Cr to animal diets varies among countries, Cr sources, and animal species. A specific biochemical function for Ni and B has not been identified in mammals. Signs of Ni deficiency have been produced experimentally in a number of animal species. Nickel may affect rumen microbial fermentation in ruminants, as Ni is a component of bacterial urease and cofactor F430 in methanogenic bacteria. There is little evidence that dietary Ni limits animal production under practical conditions. Beneficial effects of B supplementation on growth and bone strength have been seen in poultry and swine, but results have been variable.
Collapse
Affiliation(s)
- Jerry W Spears
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7621, USA.
| |
Collapse
|
28
|
The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. PLoS One 2018; 13:e0201487. [PMID: 30063726 PMCID: PMC6067725 DOI: 10.1371/journal.pone.0201487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was to determine whether the use of Mn nanoparticles would make it possible to reduce the level of this micronutrient added to turkey diets without adversely affecting growth performance, antioxidant and immune status, or apoptosis. The experiment was conducted on 6 groups of turkeys with 10 replications in a two-factor design with 3 dosages of manganese, 100, 50 and 10 mg/kg, and 2 sources, manganese oxide (MnO) and manganese nanoparticles (NP-Mn2O3). The study showed that irrespective of the form of Mn used, reducing the Mn level recommended by British United Turkeys for supplementation of the diet of young turkeys from 100 mg/kg to 10 mg/kg increases the content of this element in the blood with no adverse effect on growth performance or the immune system. The reduction in Mn supplementation in the form of NP-Mn2O3 from 100 to 50 and even to 10 mg/kg of turkey diet has no negative effect on antioxidant defence in young turkeys. A 50% reduction of the recommended Mn level in the form of MnO enhances lipid oxidation processes. Replacing MnO with NP-Mn2O3 in the turkey diet probably can increase apoptosis in young turkeys. On the other hand, irrespective of the form of Mn used, reducing supplementation of the turkey diet with this element from 100 to 50 and even to 10 mg/kg probably can reduce apoptosis.
Collapse
|
29
|
Li LL, Zhang NN, Gong YJ, Zhou MY, Zhan HQ, Zou XT. Effects of dietary Mn-methionine supplementation on the egg quality of laying hens. Poult Sci 2018; 97:247-254. [PMID: 29077932 DOI: 10.3382/ps/pex301] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/20/2017] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate the effects of dietary manganese-methionine (Mn-Met) supplementation on the egg quality of laying hens. A total of 480 Jinghong-1 strain layers aged 53 wk were divided into 5 groups with 6 replicates of 16 layers. Birds in the control group were fed a diet supplemented with 60 mg Mn/kg in the form of MnSO4; the birds in other 4 experimental groups were fed a diet supplemented with 20, 40, 60, and 80 mg Mn/kg as Mn-Met, respectively. Dietary Mn-Met treatments significantly affected (P < 0.05) the albumen height, yolk color, and Haugh unit compared to those of the control diet. The Mn contents in the eggshell increased (P < 0.01) significantly by increasing the Mn-Met supplementation, whereas Mn content in eggshell was triple that in the yolk or albumen. Compared with the 60 mg/kg Mn-Met group, the transverse surface in the control group had (P < 0.01) a greater width of mammillary cones, and there were obvious cracks on the outer surface in the control. There was no difference (P > 0.05) in the eggshell gland (ESG) in the expression of calbindin-D28k (CaBP-D28k) mRNA in response to any diet treatment. In conclusion, dietary Mn-Met supplementation increased internal egg quality and the ultrastructure of the eggshell. Compared to the control, 60 mg/kg Mn-Met treatment resulted in improving egg quality, and 20 mg/kg Mn-Met treatment had similar effects the control treatment had on the egg quality. This indicates that the inorganic Mn can be replaced by the lower concentration of Mn-Met.
Collapse
Affiliation(s)
- L L Li
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - N N Zhang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - Y J Gong
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - M Y Zhou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - H Q Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| | - X T Zou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|
30
|
Zhang Y, Zhang H, Wu S, Wang J, Qi G. Dietary manganese supplementation affects mammillary knobs of eggshell ultrastructure in laying hens. Poult Sci 2018; 97:1253-1262. [DOI: 10.3382/ps/pex419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
|
31
|
|
32
|
Zhang Y, Zhang H, Wu S, Wang J, Qi G. Dietary manganese supplementation modulated mechanical and ultrastructural changes during eggshell formation in laying hens. Poult Sci 2017; 96:2699-2707. [DOI: 10.3382/ps/pex042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
|
33
|
Zhang Y, Wang J, Zhang H, Wu S, Qi G. Effect of dietary supplementation of organic or inorganic manganese on eggshell quality, ultrastructure, and components in laying hens. Poult Sci 2017; 96:2184-2193. [DOI: 10.3382/ps/pew495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022] Open
|
34
|
Fouad A, Li Y, Chen W, Ruan D, Wang S, Xie W, Lin Y, Zheng C. Effects of Dietary Manganese Supplementation on Laying
Performance, Egg Quality and Antioxidant Status in Laying Ducks. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajava.2016.570.575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Zhao Y, Li L, Zhang PF, Liu XQ, Zhang WD, Ding ZP, Wang SW, Shen W, Min LJ, Hao ZH. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles. Poult Sci 2016; 95:920-33. [DOI: 10.3382/ps/pev436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
|