1
|
He J, He M, Sun M, Chen H, Dou Z, Nie R, Zhou J, Tang Q, Che C, Liu J, Li T. The Mechanism of Acupuncture Regulating Autophagy: Progress and Prospect. Biomolecules 2025; 15:263. [PMID: 40001566 PMCID: PMC11852493 DOI: 10.3390/biom15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy plays a crucial role in the physiopathological mechanisms of diseases by regulating cellular functions and maintaining cellular homeostasis, which has garnered extensive attention from researchers worldwide. The holistic regulation and bidirectional regulation effects of acupuncture can modulate cellular autophagy, promoting or restoring the homeostasis of the body's internal environment to achieve therapeutic outcomes. This paper systematically reviews the research progress on the use of acupuncture for treating various diseases via the autophagy pathway, summarizes signal pathways related to acupuncture regulating autophagy, and analyzes the deficiencies present in the existing research. The review results indicate that the mechanism of action of acupuncture on autophagy dysfunction is reflected in the changes in LC3, Beclin1, p53, and autophagy-associated (ATG) protein expression, and regulates signaling pathways and key proteins or genes. The regulatory effect of acupuncture on autophagy capacity is bidirectional: it inhibits the abnormal activation of autophagy to prevent exacerbation of injury and reduce apoptosis, while also activating or enhancing autophagy to promote the elimination of inflammation and reduce oxidative stress. Further analysis suggests that the mechanisms of acupuncture regulating autophagy are insufficiently explored. Future research should prioritize the development of more appropriate animal models, analyzing the accuracy of relevant pathways and the specificity of indicators, exploring the synergistic effects among targets and signaling pathways, clarifying the regulatory mechanisms of acupuncture at various stages of autophagy, and evaluating the efficacy of acupuncture in autophagy modulating. This paper offers valuable insights into the regulation of autophagy by acupuncture.
Collapse
Affiliation(s)
- Jing He
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hongxiu Chen
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Zhiqiang Dou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Ru Nie
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jun Zhou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Cong Che
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jie Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| |
Collapse
|
2
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Abbott E, Loockerman C, Matz MV. Modifications to gene body methylation do not alter gene expression plasticity in a reef-building coral. Evol Appl 2024; 17:e13662. [PMID: 38390378 PMCID: PMC10883760 DOI: 10.1111/eva.13662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
As coral reefs continue to decline due to climate change, the role of coral epigenetics (specifically, gene body methylation, GBM) in coral acclimatization warrants investigation. The evidence is currently conflicting. In diverse animal phyla, the baseline GBM level is associated with gene function: continuously expressed "housekeeping" genes are typically highly methylated, while inducible context-dependent genes have low or no methylation at all. Some authors report an association between GBM and the environment and interpret this observation as evidence of the GBM's role in acclimatization. Yet, others argue that the correlation between GBM change and gene expression change is typically absent or negligible. Here, we used the reef-building coral, Acropora millepora, to test whether environmentally driven changes in GBM are associated with a gene's ability to respond to environmental changes (plasticity) rather than expression level. We analyzed two cases of modified gene expression plasticity observed in a 3-week-long heat acclimatization experiment. The first one was a group of heat-induced genes that failed to revert their expression after the coral was translocated back to the control tank. The second case involved genes that changed the magnitude of their response to the daily temperature fluctuations over the course of the experiment. In both cases, we found negligible or no association with GBM change. We conclude that although both gene expression plasticity and GBM can change during acclimatization, there is no direct association between the two. This adds to the increasing volume of evidence that the function of GBM in invertebrates is unrelated to acclimatization on physiological timescales.
Collapse
Affiliation(s)
- Evelyn Abbott
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| | - Coral Loockerman
- University of Hawai'i at Manoa Hawaii Institute of Marine Biology Kaneohe Kaneohe Hawai'i USA
| | - Mikhail V Matz
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| |
Collapse
|
4
|
Ju X, Wang Z, Cai D, Bello SF, Nie Q. DNA methylation in poultry: a review. J Anim Sci Biotechnol 2023; 14:138. [PMID: 37925454 PMCID: PMC10625706 DOI: 10.1186/s40104-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023] Open
Abstract
As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methylation sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA methylation in poultry.
Collapse
Affiliation(s)
- Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Zhijun Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Road, Lin'an, 311300, China
| | - Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Semiu Folaniyi Bello
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
5
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Sheldon EL, Ton R, Boner W, Monaghan P, Raveh S, Schrey AW, Griffith SC. Associations between DNA methylation and telomere length during early life: Insight from wild zebra finches (Taeniopygia guttata). Mol Ecol 2022; 31:6261-6272. [PMID: 34551154 DOI: 10.1111/mec.16187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023]
Abstract
Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere length dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between DNA based biomarkers of ageing, and of physiological reactions to environmental change.
Collapse
Affiliation(s)
- Elizabeth L Sheldon
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Riccardo Ton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Kadawarage RW, Dunislawska A, Siwek M. Ecological footprint of poultry production and effect of environment on poultry genes. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The growing demand for poultry meat and eggs has forced plenty of changes in poultry production in recent years. According to FAO, the total number of poultry in the world in 2019 was 27.9 billion. About 93% of them are chickens. The number of chickens has doubled in the last 30 years. These animals are the most numerous in Asia and America. Hence, poultry meat is the most frequently obtained type of meat in recent years (it is 40.6% of the obtained meat). Focusing on lowering production costs has led to process optimization, which was possible by improving the use of animal genetics, optimizing feeding programs, and new production technologies. The applied process optimization and production increase practices may also lead to a deterioration of the ecological balance through pollution with chemical substances, water consumption, and natural resources. The aim of this paper was to review the current state of knowledge in the field of the ecological footprint of poultry production and the impact on environmental genes.
Collapse
Affiliation(s)
- Ramesha Wishna Kadawarage
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
8
|
Circadian mechanism disruption is associated with dysregulation of inflammatory and immune responses: a systematic review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe circadian rhythms are regulated by the circadian clock which is under the control of suprachiasmatic nucleus of hypothalamus. The central and peripheral clocks on different tissue together synchronize to form circadian system. Factors disrupt the circadian rhythm, such as irregular eating patterns, sleep/wake time, night shift work and temperature. Due to the misalignment of central clock components, it has been recognized as the pathophysiology of lifestyle-related diseases mediated by the inflammation such as diabetes, obesity, neurological disorder and hormonal imbalance. Also we discuss the therapeutic effect of time-restricted feeding over diabetes and obesity caused by miscommunication between central and peripheral clock. The genetic and epigenetic changes involve due to the deregulation of circadian system. The aim of the present review is to discuss the circadian mechanisms that are involved in the complex interaction between host and external factors and its disruption is associated with deregulation of inflammatory and immune responses. Hence, we need to understand the mechanism of functioning of our biological clocks so that it helps us treat health-related problems such as jet lags, sleep disorders due to night-time shift work, obesity and mental disturbances. We hope minimal cost behavioural and lifestyle changes can improve circadian rhythms and presumably provide a better health.
Collapse
|
9
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
10
|
Andrieux C, Biasutti S, Barrieu J, Morganx P, Morisson M, Coustham V, Panserat S, Houssier M. Identification of different critical embryonic periods to modify egg incubation temperature in mule ducks. Animal 2021; 16:100416. [PMID: 34954551 DOI: 10.1016/j.animal.2021.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Egg incubation of mule ducks, mainly used for fatty liver production, is one of the critical phases in this sector. Based on hatching rate, the best incubation parameters have already been well described for poultry, but the literature on ducks is lacking. In this study, we tested different incubation conditions by varying two important factors, temperature and relative humidity, in mule ducks. These variations were applied at different periods during embryogenesis in order to measure the impact of environmental disturbances on different zootechnical performances. The temperature was increased by 1.5 °C (16 h/24) and the relative humidity was set up to 65%, during 10 days. Six 10-day developmental windows were tested, from embryonic day 9 to embryonic day 14. Our results are in line with previous reports showing that increasing incubation temperature, even when relative humidity is adjusted, can have a negative impact on duck embryonic mortality up to 24.5% for the condition E10-E20 (P < 10-5). However, the hatchability can be maintained at the level of the control groups when these modifications are applied on the latest windows (from the 11th embryonic day). Sex ratio, hatching BW, and internal temperature are also sensitive to these incubation changes, and their modification could have a major impact on later zootechnical performance. These results should contribute to the development or embryonic temperature programming approaches, especially for the fatty liver production industry.
Collapse
Affiliation(s)
- C Andrieux
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - S Biasutti
- Univ Pau & Pays Adour, E2S UPPA, IUT Génie Biologique, 40000 Mont de Marsan, France
| | - J Barrieu
- INRAE Bordeaux-Aquitaine, UEPFG (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, 40280 Benquet, France
| | - P Morganx
- INRAE Bordeaux-Aquitaine, UEPFG (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, 40280 Benquet, France
| | - M Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| | - V Coustham
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - S Panserat
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France
| | - M Houssier
- Univ Pau & Pays Adour, E2S UPPA, INRAE, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle 64310, France.
| |
Collapse
|
11
|
Agwunobi DO, Zhang M, Shi X, Zhang S, Zhang M, Wang T, Masoudi A, Yu Z, Liu J. DNA Methyltransferases Contribute to Cold Tolerance in Ticks Dermacentor silvarum and Haemaphysalis longicornis (Acari: Ixodidae). Front Vet Sci 2021; 8:726731. [PMID: 34513977 PMCID: PMC8426640 DOI: 10.3389/fvets.2021.726731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Abstract
DNA methylation, mediated by DNA methyltransferases (Dnmts), is a typical epigenetic process that plays an important role in affecting organism acclimatization and adaptation to environmental changes. However, information about Dnmts and their associations with the cold tolerance of ticks remains meager. Hence, in the present study, the Dnmts in important vector ticks Dermacentor silvarum and Haemaphysalis longicornis were cloned and identified, and their functions in cold response were further explored. Results showed that the length of DsDnmt and DsDnmt1 in D. silvarum, and HlDnmt1 and HlDnmt in H. longicornis were 1,284, 549, 1,500, and 1,613 bp, respectively. Bioinformatics in protein analysis revealed that they were all unstable hydrophilic proteins and were mainly characterized with Dcm (DNA cytosine methyltransferase domain), Dnmt1-RFD (DNA methyltransferase replication foci domain), zf-CXXC (zinc finger-CXXC domain), and BAH (Bromo adjacent homology domain). The relative expression of these Dnmts was reduced after cold treatment for 3 days (P < 0.05), and increased with the extension of treatment. Western blot revealed that Dnmt1 decreased first and then increased significantly (P < 0.05) in both tick species, whereas other Dnmts fluctuated at varying degrees. RNA interference significantly silenced the genes Dnmts (P < 0.01), and mortality increased significantly (P < 0.05), when exposed to sub-lethal temperature, underscoring the important roles of Dnmts during the cold response of D. silvarum and H. longicornis. The above results lay the foundation for further understanding of the epigenetic regulation of DNA methylation in cold acclimatization and adaptation of ticks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
12
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
McCaw BA, Stevenson TJ, Lancaster LT. Epigenetic Responses to Temperature and Climate. Integr Comp Biol 2020; 60:1469-1480. [PMID: 32470117 DOI: 10.1093/icb/icaa049] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species' adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
14
|
Hua QY, Zhang MH, Wang L, Bai LL, Li L, He H, Mustafa A, Liu HH, Song CL. Temperature-sensitive pathways may be involved in duck embryonic developmental recovery from blastoderm dormancy during hatching. Br Poult Sci 2020; 61:366-374. [PMID: 32290702 DOI: 10.1080/00071668.2020.1752910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Birds' newly oviposited blastoderms can survive several weeks in a dormant state during low-temperature storage. Previous studies demonstrated that there is a critical temperature range from 19 to 27°C for chicken embryos. Within this range, the embryo will diapause in a dormant state; once the temperature rises above this range, the blastoderm will break dormancy. 2. Clarifying the mechanism that initiates duck embryo developmental recovery from blastoderm dormancy will be helpful to change temperature control to improve hatching in poultry production. It was hypothesised that there might be some temperature-sensitive genes involved in initiating duck embryo developmental recovery from blastoderm dormancy. 3. To test this hypothesis, the transcriptome of the newly oviposited duck blastoderm and duck embryo (incubated for 48 hours) were sequenced to screen for differentially expressed genes with functions that had been predicted by bioinformatics. 4. The results showed that there were 2416 differentially expressed genes between the two groups, 53 of which were involved in temperature-sensitive pathways. The protein-protein interaction network combined these 53 temperature-sensitive genes and another group of 65 genes, which enriched the development pathway. These results suggested that temperature-sensitive genes may be involved in growth and development related pathways.
Collapse
Affiliation(s)
- Q Y Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - M H Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - L Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - L L Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - H He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - A Mustafa
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| | - C L Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan, P.R China
| |
Collapse
|
15
|
Wang Y, Wang F, Hong DK, Gao SJ, Wang R, Wang JD. Molecular characterization of DNA methyltransferase 1 and its role in temperature change of armyworm Mythimna separata Walker. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21651. [PMID: 31943343 DOI: 10.1002/arch.21651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the addition of cytosine residues in a CpG context (5'-cytosine-phosphate-guanine-3'). As one of the most common mechanisms of epigenetic modification, it plays a crucial role in regulating gene expression and in a diverse range of biological processes across all multicellular organisms. The relationship between temperature and DNA methylation and how it acts on the adaptability of migratory insects remain unknown. In the present work, a 5,496 bp full-length complementary DNA encoding 1,436 amino acids (named MsDnmt1) was cloned from the devastating migratory pest oriental armyworm, Mythimna separata Walker. The protein shares 36.8-84.4% identity with other insect Dnmt1 isoforms. Spatial and temporal expression analysis revealed that MsDnmt1 was highly expressed in adult stages and head tissue. The changing temperature decreased the expression of MsDnmt1 in both high and low temperature condition. Besides, we found that M. separata exhibited the shortest duration time from the last instar to pupae under 36°C environment when injected with DNA methylation inhibitor. Therefore, our data highlight a potential role for DNA methylation in thermal resistance, which help us to understand the biological role adaptability and colonization of migratory pest in various environments.
Collapse
Affiliation(s)
- Yaru Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Falv Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - Ding-Kai Hong
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| |
Collapse
|
16
|
Mishra I, Sharma A, Prabhat A, Batra T, Malik I, Kumar V. Changes in DNA methylation and histone modification gene expression in response to daily food times in zebra finches: epigenetic implications. J Exp Biol 2020; 223:jeb.217422. [DOI: 10.1242/jeb.217422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
We hypothesized that daily food availability times served as an ‘epigenetic’ factor and affected the reproductive physiology in continuously reproducing species. This we tested by measurement of mRNA expression of genes coding for the enzymes involved in DNA methylation-demethylation (dnmts, tets) and histone modification (hat1, hdacs) in the hypothalamus, liver and gonads of male and female zebra finches that were paired held for a year under 12L:12D with access to the time-restricted food availability (TrF: 4-h in morning, TrF-M, or evening, TrF-E) with controls on food ad libitum (FAL). The overall hypothalamic and hepatic expression patterns of hat1 and hdac(s) were similar but those of dnmt(s) and tet(s) were different between males and females. Irrespective of TrF timings, both hat1 and hdac(s) mRNA levels were increased in the hypothalamus, but not in liver in which hat1 mRNA levels were increased in the TrF-M group. While hypothalamic tet(s) were higher in TrF-E males, the hepatic tet(s) were higher in TrF-M birds (tet1, only males). Gonadal expressions were further varied and showed sex differences. Histone modifying genes did not show TrF-effects, except the elevated testicular hdac3 levels. Similarly, testicular dnmt3b and tet2 mRNA levels were increased and decreased in TrF-M and TrF-E, respectively, whereas ovarian dnmt1 and tet2 levels were reduced in TrF-M and tet1 in the TrF-E. Present results suggest that an enforced daily feeding schedule in long term could serve as a conditioning environment that shapes at epigenetic levels, the overall hypothalamic regulation, liver and gonadal functions in diurnal vertebrates.
Collapse
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi – 110 007, India
| |
Collapse
|
17
|
Bird embryos perceive vibratory cues of predation risk from clutch mates. Nat Ecol Evol 2019; 3:1225-1232. [DOI: 10.1038/s41559-019-0929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
|
18
|
Wang Y, Yan X, Liu H, Hu S, Hu J, Li L, Wang J. Effect of thermal manipulation during embryogenesis on the promoter methylation and expression of myogenesis-related genes in duck skeletal muscle. J Therm Biol 2018; 80:75-81. [PMID: 30784491 DOI: 10.1016/j.jtherbio.2018.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
Abstract
Avian embryos are an ideal system to investigate the effect of incubation temperature on embryonic development, but the characteristics and mechanisms of temperature effects on poultry embryonic myogenesis are unclear. In this study, we investigated the effect of increasing the incubation temperature by 1 °C on the expression of nine myogenesis-related genes in ducks and then explored the correlation between the alteration of promoter methylation and the expression of two of the nine genes under thermal manipulation (TM). The qRT-PCR results showed that TM during embryonic days (ED) 1-10 promoted (P < 0.05) the expression of genes in breast muscle (PAX3, PAX7, MYOG, MCK, SIX1, TNNC1) and leg muscle (MYOD, MYOG, MYF5, MCK, AKIRIN2, TNNC1). TM during ED10-20 promoted the expression of PAX3, MYF5 and MCK and inhibited AKIRIN2 expression in breast muscle (P < 0.05); however, it inhibited the expression of PAX3, PAX7, MYOD, MYOG, MYF5, SIX1, AKIRIN2 and TNNC1 and promoted MCK expression in leg muscle (P < 0.05). TM during ED20-27 inhibited the expression of genes in breast muscle (PAX7) and leg muscle (MYOD, MYOG, MYF5, TNNC1) and promoted MCK expression in breast and leg muscle (P < 0.05). Furthermore, with the Sequenom MassARRAY platform, it was observed that the average methylation level of AKIRIN2 (ED10) and TNNC1 (ED20) in leg muscle decreased (P < 0.05) after TM. Notably, we found significant (P < 0.05) inverse correlations between the methylation and mRNA levels of AKIRIN2 under TM during ED1-10 (r = - 0.969) and ED10-20 (r = - 0.805). Taken together, TM during ED1-10 was more favorable for improving duck myogenesis-related gene expression than TM during ED10-20 and ED20-27. TM during duck embryogenesis seemed to have a greater effect on the development of leg muscle than breast muscle and might alter AKIRIN2 expression by changing its promoter methylation status. These findings may be helpful to understand temperature effects on the muscle development of avian embryos and to explore the role of epigenetic regulation during this process.
Collapse
Affiliation(s)
- Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiping Yan
- Agriculture Bureau of Ya'an, Ya'an 625000, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
19
|
De Paoli-Iseppi R, Deagle BE, McMahon CR, Hindell MA, Dickinson JL, Jarman SN. Measuring Animal Age with DNA Methylation: From Humans to Wild Animals. Front Genet 2017; 8:106. [PMID: 28878806 PMCID: PMC5572392 DOI: 10.3389/fgene.2017.00106] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) is a key mechanism for regulating gene expression in animals and levels are known to change with age. Recent studies have used DNAm changes as a biomarker to estimate chronological age in humans and these techniques are now also being applied to domestic and wild animals. Animal age is widely used to track ongoing changes in ecosystems, however chronological age information is often unavailable for wild animals. An ability to estimate age would lead to improved monitoring of (i) population trends and status and (ii) demographic properties such as age structure and reproductive performance. Recent studies have revealed new examples of DNAm age association in several new species increasing the potential for developing DNAm age biomarkers for a broad range of wild animals. Emerging technologies for measuring DNAm will also enhance our ability to study age-related DNAm changes and to develop new molecular age biomarkers.
Collapse
Affiliation(s)
- Ricardo De Paoli-Iseppi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobart, TAS, Australia.,Australian Antarctic DivisionHobart, TAS, Australia
| | | | | | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of TasmaniaHobart, TAS, Australia
| | - Joanne L Dickinson
- Cancer, Genetics and Immunology Group, Menzies Institute for Medical ResearchHobart, TAS, Australia
| | - Simon N Jarman
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin UniversityPerth, WA, Australia.,CSIRO Indian Ocean Marine Research Centre, University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
20
|
Dai TM, Lü ZC, Liu WX, Wan FH, Hong XY. The homology gene BtDnmt1 is Essential for Temperature Tolerance in Invasive Bemisia tabaci Mediterranean Cryptic Species. Sci Rep 2017; 7:3040. [PMID: 28596581 PMCID: PMC5465089 DOI: 10.1038/s41598-017-03373-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading most parts of the world owing to its strong ecological adaptability, particularly its strong resistance to temperature stress. Epigenetic mechanisms play important roles in mediating ecological plasticity. In particular, DNA methylation has been the focus of attempts to understand the mechanism of phenotypic plasticity. The relationship between temperature and DNA methylation and how it affects the adaptability of invasive insects remain unknown. To investigate the temperature resistance role of DNA methyltransferase 1 (Dnmt1) in MED, we cloned and sequenced BtDnmt1 homology and identified its functions under various temperature conditions. The full-length cDNA of MED BtDnmt1 homology was 5,958 bp and has a 4,287 bp open reading frame that encodes a 1,428-amino-acid protein. BtDnmt1 mRNA expression levels were significantly down-regulated after feeding with dsRNA. Furthermore, after feeding with dsBtDnmt1, the MED adults exhibited significantly higher mortality under temperature stress conditions than the controls, suggesting that MED BtDnmt1 homology plays an essential role in the temperature tolerance capacity of MED. Our data improve our understanding of the temperature resistance and temperature adaptability mechanisms that have allowed the successful invasion and colonization of various environments by this alien species.
Collapse
Affiliation(s)
- Tian-Mei Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, 100193, Beijing, 100193, P.R. China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, 100193, Beijing, 100193, P.R. China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, 100193, Beijing, 100193, P.R. China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, 100193, Beijing, 100193, P.R. China.
- Center for Management of Invasive Alien Species, Ministry of Agriculture, Beijing, 100193, China.
| | - Xiao-Yue Hong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
21
|
Paredes U, Radersma R, Cannell N, While GM, Uller T. Low Incubation Temperature Induces DNA Hypomethylation in Lizard Brains. ACTA ACUST UNITED AC 2016; 325:390-5. [PMID: 27328739 DOI: 10.1002/jez.2024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
Developmental stress can have organizational effects on suites of physiological, morphological, and behavioral characteristics. In lizards, incubation temperature is perhaps the most significant environmental variable affecting embryonic development. Wall lizards (Podarcis muralis) recently introduced by humans from Italy to England experience stressfully cool incubation conditions, which we here show reduce growth and increase the incidence of scale malformations. Using a methylation-sensitive AFLP protocol optimized for vertebrates, we demonstrate that this low incubation temperature also causes hypomethylation of DNA in brain tissue. A consistent pattern across methylation-susceptible AFLP loci suggests that hypomethylation is a general response and not limited to certain CpG sites. The functional consequences of hypomethylation are unknown, but it could contribute to genome stability and regulation of gene expression. Further studies of the effects of incubation temperature on DNA methylation in ectotherm vertebrates may reveal mechanisms that explain why the embryonic thermal environment often has physiological and behavioral consequences for offspring.
Collapse
Affiliation(s)
- Ursula Paredes
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Reinder Radersma
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Lund University, Lund, Sweden
| | - Naomi Cannell
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Geoffrey M While
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Tobias Uller
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|