1
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
2
|
Moghadasi F, Roudbarmohammadi S, Amanloo S, Nikoomanesh F, Roudbary M. Evaluation of antifungal activity of natural compounds on growth and aflatoxin B1 production of Aspergillus parasiticus and Aspergillus flavus. Mol Biol Rep 2024; 51:53. [PMID: 38165494 DOI: 10.1007/s11033-023-09102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Aspergillus species cause broad spectrum infections especially invasive lethal infections in immunocompromised patients. This study aimed to assess the antifungal activity of plants and compounds including Aloe vera, Thyme, carvacrol, and nano-encapsulation of carvacrol on the growth and production of aflatoxin B1 production by Aspergillus parasiticus and Aspergillus flavus. METHODS AND RESULTS Minimum inhibitory concentrations of extracts Aloe vera, Thyme, carvacrol, and nanocarvacrol, and fluconazole as a control were determined according to Clinical and Laboratory Standards Institute by serial microdilution protocol. Then, the effect of inhibitory concentrations of these compounds on the aflatoxin B1 production level was evaluated by real-time PCR and high-performance liquid chromatography. Our results indicate that the Aspergillus parasiticus and Aspergillus flavusare sensitive to selected plants and compounds. CONCLUSION Our findings showed that the compounds are appropriate alternative candidates against growth and production of aflatoxin of Aspergillus spp.
Collapse
Affiliation(s)
- Fariba Moghadasi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahla Roudbarmohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Amanloo
- Departnent of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Nikoomanesh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jobe MC, Mthiyane DMN, Dludla PV, Mazibuko-Mbeje SE, Onwudiwe DC, Mwanza M. Pathological Role of Oxidative Stress in Aflatoxin-Induced Toxicity in Different Experimental Models and Protective Effect of Phytochemicals: A Review. Molecules 2023; 28:5369. [PMID: 37513242 PMCID: PMC10386527 DOI: 10.3390/molecules28145369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Doctor M N Mthiyane
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | | - Damian C Onwudiwe
- Department of Chemistry, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Department of Animal Health, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
4
|
Impact of Volatile Organic Compounds on the Growth of Aspergillus flavus and Related Aflatoxin B1 Production: A Review. Int J Mol Sci 2022; 23:ijms232415557. [PMID: 36555197 PMCID: PMC9779742 DOI: 10.3390/ijms232415557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are secondary metabolites of varied chemical nature that are emitted by living beings and participate in their interactions. In addition, some VOCs called bioactive VOCs cause changes in the metabolism of other living species that share the same environment. In recent years, knowledge on VOCs emitted by Aspergillus flavus, the main species producing aflatoxin B1 (AFB1), a highly harmful mycotoxin, has increased. This review presents an overview of all VOCs identified as a result of A. flavus toxigenic (AFB1-producing) and non-toxigenic (non AFB1-producing) strains growth on different substrates, and the factors influencing their emissions. We also included all bioactive VOCs, mixes of VOCs or volatolomes of microbial species that impact A. flavus growth and/or related AFB1 production. The modes of action of VOCs impacting the fungus development are presented. Finally, the potential applications of VOCs as biocontrol agents in the context of mycotoxin control are discussed.
Collapse
|
5
|
Xi Y, Chen J, Guo S, Wang S, Liu Z, Zheng L, Qi Y, Xu P, Li L, Zhang Z, Ding B. Effects of tannic acid on growth performance, relative organ weight, antioxidative status, and intestinal histomorphology in broilers exposed to aflatoxin B 1. Front Vet Sci 2022; 9:1037046. [PMID: 36337182 PMCID: PMC9634217 DOI: 10.3389/fvets.2022.1037046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 08/31/2023] Open
Abstract
A total of 480 one-day-old AA broiler chicks were randomly allocated to one of four treatments in a 2 × 2 factorial to investigate the effects of tannic acid (TA) on growth performance, relative organ weight, antioxidant capacity, and intestinal health in broilers dietary exposed to aflatoxin B1 (AFB1). Treatments were as follows: (1) CON, control diet; (2) TA, CON + 250 mg/kg TA; (3) AFB1, CON + 500 μg/kg AFB1; and (4) TA+AFB1, CON + 250 mg/kg TA + 500 μg/kg AFB1. There were 10 replicate pens with 12 broilers per replicate. Dietary AFB1 challenge increased the feed conversion ratio during days 1 to 21 (P < 0.05). The TA in the diet did not show significant effects on the growth performance of broilers during the whole experiment period (P > 0.05). The liver and kidney relative weight was increased in the AF challenge groups compared with the CON (P < 0.05). The addition of TA could alleviate the relative weight increase of liver and kidney caused by AFB1 (P < 0.05). Broilers fed the AFB1 diets had lower activity of glutathione peroxidase, catalase, total superoxide dismutase, S-transferase, and total antioxidant capacity in plasma, liver and jejunum, and greater malondialdehyde content (P < 0.05). Dietary supplemented with 250 mg/kg TA increased the activities of antioxidative enzymes, and decreased malondialdehyde content (P < 0.05). In addition, AFB1 significantly reduced the villus height and crypt depth ratio in the ileum on day 42 (P < 0.05). In conclusion, supplementation with 250 mg/kg TA could partially protect the antioxidant capacity and prevent the enlargement of liver in broilers dietary challenged with 500 μg/kg AFB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
6
|
Han B, Fu GW, Wang JQ. Inhibition of Essential Oils on Growth of Aspergillus flavus and Aflatoxin B1 Production in Broth and Poultry Feed. Toxins (Basel) 2022; 14:toxins14100655. [PMID: 36287924 PMCID: PMC9611958 DOI: 10.3390/toxins14100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aflatoxin B1 (AFB1), a common contaminant in food and feed during storage, does great harm to human and animal health. Five essential oils (thymol, carvacrol, cinnamaldehyde, eugenol, and citral) were tested for their inhibition effect against Aspergillus flavus (A. flavus) in broth and feed. Cinnamaldehyde and citral were proven to be most effective against A. flavus compared to others and have a synergistic effect when used simultaneously. The broth supplemented with cinnamaldehyde and citral was inoculated with A. flavus (106 CFU/mL) by using the checkerboard method, and mold counts and AFB1 production were tested on days 0, 1, 3, and 5. Similarly, 100 g poultry feed supplemented with the mixture of cinnamaldehyde and citral at the ratio 1:1 was also inoculated with A. flavus, and the same parameters were tested on days 0, 7, 14, and 21. In poultry feed, cinnamaldehyde and citral significantly reduced mold counts and AFB1 concentrations (p < 0.05). Results showed that cinnamaldehyde and citral have a positive synergy effect and could both inhibit at least 90% the fungal growth and aflatoxin B1 production at 40 μg/mL in broth and poultry feed, and could be an alternative to control aflatoxin contamination in food and feed in future.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China
- Correspondence: (B.H.); (J.-Q.W.)
| | - Guang-Wu Fu
- China Animal Husbandry Industry Corporation, Ltd., No. 156 Beiqing Road, Haidian District, Beijing 100095, China
| | - Jin-Quan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China
- Correspondence: (B.H.); (J.-Q.W.)
| |
Collapse
|
7
|
Mwakosya AW, Limbu SM, Majaliwa N, Zou X, Shi J, Kibazohi O. Aflatoxin B 1 variations in animal feeds along the supply chain in Tanzania and its possible reduction by heat treatment. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2045908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Anjelina W. Mwakosya
- Department of Food Science and Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Nuria Majaliwa
- Department of Food Science and Engineering, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Xiaobo Zou
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiyong Shi
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Oscar Kibazohi
- Department of Food Science and Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
8
|
Qu C, Li Z, Wang X. UHPLC-HRMS-Based Untargeted Lipidomics Reveal Mechanism of Antifungal Activity of Carvacrol against Aspergillus flavus. Foods 2021; 11:foods11010093. [PMID: 35010219 PMCID: PMC8750229 DOI: 10.3390/foods11010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/13/2023] Open
Abstract
Aspergillus flavus is a common contaminant in grain, oil and their products. Its metabolite aflatoxin B1 (AFB1) has been proved to be highly carcinogenic. Therefore, it is of great importance to find possible antifungal substances to inhibit the growth and toxin production of Aspergillus flavus. Carvacrol (CV) was reported as a potent antifungal monoterpene derived from plants. In this paper, the antifungal effects and mechanism of CV on Aspergillus flavus were investigated. CV was shown good inhibition on the growth of Aspergillus flavus and the production of AFB1. CV used in concentrations ranging from 0, 50, 100 and 200 μg/mL inhibited the germination of spores, mycelia growth and AFB1 production dose-dependently. To explore the antifungal mechanism of CV on Aspergillus flavus, we also detected the ergosterol content of Aspergillus flavus mycelia, employed Scanning Electron Microscopy (SEM) to observe mycelia morphology and utilized Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) to explore the lipidome profiles of Aspergillus flavus. The results showed that the production of ergosterol of mycelia was reduced as the CV treatment concentration increased. SEM photographs demonstrated a rough surface and a reduction in the thickness of hyphae in Aspergillus flavus treated with CV (200 µg/mL). In positive ion mode, 21 lipids of Aspergillus flavus mycelium were downregulated, and 11 lipids were upregulated after treatment with 200-µg/mL CV. In negative ion mode, nine lipids of Aspergillus flavus mycelium were downregulated, and seven lipids upregulated after treatment with 200-µg/mL CV. In addition, the analysis of different lipid metabolic pathways between the control and 200-µg/mL CV-treated groups demonstrated that glycerophospholipid metabolism was the most enriched pathway related to CV treatment.
Collapse
Affiliation(s)
- Chenling Qu
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| | - Zhuozhen Li
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| |
Collapse
|
9
|
Ranjith A, Srilatha C, Lekshmi P, Rameshbabu N. Antiaflatoxigenic potential of essential oils of spices – a review. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are important food contaminants posing a significant threat to food and feed safety and public health. Among the mycotoxins, aflatoxins are deemed to be a more significant contaminant due to their potent carcinogenic, and hepatotoxic effects, and their levels are highly regulated in the international food trade. Phytochemicals are considered a major source of natural antifungal agents. The volatile nature of essential oil of plants makes them ideal candidates for antifungal agents due to their ability to distribute in free air spaces in closed containers and penetrate through heterogeneous food materials. In these, essential oils in spices attain special attention due to their commercial availability and low toxicity. This article reviews the antiaflatoxigenic capacity of spice essential oils and the effect of essential oil composition on the activity and mechanism of antifungal action and is expected to be useful for the planning of further research in the subject area.
Collapse
Affiliation(s)
- A. Ranjith
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - C.M. Srilatha
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - P.C. Lekshmi
- Spices Board Quality Evaluation Laboratory, R-11, SIPCOT, Gummidipoondi, Tamil Nadu 601201, India
| | - N. Rameshbabu
- Spices Board Quality Evaluation Laboratory, Suganda Bhavan, Palarivattom, Cochin, Kerala 682025, India
| |
Collapse
|
10
|
RAHAL ANU, KUMAR AMIT. Strategies to combat antimicrobial resistance in Indian scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antimicrobial resistance (AMR) is one of the major public health crisis recognised globally. Microbial infections cause significant productivity losses in animals and humans. In livestock, these microbial infections reduce the growth rates and fertility, diminish production of meat and milk, and occasionally lead to mortality, and are therefore, a major concern for animal welfare. In the dearth of alternative prophylactic measures, antibiotics remain the principal tool for their management. Once an antibiotic is used rampantly, resistance against it is inevidently seen in the microbe population and the hunt for a new drug grows. Discovery and development of a new antimicrobial drug is a time taking and expensive procedure with limited assurance of success. As a result, the past few decades have witnessed only a very few new classes of antibiotics. If the AMR can be restricted or reverted, the success rate of antimicrobial therapy can be boosted and many public health issues be avoided. All these ask for a comprehensive plan to prevent or reduce the antimicrobial resistance and economic losses to the animal husbandry sector. The present review provides an overview of AMR in India, mechanism of its occurrence and the possible roadmap to combat the emerging threat of AMR in Indian scenario.
Collapse
|
11
|
Umaya SR, Vijayalakshmi YC, Sejian V. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon 2021; 200:55-68. [PMID: 34228958 DOI: 10.1016/j.toxicon.2021.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/30/2021] [Accepted: 06/26/2021] [Indexed: 12/28/2022]
Abstract
Aflatoxins (AFs) are a class of mycotoxins produced by the toxigenic Aspergillus fungi and are common contaminants of foods and feeds. Aflatoxin B1 (AFB1), the most potent aflatoxin, is well characterized to reduce productive performance and mortality in broilers. This exclusive review summarizes the efficacy of various plant products and phytochemicals to counteract AFB1 toxicity in broilers. The biochemical and molecular mode of action of AFB1 to induce liver damage, genotoxicity, immunosuppression and the protective effect of plant products against such mechanisms and their toxic effects are discussed. The link between antioxidant, immunomodulatory and hepatoprotective functions of plant products; oxidative stress and AFB1 macromolecular adducts mediated AFB1 toxicity are covered. Efficacy of Satureja khuzistanica, Zataria multiflora Boiss, Thymus vulgaris, Sauropsus androgynus, Hemidesmus indicus, Leucas aspera, Moringa oleifera, Eclipta alba, Curcuma longa, Silybum marianum, Urtica dioica, and citrus fruit are summarized. The anti-aflatoxic effect of water-soluble substances of wheat, grape seed proanthocyanidin extract and phytochemicals like thymol, carvarol, piperine, transcinnamaldehyde, resveratrol, curcumin, and silymarin are also discussed. Specific plant products and phytochemicals are shown to be effective against AF toxicity in broilers and could represent an important tool to reduce health and economic losses associated with AFB1 exposure.
Collapse
Affiliation(s)
- Suganthi R Umaya
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560 030, Karnataka, India.
| | - Y C Vijayalakshmi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560 030, Karnataka, India
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, 560 030, Karnataka, India
| |
Collapse
|
12
|
Archer M, Xu J. Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future. Genes (Basel) 2021; 12:genes12070960. [PMID: 34202507 PMCID: PMC8307107 DOI: 10.3390/genes12070960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.
Collapse
Affiliation(s)
| | - Jianping Xu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27934); Fax: +1-905-522-6066
| |
Collapse
|
13
|
Adeeyo AO, Edokpayi JN, Alabi MA, Msagati TAM, Odiyo JO. Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
This review aims at establishing the emerging applications of phytobiotics in water treatment and disinfection.
Results
Statistical analysis of data obtained revealed that the use of plant product in water treatment needs more research attention. A major observation is that plants possess multifaceted components and can be sustainably developed into products for water treatment. The seed (24.53%), flower (20.75), leaf (16.98%) and fruit (11.32%) biomasses are preferred against bulb (3.77%), resin (1.89%), bark (1.89%) and tuber (1.89%). The observation suggests that novel applications of plant in water treatment need further exploration since vast and broader antimicrobial activities (63.63%) is reported than water treatment application (36.37%).
Conclusions
This review has revealed the existing knowledge gaps in exploration of plant resources for water treatment and product development. Chemical complexity of some plant extracts, lack of standardisation, slow working rate, poor water solubility, extraction and purification complexities are limitations that need to be overcome for industrial adoption of phytochemicals in water treatment. The field of phytobiotics should engage modern methodologies such as proteomics, genomics, and metabolomics to minimise challenges confronting phytobiotic standardisation. The knowledge disseminated awaits novel application for plant product development in water treatment.
Collapse
|
14
|
The inhibitory mechanism of methyl jasmonate on Aspergillus flavus growth and aflatoxin biosynthesis and two novel transcription factors are involved in this action. Food Res Int 2021; 140:110051. [DOI: 10.1016/j.foodres.2020.110051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
|
15
|
Pan L, Chang P, Jin J, Yang Q, Xing F. Dimethylformamide Inhibits Fungal Growth and Aflatoxin B 1 Biosynthesis in Aspergillus flavus by Down-Regulating Glucose Metabolism and Amino Acid Biosynthesis. Toxins (Basel) 2020; 12:toxins12110683. [PMID: 33138160 PMCID: PMC7692752 DOI: 10.3390/toxins12110683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by plant fungal pathogens infecting crops with strong carcinogenic and mutagenic properties. Dimethylformamide (DMF) is an excellent solvent widely used in biology, medicine and other fields. However, the effect and mechanism of DMF as a common organic solvent against fungal growth and AFs production are not clear. Here, we discovered that DMF had obvious inhibitory effect against A. flavus, as well as displayed complete strong capacity to combat AFs production. Hereafter, the inhibition mechanism of DMF act on AFs production was revealed by the transcriptional expression analysis of genes referred to AFs biosynthesis. With 1% DMF treatment, two positive regulatory genes of AFs biosynthetic pathway aflS and aflR were down-regulated, leading to the suppression of the structural genes in AFs cluster like aflW, aflP. These changes may be due to the suppression of VeA and the subsequent up-regulation of FluG. Exposure to DMF caused the damage of cell wall and the dysfunction of mitochondria. In particular, it is worth noting that most amino acid biosynthesis and glucose metabolism pathway were down-regulated by 1% DMF using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Taken together, these RNA-Seq data strongly suggest that DMF inhibits fungal growth and aflatoxin B1 (AFB1) production by A. flavus via the synergistic interference of glucose metabolism, amino acid biosynthesis and oxidative phosphorylation.
Collapse
Affiliation(s)
- Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (L.P.); (J.J.)
| | - Peng Chang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.C.); (Q.Y.)
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (L.P.); (J.J.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.C.); (Q.Y.)
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (L.P.); (J.J.)
- Correspondence: ; Tel.: +86-10-6281-1868
| |
Collapse
|
16
|
The Potential of Plant-Based Bioactive Compounds on Inhibition of Aflatoxin B1 Biosynthesis and Down-regulation of aflR, aflM and aflP Genes. Antibiotics (Basel) 2020; 9:antibiotics9110728. [PMID: 33113979 PMCID: PMC7690750 DOI: 10.3390/antibiotics9110728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
The use of plant extracts in pre- and post-harvest disease management of agricultural crops to cope with aflatoxin B1 contamination has shown great promise due to their capability in managing toxins and safe-keeping the quality. We investigated the anti-aflatoxigenic effect of multiple doses of eight plant extracts (Heracleum persicum, Peganum harmala, Crocus sativus, Trachyspermum ammi, Rosmarinus officinalis, Anethum graveolens, Berberis vulgaris, Berberis thunbergii) on Aspergillus flavus via LC-MS and the down-regulatory effect of them on aflR, aflM and aflP genes involved in the aflatoxin B1 biosynthesis pathway using RT-qPCR analyses. Our results showed that H. persicum (4 mg/mL), P. harmala (6 mg/mL) and T. ammi (2 mg/mL) completely stopped the production of aflatoxin B1, without inducing significant changes in A. flavus growth. Furthermore, our findings showed a highly significant correlation between the gene expression and the aflatoxin B1 biosynthesis, such that certain doses of the extracts reduced or blocked the expression of the aflR, aflM and aflP and consequently reduced the synthesis of aflatoxin B1. Interestingly, compared to the regulatory gene (aflR), the down-regulation of expression in the structural genes (aflM and aflP) was more consistent and correlated with the inhibition of aflatoxin B1 production. Overall, this study reveals the anti-aflatoxigenic mechanisms of the selected plant extracts at the gene expression level and provides evidence for their use in plant and crop protection.
Collapse
|
17
|
Shen Y, Nie J, Kuang L, Zhang J, Li H. DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables. Microb Biotechnol 2020; 14:323-362. [PMID: 32207561 PMCID: PMC7936329 DOI: 10.1111/1751-7915.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole‐genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing‐based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.
Collapse
Affiliation(s)
- Youming Shen
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jiyun Nie
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lixue Kuang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jianyi Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Haifei Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| |
Collapse
|
18
|
Okano T, Kobayashi N, Izawa K, Yoshinari T, Sugita-Konishi Y. Whole Genome Analysis Revealed the Genes Responsible for Citreoviridin Biosynthesis in Penicillium citreonigrum. Toxins (Basel) 2020; 12:toxins12020125. [PMID: 32075322 PMCID: PMC7077241 DOI: 10.3390/toxins12020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Citreoviridin (CTV) is a mycotoxin that is produced by Aspergillus terreus, Eupenicillium ochrosalmoneum and Penicillium citreonigrum, and CTV has been detected in a wide range of cereal grains throughout the world. Furthermore, it is especially a serious problem in regions where rice is consumed as a staple food. Moreover, CTV is a well-known yellow rice toxin, and outbreaks of beriberi have occurred due to consumption of rice that is contaminated by CTV even in the recent years. Although CTV biosynthetic genes of A. terreus have been described, those of P. citreonigrum remain unclear, which is concerning since P. citreonigrum is the main cause of CTV contamination in rice. In the present study, we determined the draft genome of the P. citreonigrum strain IMI92228 and revealed the presence of all four genes that form a gene cluster and that are homologous to the CTV biosynthesis genes of A. terreus. The expression of these four homologous genes were highly correlated with CTV production, suggesting that they may play an important role in CTV biosynthesis in P. citreonigrum. We concluded that the gene cluster is a CTV biosynthesis cluster of P. citreonigrum. The findings will contribute to the understanding of the biosynthetic pathway of CTV and will ultimately lead to improvements in the CTV management of agricultural products.
Collapse
Affiliation(s)
- Takumi Okano
- Graduate School of Life and Environmental Sciences, Azabu University, Kanagawa 252-5201, Japan
| | - Naoki Kobayashi
- Graduate School of Life and Environmental Sciences, Azabu University, Kanagawa 252-5201, Japan
- Correspondence: ; Tel.: +81-42-769-1887
| | - Kazuki Izawa
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health and Sciences, Kanagawa 210-9501, Japan
| | - Yoshiko Sugita-Konishi
- Graduate School of Life and Environmental Sciences, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
19
|
Patel J, Yin HB, Bauchan G, Mowery J. Inhibition of Escherichia coli O157:H7 and Salmonella enterica virulence factors by benzyl isothiocyanate. Food Microbiol 2019; 86:103303. [PMID: 31703885 DOI: 10.1016/j.fm.2019.103303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/17/2023]
Abstract
Escherichia coli O157:H7 and Salmonella enterica are foodborne pathogens with major public health concern in the U.S. These pathogens utilize several virulence factors to initiate infections in humans. The antimicrobial effect of seven glucosinolate hydrolysis compounds against Salmonella and E. coli O157:H7 was investigated by the disc diffusion assay. Among the tested compounds, benzyl isothiocyanate (BIT), which exerted the highest antimicrobial activity, was evaluated for its anti-virulence properties against these pathogens. The effect of BIT on motility of Salmonella and E. coli O157:H7 and Shiga toxin production by E. coli O157:H7 was determined by the motility assay and ELISA procedure, respectively. Confocal and transmission electron microscopy (TEM) procedures were used to determine bacterial damage at the cellular level. Results revealed that sub-inhibitory concentrations (SICs) of BIT significantly inhibited the motility of both bacteria (P < 0.05). Shiga toxin production by E. coli O157:H7 was decreased by ~32% in the presence of BIT at SICs. TEM results showed the disruption of outer membrane, release of cytoplasmic contents, and cell lysis following BIT treatment. Results suggest that BIT could be potentially used to attenuate Salmonella and E. coli O157:H7 infections by reducing the virulence factors including bacterial motility and Shiga toxin production.
Collapse
Affiliation(s)
- Jitendra Patel
- U.S. Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA.
| | - Hsin-Bai Yin
- U.S. Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA
| | - Gary Bauchan
- U.S. Department of Agriculture, Agricultural Research Service, SGIL Electron and Confocal Microscopy Unit, Beltsville, MD 20705, USA
| | - Joseph Mowery
- U.S. Department of Agriculture, Agricultural Research Service, SGIL Electron and Confocal Microscopy Unit, Beltsville, MD 20705, USA
| |
Collapse
|
20
|
Wang P, Ma L, Jin J, Zheng M, Pan L, Zhao Y, Sun X, Liu Y, Xing F. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci Rep 2019; 9:10499. [PMID: 31324857 PMCID: PMC6642104 DOI: 10.1038/s41598-019-47003-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1), the predominant and most carcinogenic naturally polyketide, is mainly produced by Aspergillus flavus and Aspergillus parasiticus. Cinnamaldehyde has been reported for inhibiting the growth and aflatoxin biosynthesis in A. flavus. But its molecular mechanism of action still remains largely ambiguous. Here, the anti-aflatoxigenic mechanism of cinnamaldehyde in A. flavus was investigated via a comparative transcriptomic analysis. The results indicated that twenty five of thirty genes in aflatoxin cluster showed down-regulation by cinnamaldehyde although the cluster regulators aflR and aflS were slightly up-regulated. This may be due to the up-regulation of the oxidative stress-related genes srrA, msnA and atfB being caused by the significant down-regulation of the diffusible factor FluG. Cinnamaldehyde also inhibited aflatoxin formation by perturbing GPCRs and oxylipins normal function, cell wall biosynthesis and redox equilibrium. In addition, accumulation of NADPH due to up-regulation of pentose phosphate pathway drove acetyl-CoA to lipids synthesis rather than polyketides. Both GO and KEGG analysis suggested that pyruvate and phenylalanine metabolism, post-transcriptional modification and key enzymes biosynthesis might be involved in the suppression of AFB1 production by cinnamaldehyde. This study served to decipher the anti-aflatoxigenic properties of cinnamaldehyde in A. flavus and provided powerful evidence for its use in practice.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, P.R. China.
| |
Collapse
|
21
|
Chen CH, Yin HB, Upadhayay A, Brown S, Venkitanarayanan K. Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food. Int J Food Microbiol 2019; 296:1-7. [PMID: 30818250 DOI: 10.1016/j.ijfoodmicro.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/30/2023]
Abstract
Salmonella enterica is a major human pathogen that is responsible for 23,000 hospitalizations annually in the United States. Contact with contaminated pet food and infected companion animals can transmit salmonellosis to humans. Recent multistate human outbreaks of salmonellosis linked to commercial contaminated dry dog foods underscore the need for controlling the pathogen in pet foods for protecting pet and public health. In this study, the efficacy of five Generally Recognized as Safe (GRAS) status, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC), carvacrol (CR), thymol (TY), eugenol (EG), and caprylic acid (CA) applied as a vegetable oil or chitosan based antimicrobial spray on dry pet food for reducing Salmonella Schwarzengrund was investigated. Three hundred gram portions of a commercial dry dog food were inoculated with a two-strain mixture of nalidixic acid (NA) resistant S. Schwarzengrund (~6 log CFU/g), followed by a spray treatment with 0%, 0.5%, 1% or 2% of TC, CR, TY, EG or CA in combination with 5% vegetable oil or 1% chitosan as a carrier. The control and treated dog food samples were stored at 25 °C for 28 days. On days 0, 1, 3, 5, 7, 14, 21, and 28, Salmonella on pet food was enumerated by serial dilution and plating on xylose lysine desoxycholate (XLD) agar. All PDAs at 1% and 2% applied in vegetable oil or chitosan reduced S. Schwarzengrund by at least ~2 log CFU/g on day 3 of storage when compared to control (P < 0.05). No significant reductions in Salmonella were observed on feed sprayed with only vegetable oil or chitosan (P > 0.05). Overall, 2% TC in vegetable oil or chitosan was the most effective treatment, where at least 3 to 3.5 log CFU/g reduction in bacterial populations was observed during storage (P < 0.05). Results suggest that the aforementioned PDAs could potentially be used as an antimicrobial spray to reduce S. Schwarzengrund on dry dog food. However, further studies on the acceptance of PDA-treated dry food by dogs are needed.
Collapse
Affiliation(s)
- Chi-Hung Chen
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext. Unit 4040, 06269 Storrs, CT, USA
| | - Hsin-Bai Yin
- United States Department of Agriculture, ARS, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Building 201 BARC-East, 20705 Beltsville, MD, USA
| | - Abhinav Upadhayay
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, 72701-3100 Fayetteville, AR, USA
| | - Stephanie Brown
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext. Unit 4040, 06269 Storrs, CT, USA
| | - Kumar Venkitanarayanan
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext. Unit 4040, 06269 Storrs, CT, USA.
| |
Collapse
|
22
|
Abd El-Hack ME, Samak DH, Noreldin AE, El-Naggar K, Abdo M. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31971-31986. [PMID: 30229484 DOI: 10.1007/s11356-018-3197-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|
23
|
He TF, Wang LH, Niu DB, Wen QH, Zeng XA. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch Microbiol 2018; 201:451-458. [PMID: 30293114 DOI: 10.1007/s00203-018-1572-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/29/2018] [Accepted: 09/09/2018] [Indexed: 01/17/2023]
Abstract
In this study, the antimicrobial mechanism of cinnamaldehyde (CIN) against Gram-negative Escherichia coli ATCC 25922 (E. coli) based on membrane and gene regulation was investigated. Treatment with low concentration (0, 1/8, 1/4, 3/8 MIC) of CIN can effectively suppress the growth of E. coli by prolonging its lag phase and Raman spectroscopy showed obvious distinction of the E. coli after being treated with these concentration of CIN. The determination of relative conductivity indicated that CIN at relatively high concentration (0, 1, 2, 4 MIC) can increase the cell membrane permeability, causing the leakage of cellular content. Besides, the content of malondialdehyde (MDA) and the activity of total superoxide dismutase (SOD) of E. coli increased with increasing treatment concentration of CIN, implying that CIN can cause oxidative damage on E. coli cell membrane and induce the increase of total SOD activity to resist this oxidative harm. Moreover, quantitative real-time RT-PCR (qRT-PCR) analysis revealed the relationship between expression of antioxidant genes (SODa, SODb, SODc) and treatment CIN concentration, suggesting that SOD, especially SODc, played a significant role in resistance of E. coli to CIN. The underlying inactivation processing of CIN on E. coli was explored to support CIN as a potential and natural antimicrobial agent in food industry.
Collapse
Affiliation(s)
- Tian-Fu He
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Lang-Hong Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qing-Hui Wen
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
24
|
Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: A comprehensive review. Phytother Res 2018; 32:1675-1687. [PMID: 29744941 DOI: 10.1002/ptr.6103] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Carvacrol (CV) is a phenolic monoterpenoid found in essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild bergamot (Citrus aurantium bergamia), and other plants. Carvacrol possesses a wide range of bioactivities putatively useful for clinical applications such antimicrobial, antioxidant, and anticancer activities. Carvacrol antimicrobial activity is higher than that of other volatile compounds present in essential oils due to the presence of the free hydroxyl group, hydrophobicity, and the phenol moiety. The present review illustrates the state-of-the-art studies on the antimicrobial, antioxidant, and anticancer properties of CV. It is particularly effective against food-borne pathogens, including Escherichia coli, Salmonella, and Bacillus cereus. Carvacrol has high antioxidant activity and has been successfully used, mainly associated with thymol, as dietary phytoadditive to improve animal antioxidant status. The anticancer properties of CV have been reported in preclinical models of breast, liver, and lung carcinomas, acting on proapoptotic processes. Besides the interesting properties of CV and the toxicological profile becoming definite, to date, human trials on CV are still lacking, and this largely impedes any conclusions of clinical relevance.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, 61663-335, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, School of Pharmacy, University of Concepcion, Concepcion, Chile
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Bioregión Building, Avenida del Conocimiento s/n, Granada, Spain
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Soltani-Nejad
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
26
|
Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med 2017; 8:266-275. [PMID: 28869082 PMCID: PMC5747506 DOI: 10.1016/j.jaim.2017.05.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/09/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
The discovery of antibiotics in the previous century lead to reduction in mortality and morbidity due to infectious diseases but their inappropriate and irrational use has resulted in emergence of resistant microbial populations. Alteration of target sites, active efflux of drugs and enzymatic degradations are the strategies employed by the pathogenic bacteria to develop intrinsic resistance to antibiotics. This has led to an increased interest in medicinal plants since 25-50% of current pharmaceuticals are plant derived. Crude extracts of medicinal plants could serve as an alternate source of resistance modifying agents owing to the wide variety of secondary metabolites. These metabolites (alkaloids, tannins, polyphenols etc.) could act as potentials for antimicrobials and resistance modifiers. Plant extracts have the ability to bind to protein domains leading to modification or inhibition protein-protein interactions. This enables the herbals to also present themselves as effective modulators of host related cellular processes viz immune response, mitosis, apoptosis and signal transduction. Thus they may exert their activity not only by killing the microorganism but by affecting key events in the pathogenic process, thereby, the bacteria, fungi and viruses may have a reduced ability to develop resistance to botanicals. The article is meant to stimulate research wherein the cidal activity of the extract is not the only parameter considered but other mechanism of action by which plants can combat drug resistant microbes are investigated. The present article emphasizes on mechanisms involved in countering multi drug resistance.
Collapse
Affiliation(s)
- Pooja D Gupta
- The Foundation for Medical Research, 84-A, R.G. Thadani Marg, Worli, Mumbai, 400 018, Maharashtra, India
| | - Tannaz J Birdi
- The Foundation for Medical Research, 84-A, R.G. Thadani Marg, Worli, Mumbai, 400 018, Maharashtra, India.
| |
Collapse
|
27
|
Mmongoyo J, Nair M, Linz J, Wu F, Mugula J, Dissanayake A, Zhang C, Day D, Wee J, Strasburg G. Bioactive compounds in Diospyros mafiensis roots inhibit growth, sporulation and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diospyros mafiensis F. White is a medicinal shrub or small tree (6 m tall) widely distributed in the Zanzibar-Inhambane regional mosaic and traditionally used to treat leprosy, diarrhoea, and skin fungal infections in Tanzania and Mozambique. Our objective was to determine the anti-aflatoxigenic properties of compounds from D. mafiensis root bark against vegetative growth, sporulation and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Bioassay-guided extraction, fractionation, and isolation of bioactive compounds using A. parasiticus B62 were employed. The bioactive compounds were elucidated using 1H and 13CNMR and LC-MS. Growth inhibition was determined by measuring the colony diameter of A. flavus AF3357 and A. parasiticus SU-1 ATCC56775. Inhibitory effects on sporulation were estimated using a haemocytometer. Total aflatoxin was quantified by direct competitive enzyme-linked immunosorbent assay (ELISA). Bioactive compounds diosquinone (DQ) and 3-hydroxydiosquinone (3HDQ) were identified. DQ weakly inhibited A. flavus and A. parasiticus vegetative growth (MIC50 > 100 µg/ml) and 3HDQ strongly inhibited A. flavus (MIC50 = 14.9 µg/ml) and A. parasiticus (MIC50 = 39.1 µg/ml). DQ strongly reduced total aflatoxin production by A. flavus from 157 to 36 ng/plate, and by A. parasiticus from 1,145 ng/plate to 45 ng/plate at 100 µg/ml. 3HDQ reduced total aflatoxin production by A. parasiticus from 1,145 to 32 ng/plate; stimulated production by A. flavus from 157 to 872 ng/plate at 12.5 µg/ml but reduced to 45 ng/plate at 100 µg/ml. In summary, DQ and 3HDQ could be used as natural antifungal compounds to prevent mould growth and aflatoxin accumulation in food and feed.
Collapse
Affiliation(s)
- J.A. Mmongoyo
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - M.G. Nair
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - J.E. Linz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - F. Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - J.K. Mugula
- Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006, Morogoro, Tanzania
| | - A.A. Dissanayake
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - C. Zhang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - D.M. Day
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - J.M. Wee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - G.M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Upadhyay A, Mooyottu S, Yin H, Nair MS, Bhattaram V, Venkitanarayanan K. Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts. MEDICINES (BASEL, SWITZERLAND) 2015; 2:186-211. [PMID: 28930207 PMCID: PMC5456214 DOI: 10.3390/medicines2030186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 06/07/2023]
Abstract
Many pathogenic bacteria and fungi produce potentially lethal toxins that cause cytotoxicity or impaired cellular function either at the site of colonization or other locations in the body through receptor-mediated interactions. Various factors, including biotic and abiotic environments, competing microbes, and chemical cues affect toxin expression in these pathogens. Recent work suggests that several natural compounds can modulate toxin production in pathogenic microbes. However, studies explaining the mechanistic basis for their effect are scanty. This review discusses the potential of various plant-derived compounds for reducing toxin production in foodborne and other microbes. In addition, studies highlighting their anti-toxigenic mechanism(s) are discussed.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Hsinbai Yin
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|