1
|
Amevor FK, Cui Z, Du X, Feng J, Shu G, Ning Z, Xu D, Deng X, Song W, Wu Y, Cao X, Wei S, He J, Kong F, Du X, Tian Y, Karikari B, Li D, Wang Y, Zhang Y, Zhu Q, Zhao X. Synergy of Dietary Quercetin and Vitamin E Improves Cecal Microbiota and Its Metabolite Profile in Aged Breeder Hens. Front Microbiol 2022; 13:851459. [PMID: 35656004 PMCID: PMC9152675 DOI: 10.3389/fmicb.2022.851459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, the synergistic effects of quercetin (Q) and vitamin E (E) on cecal microbiota composition and function, as well as the microbial metabolic profile in aged breeder hens were investigated. A total of 400 (65 weeks old) Tianfu breeder hens were randomly allotted to four experimental groups (four replicates per group). The birds were fed diets containing quercetin at 0.4 g/kg, vitamin E (0.2 g/kg), quercetin and vitamin E (QE; 0.4 g/kg and 0.2 g/kg), and a basal diet for a period of 10 wks. After the 10 week experimental period, the cecal contents of 8 aged breeder hens per group were sampled aseptically and subjected to high-throughput 16S rRNA gene sequencing and untargeted metabolomic analysis. The results showed that the relative abundances of phyla Bacteroidota, Firmicutes, and Actinobacteriota were the most prominent among all the dietary groups. Compared to the control group, the relative abundance of the families Bifidobacteriaceae, Lachnospiraceae, Tannerellaceae, Mathonobacteriaceae, Barnesiellaceae, and Prevotellaceae were enriched in the QE group; and Bacteroidaceae, Desulfovibrionaceae, Peptotostretococcaceae, and Fusobacteriaceae were enriched in the Q group, whereas those of Lactobacillaceae, Veillonellaceae, Ruminococcaceae, Akkermansiaceae, and Rikenellaceae were enriched in the E group compared to the control group. Untargeted metabolomics analyses revealed that Q, E, and QE modified the abundance of several metabolites in prominent pathways including ubiquinone and other terpenoid-quinone biosynthesis, regulation of actin cytoskeleton, insulin secretion, pancreatic secretion, nicotine addiction, and metabolism of xenobiotics by cytochrome P450. Furthermore, key cecal microbiota, significantly correlated with important metabolites, for example, (S)-equol positively correlated with Alistipes and Chlamydia in E_vs_C, and negatively correlated with Olsenella, Paraprevotella, and Mucispirillum but, a contrary trend was observed with Parabacteroides in QE_vs_C. This study establishes that the synergy of quercetin and vitamin E alters the cecal microbial composition and metabolite profile in aged breeder hens, which lays a foundation for chicken improvement programs.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weizhen Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Benjamin Karikari
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Nanjing Agricultural University, Nanjing, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Trujillo M, Kharbanda A, Corley C, Simmons P, Allen AR. Tocotrienols as an Anti-Breast Cancer Agent. Antioxidants (Basel) 2021; 10:1383. [PMID: 34573015 PMCID: PMC8472290 DOI: 10.3390/antiox10091383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/09/2022] Open
Abstract
In the past few years, breast cancer has become the most prevalent type of cancer. The majority of patients receive combinatorial chemotherapy treatments, which may result in increased risk of developing drug resistance, a reduced quality of life, and substantial side effects. Treatment modalities that could lessen the physical toll of standard treatments or act in synergy with chemotherapeutic treatments would benefit women worldwide. Research into tocotrienols has thus far demonstrated their potential to be such an agent, with tocotrienols surpassing the pharmacological potential of tocopherols. Further research using in vitro and preclinical breast cancer models to support clinical trials is needed. This review uses bibliometric analysis to highlight this gap in research and summarizes the current and future landscape of tocotrienols as an anti-breast cancer agent.
Collapse
Affiliation(s)
- Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Gao S, Li R, Heng N, Chen Y, Wang L, Li Z, Guo Y, Sheng X, Wang X, Xing K, Ni H, Qi X. Effects of dietary supplementation of natural astaxanthin from Haematococcus pluvialis on antioxidant capacity, lipid metabolism, and accumulation in the egg yolk of laying hens. Poult Sci 2020; 99:5874-5882. [PMID: 33142505 PMCID: PMC7647864 DOI: 10.1016/j.psj.2020.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 01/21/2023] Open
Abstract
The present study evaluated the effects of natural astaxanthin (ASTA) from Haematococcus pluvialis on the antioxidant capacity, lipid metabolism, and ASTA accumulation in the egg yolk of laying hens. Hy-Line Brown layers (n = 288, 50 wk old) were randomly assigned to 1 of 4 dietary treatment groups. Each group had 6 replicates of 12 hens each. All birds were given a corn-soybean meal-based diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 wk. The results showed that the total antioxidant capacity, superoxide dismutase level, and glutathione peroxidase level in the plasma, livers, and egg yolks were significantly increased in the ASTA groups compared with those of the control group (P < 0.05), whereas the content of malondialdehyde linearly decreased (P < 0.05). The plasma levels of high-density and very-low-density lipoprotein cholesterol in the ASTA groups were significantly higher than those in the control group (P < 0.05). In addition, ASTA supplementation decreased low-density lipoprotein cholesterol and triglyceride plasma levels (P < 0.05). However, there were no significant differences in the other lipid metabolism parameters among the ASTA-supplemented groups relative to the control group except for an increase in high-density lipoprotein cholesterol in the liver. Compared with the control, dietary ASTA supplementation significantly increased the enrichment of ASTA in egg yolks at the end of week 2, 4, and 6 (P < 0.05). The mRNA expression of scavenger receptor class B type 1 (SCARB1) and very-low-density lipoprotein receptor (VLDLR) in the ASTA groups was markedly higher (P < 0.05) than that in the control group in the liver and ovaries, respectively. In conclusion, these results suggest that dietary ASTA enhances the antioxidant capacity and regulates lipid metabolism in laying hens. ASTA enrichment in egg yolks may be closely related to the upregulation of SCARB1 and VLDLR gene expression.
Collapse
Affiliation(s)
- Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Runhua Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Feed Analysis Lab, Beijing Institute of Feed Control, Beijing 100012, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
4
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
5
|
Areerob P, Dahlan W, Angkanaporn K. Dietary crude palm oil supplementation improves egg quality and modulates tissue and yolk vitamin E concentrations of laying hen. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Crude palm oil (CPO) is a valuable energy supplement for poultry diets and a rich source of vitamin A and E. Data on the effect of vitamin E tocotrienol in CPO on laying hen metabolism are limited. The present study examined the effects of dietary CPO supplementation on the performance and tissue distribution of vitamin E in laying hens and on egg quality. In total, 144 49-week old Hysex Brown hens were allocated randomly into four groups (36 per group), in single cages, and received corn–soybean basal diet supplemented with either lard at 20 g/kg (control), or CPO at 20 (CPO1), 30 (CPO2) or 40 g/kg (CPO3). Egg quality, hen performance, egg yolk cholesterol and hen tissue concentrations of vitamin E were examined. Dietary supplementation with CPO increased the egg yolk colour, egg and yolk weight compared with the control group, but not specific gravity, albumen quality, albumen weight and shell weight. Importantly, CPO supplementation significantly decreased egg yolk cholesterol concentrations (lowest level in the CPO3 group) and enhanced (P < 0.05) the total vitamin E tocopherols in CPO1 and total tocotrienols in CPO2 and CPO3. Hens fed on CPO3 had the lowest total tocopherol concentrations in their egg yolk and adipose tissue, but the highest tocotrienol in their plasma, egg yolk and adipose tissue. In addition, dietary CPO supplementation resulted in the highest deposition of tocotrienol in the hen’s adipose tissue compared with in the egg yolk, or hen’s liver and plasma. In conclusion, dietary supplementation with CPO improved the egg yolk weight and yolk colour, while it reduced the total cholesterol concentration and resulted in more vitamin E in the egg and hen’s adipose tissue, with increased concentrations of α-tocopherol, α-tocotrienol and γ-tocotrienol.
Collapse
|
6
|
Wanzenböck E, Schreiner M, Zitz U, Bleich B, Figl S, Kneifel W, Schedle K. A Combination of Wheat Bran and Vegetable Oils as Feedstuff in Laying Hens’ Diet: Impact on Egg Quality Parameters. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/as.2018.96047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|