1
|
Xue LG, Guo TK, Wang J, Shan YQ, Guo L, Zhang DX, Wei Z, Wang D. Effects of in-ovo injection of Yu ping feng polysaccharides on growth performance, intestinal development, and immunity in broiler chickens. Poult Sci 2025; 104:104574. [PMID: 39616675 PMCID: PMC11648774 DOI: 10.1016/j.psj.2024.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025] Open
Abstract
This study aimed to investigate the effects of the in-ovo injection of Yu Ping Feng polysaccharides (YPF) on the immunological development, hatchability, growth performance, intestinal tissue development, intestinal IgA+ cell distribution, and intestinal secretory IgA (SIgA) production in broiler chicken. Herein, 800 chicken embryos were randomly divided into Astragalus polysaccharide (APS), Atractylodes macrocephala polysaccharide (ATR), YPF, and normal saline (control) injection groups-polysaccharide injection, 0.5 mL of 4 mg/mL polysaccharide; normal saline injection, 0.5 mL. The related indexes of hatched chicks were detected, and there were 5 repeats in each group. Compared with the other three groups, the in-ovo YPF injection did not affect the hatching rate of chicken embryos; however, the initial body weight of hatchlings significantly increased and the feed conversion ratio decreased. Additionally, at each time point, the intestinal villus height (VH) of the chicks in the YPF group increased, whereas no notable difference was observed in the crypt depth (CD), resulting in a higher VH/CD ratio. Furthermore, the YPF group exhibited a statistically significant increase in intestinal IgA+ cell count and flushing fluid SIgA level throughout various time periods compared with those in the other three groups. Additionally, the expression of intestinal mucosal immune cytokines, including interleukin (IL)-2, IL-4, IL-6, and interferon-γ, were markedly increased in the duodenum and ileum of the YPF group. Moreover, the analysis of immune development revealed that their serum levels in the polysaccharide-injected groups were also increased, with the YPF groups exhibiting superior performance than the APS and ATR groups and encouraging the development of T and B lymphocytes in the spleen and peripheral blood mononuclear cells. Altogether, the findings of this study demonstrate that the in-ovo injection of YPF can improve the growth performance, intestinal tissue development, and immune system of the broiler chicks.
Collapse
Affiliation(s)
- Li-Gang Xue
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Tian-Kui Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Juan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Quan Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Li Guo
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhong Wei
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Dan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Dayan J, Melkman-Zehavi T, Goldman N, Soglia F, Zampiga M, Petracci M, Sirri F, Braun U, Inhuber V, Halevy O, Uni Z. In-ovo feeding with creatine monohydrate: implications for chicken energy reserves and breast muscle development during the pre-post hatching period. Front Physiol 2023; 14:1296342. [PMID: 38156069 PMCID: PMC10752974 DOI: 10.3389/fphys.2023.1296342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
The most dynamic period throughout the lifespan of broiler chickens is the pre-post-hatching period, entailing profound effects on their energy status, survival rate, body weight, and muscle growth. Given the significance of this pivotal period, we evaluated the effect of in-ovo feeding (IOF) with creatine monohydrate on late-term embryos' and hatchlings' energy reserves and post-hatch breast muscle development. The results demonstrate that IOF with creatine elevates the levels of high-energy-value molecules (creatine and glycogen) in the liver, breast muscle and yolk sac tissues 48 h post IOF, on embryonic day 19 (p < 0.03). Despite this evidence, using a novel automated image analysis tool on day 14 post-hatch, we found a significantly higher number of myofibers with lower diameter and area in the IOF creatine group compared to the control and IOF NaCl groups (p < 0.004). Gene expression analysis, at hatch, revealed that IOF creatine group had significantly higher expression levels of myogenin (MYOG) and insulin-like growth factor 1 (IGF1), related to differentiation of myogenic cells (p < 0.01), and lower expression of myogenic differentiation protein 1 (MyoD), related to their proliferation (p < 0.04). These results imply a possible effect of IOF with creatine on breast muscle development through differential expression of genes involved in myogenic proliferation and differentiation. The findings provide valuable insights into the potential of pre-hatch enrichment with creatine in modulating post-hatch muscle growth and development.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Goldman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | | | | | - Orna Halevy
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Zhao M, Li J, Shi Q, Shan H, Liu L, Geng T, Yu L, Gong D. The Effects of In Ovo Feeding of Selenized Glucose on Selenium Concentration and Antioxidant Capacity of Breast Muscle in Neonatal Broilers. Biol Trace Elem Res 2023; 201:5764-5773. [PMID: 36899096 DOI: 10.1007/s12011-023-03611-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
This study aims to investigate the impacts of in ovo feeding (IOF) of selenized glucose (SeGlu) on selenium (Se) level and antioxidant capacity of breast muscle in newborn broilers. After candling on 16 day of incubation, a total of 450 eggs were randomly divided into three treatments. On the 17.5th day of incubation, eggs in a control treatment were injected with 0.1 mL of physiological saline (0.75%), while the 2nd group and 3rd group were supplied with 0.1 mL of physiological saline containing 10 μg Se from SeGlu (SeGlu10 group) and 20 μg Se from SeGlu (SeGlu20 group). The results showed that in ovo injection in both SeGlu10 and SeGlu20 increased the Se level and reduced glutathione concentration (GSH) in pectoral muscle of hatchlings (P < 0.05). Compared with the control group, the SeGlu20-treated chicks significantly enhanced the activity of the superoxide dismutase (SOD) and mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1) in breast muscle, while there was upregulation in mRNA expressions of glutathione peroxidase 1 (GPX-1) and thioredoxin reductase 1 (TrxR1) and higher total antioxidant capacity (T-AOC) in SeGlu10 treatment (P < 0.05). However, no significant difference on enzyme activities of glutathione peroxidase (GR), glutathione reductase, thioredoxin reductase, concentration of malondialdehyde, and free radical scavenging ability (FRSA) of superoxide radical (O2-•) and hydroxyl radical (OH•) was observed among the three treatments (P > 0.05). Therefore, IOF of SeGlu enhanced Se deposition in breast muscle of neonatal broilers. In addition, in ovo injection of SeGlu could increase the antioxidant capacity of newborn chicks possibly through upregulating the mRNA expression of GPX1, TrxR1, and NQO1, as well as the SOD activity.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Qiao Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Haoshu Shan
- Zhenjiang Animal Disease Prevention and Control Center, Zhenjiang, 212009, People's Republic of China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
4
|
Farias TM, Cruz FGG, Rufino JPF, Oliveira Filho PAD, Santos ANDA, Bezerra NDS, Chaves FADL, Moda RF. Effect of in ovo injection of DL-methionine on hatchability, embryo mortality, hatching weight, blood biochemical parameters and gastrointestinal tract development of breeder chicks. Anim Biotechnol 2023; 34:3671-3680. [PMID: 37051917 DOI: 10.1080/10495398.2023.2199501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The current investigation was conducted to test the potential effects of in ovo feeding of DL-methionine (MET) on hatchability, embryonic mortality, hatching weight, blood biochemical parameters and development of heart and gastrointestinal (GIT) of breeder chick embryos. 224 Rhode Island Red fertile eggs were randomly distributed into seven experimental treatments: untreated egg (control), buffered saline (0.5% NaCl), and five solutions containing increased levels of MET (0.5, 1.0, 1.5, 2.0 and 2.5%) + 0.5% NaCl, being separated into four groups/replicates (each one with 8 eggs), totaling 32 eggs/treatment. All embryos submitted to in ovo injection with MET presented a decrease in the hatchability results and an increase in the results of intermediary embryonic mortality. Chicks hatched from eggs injected with until to 1.0% MET were heavier and presented better development of the heart and GIT, especially important organs and regions for digestion and nutrient absorption. Conclusively, the in ovo feeding using MET showed positive impacts on hatching weight and GIT development of breeder chicks. However, caused negative impacts on hatchability when used at high levels.
Collapse
|
5
|
Melo LD, Cruz FGG, Rufino JPF, Melo RD, Feijó JDC, Andrade PGCD, Silva FMF, Oliveira Filho PAD. In ovo feeding of creatine monohydrate increases performances of hatching and development in breeder chicks. Anim Biotechnol 2023; 34:2979-2989. [PMID: 36154555 DOI: 10.1080/10495398.2022.2126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The current investigation was conducted to test the potential effects of in ovo feeding of creatine monohydrate (CMH) on hatchability, embryonic mortality, hatching weight, and development of heart and gastrointestinal tract (main organs and regions) of breeder chick embryos. Rhode Island Red fertile eggs were randomly distributed into seven experimental treatments: untreated egg (control), a sterile buffered solution (0.50% NaCl), and five solutions containing increased levels of CMH (0.50, 1.00, 1.50, and 2.00%) + 0.50% NaCl, being separated in four groups/replicates (three with 15 eggs and one with 16 eggs), totaling 61 eggs/treatment and a total of 427 fertile eggs used. All-in ovo injected groups with CMH decreased the hatchability and increased the intermediary embryonic mortality. At hatching, all-in ovo injected groups with CMH also increased the hatching weight and stimulated the development of the heart and the total length of the gastrointestinal tract, especially important organs for digestion of nutrients (yolk sac, pro-ventricle and gizzard) and regions for nutrient absorption (jejunum + ileum and colon + rectum). Conclusively, the in ovo feeding using CMH showed positive impacts on hatching weight and the development of gastrointestinal tract of chicks. However, caused negative impacts on hatchability.
Collapse
Affiliation(s)
- Lucas Duque Melo
- Faculty of Agrarian Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Ramon Duque Melo
- Faculty of Agrarian Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Julmar da Costa Feijó
- Faculty of Agronomy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
6
|
Kpodo KR, Proszkowiec-Weglarz M. Physiological effects of in ovo delivery of bioactive substances in broiler chickens. Front Vet Sci 2023; 10:1124007. [PMID: 37008350 PMCID: PMC10060894 DOI: 10.3389/fvets.2023.1124007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The poultry industry has improved genetics, nutrition, and management practices, resulting in fast-growing chickens; however, disturbances during embryonic development may affect the entire production cycle and cause irreversible losses to broiler chicken producers. The most crucial time in the chicks' development appears to be the perinatal period, which encompasses the last few days of pre-hatch and the first few days of post-hatch. During this critical period, intestinal development occurs rapidly, and the chicks undergo a metabolic and physiological shift from the utilization of egg nutrients to exogenous feed. However, the nutrient reserve of the egg yolk may not be enough to sustain the late stage of embryonic development and provide energy for the hatching process. In addition, modern hatchery practices cause a delay in access to feed immediately post-hatch, and this can potentially affect the intestinal microbiome, health, development, and growth of the chickens. Development of the in ovo technology allowing for the delivery of bioactive substances into chicken embryos during their development represents a way to accommodate the perinatal period, late embryo development, and post-hatch growth. Many bioactive substances have been delivered through the in ovo technology, including carbohydrates, amino acids, hormones, prebiotics, probiotics and synbiotics, antibodies, immunostimulants, minerals, and microorganisms with a variety of physiological effects. In this review, we focused on the physiological effects of the in ovo delivery of these substances, including their effects on embryo development, gastrointestinal tract function and health, nutrient digestion, immune system development and function, bone development, overall growth performance, muscle development and meat quality, gastrointestinal tract microbiota development, heat stress response, pathogens exclusion, and birds metabolism, as well as transcriptome and proteome. We believe that this method is widely underestimated and underused by the poultry industry.
Collapse
|
7
|
Firman CAB, Inhuber V, Cadogan DJ, Van Wettere WHEJ, Forder REA. Effect of in ovo creatine monohydrate on hatchability, post-hatch performance, breast muscle yield and fiber size in chicks from young breeder flocks. Poult Sci 2023; 102:102447. [PMID: 36680864 PMCID: PMC10014348 DOI: 10.1016/j.psj.2022.102447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Younger broiler breeder flocks produce smaller eggs containing smaller yolks, with potentially lower energy reserves for the developing chick. Creatine is a naturally occurring energy source and is abundant in metabolically active tissues; providing this to chicks in ovo should provide additional energy to improve hatchability and post-hatch growth. Thus, post-hatch performance of male and female chicks hatched from younger breeder flocks supplemented with creatine monohydrate (CrM) in ovo was investigated. Four hundred eggs from Ross 308 breeder hens aged 27 to 29 wk were collected and at d 14 assigned to a treatment group and received 1) no injection, 2) 0.75% saline injection, or 3) 8.16 mg creatine monohydrate in 0.75% saline. At hatch 72 birds (24/treatment) were euthanized and BW, breast muscle, heart and liver weight were obtained, and breast muscle tissue was placed in 10% buffered formalin. Birds were then placed in raised metal pens (24 pens; 10-11 birds/pen; 8 replicates/treatment) and grown to d 42 with BW and pen feed intake measured once a week. At d 42, ninty-six birds were euthanized (2 male and 2 female/pen) and the process occurred as at hatch. Body composition was obtained for 48 birds (2/pen; 1 male,1 female) with a dual energy X-ray absorptiometry (DXA) scanner. Breast muscle tissue was processed for histological analysis and breast muscle fiber parameters were analyzed by ImageJ. While not statistically significant, the CrM treatment group saw an improved hatch rate (CrM: 93.5%, Saline: 88.6%, Control: 88.8%) and reduced early post hatch mortality. Chicks given in ovo CrM had significantly increased creatine concentrations in both liver and heart tissue at hatch compared to those in the saline and control groups. BW, BW gain, and final body composition parameters were not statistically different between treatments and in ovo CrM did not affect breast muscle fiber number or area. The creatine injection likely improved the energy status of the growing embryo resulting in the improved hatch rate but leaving little reserves for post-hatch growth.
Collapse
Affiliation(s)
- Corey-Ann B Firman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Vivienne Inhuber
- AlzChem Trostberg GmbH, Dr.-Albert-Frank-Str. 32, 83308 Trostberg, Germany
| | | | - William H E J Van Wettere
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Rebecca E A Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
8
|
In ovo feeding of carbohydrates for broilers: a meta-analysis. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Li D, Dang DX, Xu H, Zhou H, Lou Y, Liu X, Cui Y. Growth performance, jejunal morphology, disaccharidase activities, and sugar transporter gene expression in Langde geese as affected by the in ovo injection of maltose plus sucrose. Front Vet Sci 2023; 10:1061998. [PMID: 36777674 PMCID: PMC9909528 DOI: 10.3389/fvets.2023.1061998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The vigorous metabolic activity of an embryo increases the risk of low energy supply during incubation. The lack of energy during this critical period will lead to the death of an embryo. To avoid this risk, the in ovo injection technique in ovo allows for the injection of energy substances into an embryo. Methods This study investigated the effects of in ovo injection of maltose and sucrose (MS) in ovo on post-hatching growth performance, jejunal morphology and disaccharidase activities, and sugar transporter gene expression in Langde geese. A total of 300 fertilized eggs (115.75 ± 1.25 g) obtained from 3-year-old Langde geese were used in this study. The eggs were randomly assigned to two groups, and the difference between the two groups was whether 25g/L maltose and 25g/L sucrose (MS) dissolved in 7.5g/L NaCl were injected into the amnion on embryonic day 24. Each group had six replicates, which each replicate containing 25 eggs. The goslings were raised till day 28. Results and discussion The results showed that the in ovo injection of MS increased final body weight, average daily gain (ADG), and feed efficiency. Additionally, MS injection improved post-hatching jejunal morphology, disaccharidase activities, and sugar transporter gene expression at an early stage. Therefore, we considered that the in ovo injection of MS had positive effects on the nutrient absorption capacity of goslings, thus contributing to the improvement in their growth performance.
Collapse
Affiliation(s)
- Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Han Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiao Liu
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,*Correspondence: Yan Cui ✉
| |
Collapse
|
10
|
Dayan J, Melkman-Zehavi T, Reicher N, Braun U, Inhuber V, Mabjeesh SJ, Halevy O, Uni Z. Supply and demand of creatine and glycogen in broiler chicken embryos. Front Physiol 2023; 14:1079638. [PMID: 36760526 PMCID: PMC9902709 DOI: 10.3389/fphys.2023.1079638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Optimal embryonic development and growth of meat-type chickens (broilers) rely on incubation conditions (oxygen, heat, and humidity), on nutrients and on energy resources within the egg. Throughout incubation and according to the embryo's energy balance, the main energy storage molecules (creatine and glycogen) are continuously utilized and synthesized, mainly in the embryonic liver, breast muscle, and the extraembryonic yolk sac (YS) tissue. During the last phase of incubation, as the embryo nears hatching, dynamic changes in energy metabolism occur. These changes may affect embryonic survival, hatchlings' uniformity, quality and post hatch performance of broilers, hence, being of great importance to poultry production. Here, we followed the dynamics of creatine and glycogen from embryonic day (E) 11 until hatch and up to chick placement at the farm. We showed that creatine is stored mainly in the breast muscle while glycogen is stored mainly in the YS tissue. Analysis of creatine synthesis genes revealed their expression in the liver, kidney, YS tissue and in the breast muscle, suggesting a full synthesis capacity in these tissues. Expression analysis of genes involved in gluconeogenesis, glycogenesis, and glycogenolysis, revealed that glycogen metabolism is most active in the liver. Nevertheless, due to the relatively large size of the breast muscle and YS tissue, their contribution to glycogen metabolism in embryos is valuable. Towards hatch, post E19, creatine levels in all tissues increased while glycogen levels dramatically decreased and reached low levels at hatch and at chick placement. This proves the utmost importance of creatine in energy supply to late-term embryos and hatchlings.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Reicher
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Sameer J. Mabjeesh
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Halevy
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Zehava Uni,
| |
Collapse
|
11
|
Dang DX, Zhou H, Lou Y, Liu X, Li D. Development of breast muscle parameters, glycogen reserves, and myogenic gene expression in goslings during pre- and post-hatching periods. Front Physiol 2022; 13:990715. [PMID: 36176777 PMCID: PMC9513458 DOI: 10.3389/fphys.2022.990715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to better understand the development patterns of breast muscle and glycogen reserves in goslings during pre- and post-hatching periods. The timepoints for sampling were embryonic days 23 and 27 of hatching and days 1, 4, and 7 post hatching. We found that the body weight of goslings increased with age. The small intestine developed with age and remained reasonably constant on day 4 post hatching. The breast muscle development decreased with age and stayed relatively stable on day 1 post hatching. The diameter of myofiber increased prior to hatching and then decreased while hatching. The development patterns of breast muscle glycogen reserves were similar to the diameter of myofiber. In contrast, the contents of liver glycogen began to decrease before hatching and then increased rapidly after hatching. Moreover, the expression of Myf-5 increased with age. The expression of MSTN was maintained at high levels prior to hatching, dropped immediately after hatching, and then gradually increased with age. Additionally, we also observed that the glycogen content in the breast muscle was positively correlated with the diameter of the myofiber. The liver glycogen content was positively correlated to the relative weight of the breast muscle, the diameter of the myofiber, and the breast muscle glycogen content. The development pattern of the myofiber was synchronized with the change in the MSTN/Myf-5 ratio. This study provided a profile to understand the development patterns of breast muscle, glycogen reserves, and myogenic gene expression in goslings, which was beneficial to understanding the characteristics of energy reserves during the early life of goslings.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao Liu
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiao Liu, ; Desheng Li,
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Xiao Liu, ; Desheng Li,
| |
Collapse
|
12
|
Pawłowska J, Sosnówka-Czajka E, Skomorucha I. Effect of the In Ovo Injection Site of Electrolytes on Some Biochemical Blood Parameters and Quality of Layer Chicks. Animals (Basel) 2022; 12:ani12040532. [PMID: 35203240 PMCID: PMC8868410 DOI: 10.3390/ani12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In ovo technology is a unique method, the primary goal of which is to administer bioactive substances to eggs during the embryonic development of the bird. Therefore, it is necessary to develop optimal techniques for the implementation of in ovo feeding technology in practical poultry production. This preliminary study may open a window for future research on the site/location of manipulation and solutions and carriers of nutrients used for in ovo injection of laying hen embryos. Abstract The effects of the in ovo injection site of electrolytes on selected biochemical blood parameters and the quality of layer chicks were investigated. A total of 120 fertile eggs from Rhode Island Red breeders were randomly distributed into 4 groups, with each group including 30 birds. The groups were as follows: untreated control and groups with different injection sites/locations of 500 µL of 0.9% saline (NaCl) on day 18 of incubation, i.e., into the air cell (AC), through the air cell into the amniotic fluid (AFA), and directly into the amniotic fluid (AF). Measurement at 1 day of age showed that regardless of the injection site, embryos injected with 500 µL of saline had significantly higher Tona score (95/100 points) compared to the control group (90/100 points). Chick length was similar among the injected groups (mean 14.7 cm) and shorter in the control group (13.9 cm). There was no significant effect of in ovo injection on the biochemical blood parameters: total protein, cholesterol, high-density lipoprotein, low-density lipoprotein, glucose, urea, and uric acid. The highest concentration of sodium was noted in the control group (141.59 mmol/L). Regardless of the injection site/location, chicks treated with 500 µL of NaCl were characterized by a significantly lower blood sodium concentration (by 7.45% (AC), 7.90% (AFA), and 4.84% (AF) compared with birds from the control group (p ≤ 0.01)). The influence of saline solution administration in ovo on the blood potassium content of chicks was demonstrated. The concentration of potassium in the control group was significantly higher (by 11.36%) than in the AC group (p ≤ 0.01). In conclusion, the injection of 500 µL of saline solution into the developing chick embryo during the last days of incubation may have a positive effect on the quality of day-old chicks.
Collapse
Affiliation(s)
- Joanna Pawłowska
- Department of Production Systems and Environment, National Research Institute of Animal Production, 32-083 Balice, Poland
- Correspondence:
| | - Ewa Sosnówka-Czajka
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083 Balice, Poland; (E.S.-C.); (I.S.)
| | - Iwona Skomorucha
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083 Balice, Poland; (E.S.-C.); (I.S.)
| |
Collapse
|
13
|
Dang DX, Zhou H, Lou Y, Li D. Effects of in ovo feeding of disaccharide and/or methionine on hatchability, growth performance, blood hematology, and serum antioxidant parameters in geese. J Anim Sci 2022; 100:6517535. [PMID: 35094079 PMCID: PMC8867591 DOI: 10.1093/jas/skac014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
A completely randomized design employing a 2 × 2 factorial experiment was designed in this study to evaluate the effects of in ovo injection of disaccharide (DS) and/or methionine (Met) on hatchability, growth performance, blood hematology, and serum antioxidant parameters in geese. A total of 600 fertilized geese's eggs containing live embryo were randomly assigned into 4 groups with 6 replicates and 25 eggs per replicate. Factors in four groups comprised noninjection, DS injection (25 g/L maltose + 25 g/L sucrose + 7.5 g/L NaCl), Met injection (5 g/L Met + 7.5 g/L NaCl), or DS plus Met injection (25 g/L maltose + 25 g/L sucrose + 5 g/L Met + 7.5 g/L NaCl), respectively. We found that the administration of DS in embryo increased hatching time, yolk sac-free carcass weight, yolk sac-free carcass indexes and decreased assisted hatching ratio, yolk sac weight, yolk sac indexes, but did not affect hatchability and mortality. Moreover, higher body weight and serum glucose concentrations in DS injection group compared with noninjection group were observed on day of hatching. The body weight and average daily gain (ADG) of geese in DS injection group were higher than noninjection group after incubation. In ovo injection of Met increased hatching time and yolk sac-free carcass indexes, but decreased yolk sac indexes. In addition, the strategy of in ovo feeding of Met led to higher body weight, ADG, serum uric acid, glutathione (GSH), and glutathione peroxidase concentrations, as well as lower GSSG/GSH ratio, serum glutathione disulfide (GSSG), and malondialdehyde (MDA) concentrations than the noninjection group on day of hatching. The post-hatching body weight, ADG, serum total protein, albumin, and uric acid concentrations increased, whereas post-hatching serum GSSG and MDA concentrations and GSSG/GSH ratio decreased when injected with Met. In addition, synergistic effects of in ovo injection of DS plus Met on hatching time as well as post-hatching body weight and ADG were observed. Therefore, in ovo injection of DS plus Met was demonstrated to be a way to improve the development of geese during early incubation stages.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China,Department of Animal Resource and Science, Dankook University, Cheonan 31116, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China,Corresponding author:
| |
Collapse
|
14
|
The Wnt/β-catenin signaling pathway is involved in regulating feather growth of embryonic chicks. Poult Sci 2020; 99:2315-2323. [PMID: 32359566 PMCID: PMC7597444 DOI: 10.1016/j.psj.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Avian feathers have robust growth and regeneration capability and serve as a useful model for decoding hair morphogenesis and other developmental studies. However, the molecular signaling involved in regulating the development of feather follicles is unclear. The purpose of this study was to investigate the role of the Wnt/β-catenin pathway in regulating feather morphogenesis in embryonic chicks through in ovo injection of different doses of Dickkopf-1 (DKK1, a specific inhibitor of the target of the Wnt/β-catenin pathway). A total of 120 fertilized embryo eggs were randomly divided into 4 treatments, including a noninjection group (control group) and groups injected with 100 μL of phosphate-buffered saline (PBS)/egg (PBS control group), 100 μL of PBS/egg containing 600-ng DKK1/egg (600-ng DKK1 group), and 100-μL PBS/egg containing 1,200-ng DKK1/egg (1,200-ng DKK1 group). Feathers and skin tissues were sampled on embryonic (E) day 15 and the day of hatching to examine the feather mass, diameter and density of feather follicles, and the protein expression of the Wnt/β-catenin pathway. The results showed that, compared with CON and PBS treatment, the injection of DKK1 into the yolk sac of chick embryos had no significant effect on the hatching rate and embryo weight (P > 0.05), while it significantly decreased the relative mass of feathers in the whole body (P < 0.05). The high dose of DKK1 (1,200-ng DKK1/egg) decreased the relative mass of feathers on the back, chest, belly, neck, wings, head, and legs, which was more obvious than that in the 600-ng DKK1 group, which presented a dose-dependent effect. In addition, DKK1 injection significantly downregulated the protein expression levels of β-catenin, transcription factor 4, Cyclin D1, and c-Myc (P < 0.05). The immunofluorescence result of β-catenin was consistent with the Western blotting assay results. Altogether, these observations suggested that the Wnt/β-catenin signaling pathway is involved in regulating feather follicle development and feather growth during the embryonic development of chicks.
Collapse
|
15
|
Saeed M, Babazadeh D, Naveed M, Alagawany M, Abd El-Hack ME, Arain MA, Tiwari R, Sachan S, Karthik K, Dhama K, Elnesr SS, Chao S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3727-3739. [PMID: 30637739 DOI: 10.1002/jsfa.9593] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The technique of delivering various nutrients, supplements, immunostimulants, vaccines, and drugs via the in ovo route is gaining wide attention among researchers worldwide for boosting production performance, immunity and safeguarding the health of poultry. It involves direct administration of the nutrients and biologics into poultry eggs during the incubation period and before the chicks hatch out. In ovo delivery of nutrients has been found to be more effective than post-hatch administration in poultry production. The supplementation of feed additives, nutrients, hormones, probiotics, prebiotics, or their combination via in ovo techniques has shown diverse advantages for poultry products, such as improved growth performance and feed conversion efficiency, optimum development of the gastrointestinal tract, enhancing carcass yield, decreased embryo mortality, and enhanced immunity of poultry. In ovo delivery of vaccination has yielded a better response against various poultry pathogens than vaccination after hatch. So, this review has aimed to provide an insight on in ovo technology and its potential applications in poultry production to deliver different nutrients, supplements, beneficial microbes, vaccines, and drugs directly into the developing embryo to achieve an improvement in post-hatch growth, immunity, and health of poultry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, PR China
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shaaban S Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Sun Chao
- Department of Animal Nutrition, College of Animal Science and Technology, Northwest A & F University, Yangling, PR China
| |
Collapse
|
16
|
Yang T, Zhao M, Li J, Zhang L, Jiang Y, Zhou G, Gao F. In ovo feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:834-841. [PMID: 30744365 PMCID: PMC6498083 DOI: 10.5713/ajas.18.0588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/06/2018] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to investigate the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the energy metabolism in thigh muscle of embryos and neonatal broilers. Methods A total of 960 eggs were randomly assigned to three treatments: i) non-injected control group, ii) saline group injected with 0.6 mL of physiological saline (0.75%), and iii) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg on 17.5 d of incubation. After hatching, 120 male chicks (close to the average body weight of the pooled group) in each group were randomly assigned to eight replications. The feeding experiment lasted 7 days. Results The results showed that IOF of CrPyr increased glucose concentrations in the thigh muscle of broilers on 2 d after injection (p<0.05). Compared with the control and saline groups, the concentration of creatine in CrPyr group was increased on 2 d after injection and the day of hatch (p<0.05). Moreover, IOF of CrPyr increased the creatine kinase activity at hatch and increased the activities of hexokinase and pyruvate kinase on 2 d after injection and the day of hatch (p<0.05). Chicks in CrPyr group showed higher mRNA expressions of glucose transporter 3 (GLUT3) and GLUT8 on the day of hatch (p<0.05). Conclusion These results demonstrated that IOF of CrPyr was beneficial to enhance muscle energy reserves of embryos and hatchlings.
Collapse
Affiliation(s)
- Tong Yang
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Minmeng Zhao
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, China
| | - Guanghong Zhou
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Yu LL, Gao T, Zhao MM, Lv PA, Zhang L, Li JL, Jiang Y, Gao F, Zhou GH. In ovo feeding of L-arginine alters energy metabolism in post-hatch broilers. Poult Sci 2018; 97:140-148. [PMID: 29077951 DOI: 10.3382/ps/pex272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of in ovo feeding (IOF) of L-arginine (Arg) on energy metabolism in post-hatch broilers. A total of 720 eggs was randomly assigned to 3 treatments: 1) non-injected control group, 2) 0.75% NaCl diluent-injected control group, and 3) 1.0% Arg solution-injected group. At 17.5 d of incubation, 0.6 mL of each solution was injected into the amniotic fluid of each egg of injected groups. After hatching, 80 male chicks were randomly assigned to each treatment group with 8 replicates per group. The results showed that IOF of Arg increased glycogen and glucose concentrations in the liver and pectoral muscle of broilers at hatch (P < 0.05). The plasma glucose and insulin levels were higher in the Arg group than in the non-injected and diluent-injected control groups (P < 0.05). Meanwhile, IOF of Arg enhanced the hepatic glucose-6-phosphatase (G6P) activity at hatch (P < 0.05). There was no difference in hexokinase (HK) or phosphofructokinase (PFK) enzyme activities in the pectoral muscle in all groups. Further, IOF of Arg increased the phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBP) mRNA expressions at hatch (P < 0.05). In addition, broilers in the Arg group had a higher mRNA expression of glycogen synthase and a lower expression of glycogen phosphorylase in the liver and pectoral muscles than in the non-injected controls at hatch (P < 0.05). In conclusion, IOF of Arg solution enhanced liver and pectoral muscle energy reserves at hatch, which might be considered as an effective strategy for regulating early energy metabolism in broilers.
Collapse
Affiliation(s)
- L L Yu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - T Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - M M Zhao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - P A Lv
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - L Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - J L Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Y Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, P.R. China
| | - F Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - G H Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
18
|
Zhang XY, Wan XP, Miao LP, Zou XT, Dong XY. Effects of in ovo feeding of l-arginine on hatchability, hatching time, early posthatch development, and carcass traits in domestic pigeons ( Columba livia). J Anim Sci 2018; 95:4462-4471. [PMID: 29108055 DOI: 10.2527/jas2017.1776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The objective of this research was to test the hypothesis that in ovo feeding of arginine (Arg) may improve hatchability and posthatch performance in domestic pigeons (). A completely randomized design ( = 3) with an Arg feeding treatment (Arg group, 1.14 mg Arg dissolved in 200 μL of 0.75% NaCl buffered saline as 1% concentration compared to total Arg in the egg), a buffered saline feeding treatment (SC group, 7.5 g NaCl dissolved in 1 L sterile distilled water as the concentration of poultry physiological saline), and a nonfeeding treatment (NC group) was used. Six squabs from each treatment were randomly sampled on day of hatch (DOH), posthatch d 7 (D7), and posthatch d 14 (D14), respectively. Hatchability, hatch time, BW, organ development, and carcass traits were examined. Results showed that in ovo feeding of the Arg solution increased ( < 0.05) the hatchability and advanced ( < 0.05) the hatching time in comparison with those of the other groups. Body weight of pigeon squabs that received Arg in ovo feeding was heavier ( < 0.05) on DOH and D14 than that of the NC group, and a greater ( < 0.05) BW gain from DOH to D14 and D7 to D14 was observed. Three clusters of 12 organs were classified according to the changes of organ indices. Squabs provided the Arg in ovo feeding treatment gained a priority in organ development. The heart index and gizzard index on D7 and the proventriculus index on D14 of squabs receiving Arg in ovo feeding were increased ( < 0.05) compared to those of the other groups. The brain index on DOH, the small intestine index and pancreas index on D7, and the liver index, pancreas index, and spleen index on D14 of squabs fed Arg were higher ( < 0.05) than those of the NC group. The spleen index on D7 and the small intestine index on D14 of squabs provided the Arg feeding treatment were enhanced ( < 0.05) compared with those of the SC group. The semieviscerated carcass weight of squabs receiving Arg was higher ( < 0.05) on D14 than that of other groups. The absolute weight of breast meat yield on D7 and breast meat yield percentage on D7 and D14 were improved ( < 0.05) in the Arg group compared with the NC group. The leg meat percentage on D7 and the carcass weight, eviscerated carcass weight, and absolute weight of breast meat yield on D14 were increased ( < 0.05) in the Arg group compared with those of the SC group. The results of this study indicate that in ovo feeding of pigeon embryos with Arg may have beneficial effects on squab hatch performance and early posthatch performance.
Collapse
|
19
|
Zhao M, Gong D, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate increases hatching weight, growth performance, and muscle growth but has no effect on meat quality in broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Retes PL, Clemente AHS, Neves DG, Espósito M, Makiyama L, Alvarenga RR, Pereira LJ, Zangeronimo MG. In ovo
feeding of carbohydrates for broilers-a systematic review. J Anim Physiol Anim Nutr (Berl) 2017; 102:361-369. [DOI: 10.1111/jpn.12807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/31/2017] [Indexed: 01/15/2023]
Affiliation(s)
- P. L. Retes
- Veterinary Medicine Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - A. H. S. Clemente
- Animal Science Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - D. G. Neves
- Animal Science Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - M. Espósito
- Animal Science Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - L. Makiyama
- Animal Science Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - R. R. Alvarenga
- Animal Science Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - L. J. Pereira
- Health Science Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| | - M. G. Zangeronimo
- Veterinary Medicine Department; Federal University of Lavras; Lavras Minas Gerais Brazil
| |
Collapse
|
21
|
Zhao MM, Gong DQ, Gao T, Zhang L, Li JL, Lv PA, Yu LL, Gao F, Zhou GH. In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. J Anim Physiol Anim Nutr (Berl) 2017; 102:e758-e767. [DOI: 10.1111/jpn.12831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. M. Zhao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - D. Q. Gong
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - T. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - J. L. Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - P. A. Lv
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. L. Yu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - F. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - G. H. Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
22
|
Zhao M, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate alters energy reserves, satellite cell mitotic activity and myogenic gene expression of breast muscle in embryos and neonatal broilers. Poult Sci 2017; 96:3314-3323. [DOI: 10.3382/ps/pex150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 05/10/2017] [Indexed: 11/20/2022] Open
|
23
|
Effects of in ovo feeding of creatine pyruvate on the hatchability, growth performance and energy status in embryos and broiler chickens. Animal 2017; 11:1689-1697. [DOI: 10.1017/s1751731117000374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Yuan L, Wang Y, Hu Y, Zhao R. In ovo leptin administration modulates glucocorticoid receptor mRNA expression specifically in the hypothalamus of broiler chickens. Neurosci Lett 2016; 638:181-188. [PMID: 27979697 DOI: 10.1016/j.neulet.2016.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
The glucocorticoid receptor (GR) is well documented to play a crucial role in the central control of energy homeostasis in mammals. However, the distribution and function of the GR in the chicken brain are less clear. Leptin is a key hormone regulating energy homeostasis in mammals, yet its action in the chicken is still under debate. In this study, the distribution of GR mRNA in the chicken brain and the effects of in ovo administration of leptin and its antagonist on early post-hatch growth and GR mRNA expression in different hypothalamic nuclei were investigated via in situ hybridization (ISH) and quantitative PCR. GR mRNA was widely expressed in the chicken brain, mainly in the corpus striatum, nucleus rotundus, dorsolateral nucleus, nucleus ovoidalis, nucleus reticularis superior and the hippocampus (Hp) and in the preoptic area of the hypothalamus. High doses of leptin (5.0μg) significantly promoted post-hatch growth, resulting in a significant high body weight increased by 24.64% at day (D) 21 of life. Meanwhile, hypothalamic expression of GR mRNA in the LL and HL groups was down-regulated significantly by 7.02% and 13.65% respectively (P<0.05). ISH revealed region-specific changes: GR mRNA was found to be significantly decreased (P<0.05) in the paraventricular nucleus, periventricular nucleus and ventromedial nucleus but not in the Hp, infundibular nucleus or lateral hypothalamus of D21 broiler chickens. The leptin antagonist was able to reverse the effect of leptin on the growth rate and hypothalamic GR mRNA expression. These results provide evidence that in ovo administration of leptin influences early post-hatch growth and the hypothalamic expression of GR mRNA in broiler chickens.
Collapse
Affiliation(s)
- Lixia Yuan
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yufeng Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Hu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Poultry Heredity & Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, 225003, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| |
Collapse
|