1
|
Ávila-Arres IE, Rodríguez Hernández E, Gómez Rosales S, Reis de Souza TC, Mariscal-Landín G. Proteomic Identification and Quantification of Basal Endogenous Proteins in the Ileal Digesta of Growing Pigs. Animals (Basel) 2024; 14:2000. [PMID: 38998112 PMCID: PMC11240675 DOI: 10.3390/ani14132000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The accurate estimation of basal endogenous losses (BEL) of amino acids at the ileum is indispensable to improve nutrient utilization efficiency. This study used a quantitative proteomic approach to identify variations in BEL in the ileal digesta of growing pigs fed a nitrogen-free diet (NFD) or a casein diet (CAS). Eight barrow pigs (39.8 ± 6.3 kg initial body weight (BW)) were randomly assigned to a 2 × 2 crossover design. A total of 348 proteins were identified and quantified in both treatments, of which 101 showed a significant differential abundance between the treatments (p < 0.05). Functional and pathway enrichment analyses revealed that the endogenous proteins were associated with intestinal metabolic function. Furthermore, differentially abundant proteins (DAPs) in the digesta of pigs fed the NFD enriched terms and pathways that suggest intestinal inflammation, the activation of innate antimicrobial host defense, an increase in cellular autophagy and epithelial turnover, and reduced synthesis of pancreatic and intestinal secretions. These findings suggest that casein diets may provide a more accurate estimation of BEL because they promote normal gastrointestinal secretions. Overall, proteomic and bioinformatic analyses provided valuable insights into the composition of endogenous proteins in the ileal digesta and their relationship with the functions, processes, and pathways modified by diet composition.
Collapse
Affiliation(s)
- Iris Elisa Ávila-Arres
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Elba Rodríguez Hernández
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Km 1 Carretera a Colón, Querétaro 76280, Mexico; (E.R.H.); (S.G.R.)
| | - Sergio Gómez Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Km 1 Carretera a Colón, Querétaro 76280, Mexico; (E.R.H.); (S.G.R.)
| | - Tércia Cesária Reis de Souza
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Querétaro 76230, Mexico;
| | - Gerardo Mariscal-Landín
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Km 1 Carretera a Colón, Querétaro 76280, Mexico; (E.R.H.); (S.G.R.)
| |
Collapse
|
2
|
Moreau T, Recoules E, De Pauw M, Labas V, Réhault-Godbert S. Evidence that the Bowman-Birk inhibitor from Pisum sativum affects intestinal proteolytic activities in chickens. Poult Sci 2024; 103:103182. [PMID: 37931399 PMCID: PMC10654233 DOI: 10.1016/j.psj.2023.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Chicken diet essentially relies on soybean as the major source of proteins but there are increasing efforts to identify other protein-rich feedstuffs. Of these, some pea cultivars constitute interesting sources of proteins, although some of them contain antinutritional factors that may compromise the digestibility of their protein content. Consequently, chickens exhibit low performance, while undigested compounds rejected in feces have a negative environmental impact. In this article, we analyzed the intestinal content of chickens fed a pea diet (Pisum sativum) to decipher the mechanisms that could explain such a low digestibility. Using gelatin zymography, we observed that the contents of chicken fed the pea diet exhibit altered proteolytic activities compared with intestinal contents from chickens fed a rapeseed, corn, or soybean diet. This pea-specific profile parallels the presence of a 34 kDa protein band that resists proteolysis during the digestion process. Using mass spectrometry analysis, we demonstrated that this band contains the pea-derived Bowman-Birk protease inhibitor (BBI) and 3 chicken proteases, the well-known chymotrypsinogen 2-like (CTRB2) and trypsin II-P39 (PRSS2), and the yet uncharacterized trypsin I-P38 (PRSS3). All 3 proteases are assumed to be protease targets of BBI. Molecular modeling of the interaction of pea BBI with PRSS2 and PRSS3 trypsins reveals that electrostatic features of PRSS3 may favor the formation of a BBI-PRSS3 complex at physiological pH. We hypothesize that PRSS3 is specifically expressed and secreted in the intestinal lumen to form a complex with BBI, thereby limiting its inhibitory effects on PRSS2 and chymotrypsinogen 2-like proteases. These data clearly demonstrate that in chickens, feedstuff containing active pea BBI affects intestinal proteolytic activities. Further studies on the effects of BBI on the expression of PRSS3 by digestive segments will be useful to better appreciate the impact of pea on intestine physiology and function. From these results, we suggest that PRSS3 protease may represent an interesting biomarker of digestive disorders in chickens, similar to human PRSS3 that has been associated with gut pathologies.
Collapse
Affiliation(s)
| | | | | | - Valérie Labas
- INRAE, CNRS, IFCE, University of Tours, PRC, 37380 Nouzilly, France; INRAE, CHU of Tours, University of Tours, PIXANIM, 37380 Nouzilly, France
| | | |
Collapse
|
3
|
Olías R, Rayner T, Clemente A, Domoney C. Combination of three null mutations affecting seed protein accumulation in pea (Pisum sativum L.) impacts positively on digestibility. Food Res Int 2023; 169:112825. [PMID: 37254400 DOI: 10.1016/j.foodres.2023.112825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
The presence of so-called anti-nutritional factors can reduce the bioavailability of nutrients following consumption of seeds which are otherwise an excellent source of proteins, carbohydrates and micronutrients. Among the proteins associated with negative effects on quality in pea (Pisum sativum L.) seeds are lectin, pea albumin 2 (PA2) and trypsin inhibitors (TI). Here we have investigated the impact of these proteins on protein digestibility and amino acid availability, using naturally occurring and derived mutant lines of pea lacking these proteins. The mutations were stacked to generate a triple mutant which was compared with a wild-type progenitor and a line lacking the major seed trypsin inhibitors alone. In vitro digestions following the INFOGEST protocol revealed significant differences in the degree of hydrolysis, protein profile and apparent amino acid availability among the pea variants. Proteins resistant to digestion were identified by MALDI-TOF mass spectrometry and amino acid profiles of digested samples determined. The results indicate that pea seeds lacking certain proteins can be used in the development of novel foods which have improved protein digestibility, and without negative impact on seed protein concentration or yield.
Collapse
Affiliation(s)
- Raquel Olías
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Tracey Rayner
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alfonso Clemente
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| | - Claire Domoney
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
4
|
Zheng M, Bai Y, Sun Y, An J, Chen Q, Zhang T. Effects of Different Proteases on Protein Digestion In Vitro and In Vivo and Growth Performance of Broilers Fed Corn-Soybean Meal Diets. Animals (Basel) 2023; 13:1746. [PMID: 37889649 PMCID: PMC10251840 DOI: 10.3390/ani13111746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study was conducted to investigate the effects of different proteases alone or in combination on protein digestibility of broilers. In vitro, the properties of four proteases in broilers, including acidic protease (AcP), alkaline protease (AlP), neutral protease (NeP) and keratinase (Ker), on endogenous protease activity and their effects on protein digestibility of common ingredients in broiler diets were investigated using a gut-mimicking model. In vivo, 640 1-day-old male broilers were randomly divided into 8 groups of 10 with 8 replicates of 10 birds per replicate cage. Eight dietary treatments included a corn-soybean meal basal diet (control), and the basal diet with 1.6 U AcP/g, 0.8 U NeP/g, 0.8 U AlP/g, 0.4 U Ker/g, 1.6 U AcP/g + 0.8 U NeP/g, 1.6 U AcP/g + 0.8 U AlP/g, or 1.6 U AcP/g + 0.4 U Ker/g added. The experiment lasted for 31 days. The results showed that the optimum pH values of AcP, NeP, AlP and Ker were 3.0, 9.0, 11.0 and 11.0 in vitro, respectively. Ker recovery proportion was 37.68% at pH 3.3-6.2. AcP alone or in combination with NeP, AlP or Ker increased in vitro crude protein digestibility (IVCPD) and decreased ileal apparent digestibility of crude protein in 31-day-old broilers (p < 0.05). All protease supplementation reduced the ileal apparent digestibility of amino acids compared to the control (p < 0.05). Acidic protease had a positive effect on trypsin and chymotrypsin activities, while AlP and Ker showed a negative effect. In vivo, average daily gain and average daily feed intake were significantly (p < 0.05) increased in broiler diets supplemented with AcP compared to the control group. When adding exogenous proteases to broiler diets, their sensitivity to digestive pH and their negative effects on endogenous protease activity, dosage and combination effects should be taken into account. In addition, the properties and dosage of proteases and the protein level in the feed should be considered.
Collapse
Affiliation(s)
- Mengli Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yan Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingxia Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing An
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Tieying Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Vieira SL, de Freitas CR, Horn RM, Favero A, Kindlein L, Sorbara JOB, Umar-Faruk M. Growth performance and nutrient digestibility of broiler chickens as affected by a novel protease. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two experiments evaluated the addition of an exogenous sfericase protease in broiler diets. Experiments were run (Exp1 and Exp2) with 1,848 and 2,100 one-day-old male chicks being allocated into 84 floor pens with 14 replicates of 22 and 25 birds each, respectively. The studies were conducted in completely randomized designs. In Exp1, Standard diets were formulated with energy and AA at marginally lower levels than usual by the Brazilian integration such that broilers were expected to grow at comparatively reduced rates to the industry whereas in Exp2, the Standard diets were formulated using energy and AA as usual by the Brazilian integrations such that broilers were expected to grow comparable to industry rates. Standard diets had ideally balanced amino acids (AA). Matrix diets, in contrast, had reductions of 6% digestible lysine and of 20 kcal AME/kg compared to the Standard. Matrix diets were supplemented with an sfericase protease at 0, 10,000, and 30,000 New Feed Protease units (NFP)/kg. Outcomes showed no interaction between diet and protease in any of the experiments. However, broilers fed Standard diets had higher cumulative body weight gain (BWG) to 35 and 42 d when compared to Matrix fed birds whereas FCR were worse for birds fed the Matrix diets at 35 d in EXP1 and at 35 and 42 d in EXP2. Improvements in FCR were observed when the sfericase protease was added throughout all ages in EXP1 with a beneficial trend (P<0.067) observed in the cumulative FCR at 42 d in EXP2. The ileal digestible crude protein (IDCP) was significantly higher for birds fed Standard feeds in EXP1 with no other differences in digestibility found in any of the experiments. Protease addition led to improvements in ileal digestibility of dry matter (IDM) and IDCP (P < 0.05) compared to no protease addition in EXP1 as well as in ileal digestibility of energy (IDE) when 30,000 protease units were added. The present report demonstrates that the novel sfericase protease was successful in compensate broiler performance when reductions of 6% digestible Lys and 20 kcal/kg AME were imposed. This compensation, however, seemed more notable when birds were fed diets formulated to support moderate rather than maximum growth and having animal protein in the feed formula.
Collapse
|
6
|
Biomarkers and De Novo Protein Design Can Improve Precise Amino Acid Nutrition in Broilers. Animals (Basel) 2022; 12:ani12070935. [PMID: 35405923 PMCID: PMC8997161 DOI: 10.3390/ani12070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Almost half of the protein ingested by broilers is not retained and is excreted, impairing the nitrogen utilization, health and productivity of the animals, and intensifying the environmental impact of poultry meat production. This work proposes two potential tools, combining traditional nutrition with biotechnological, metabolomics, computational and protein engineering knowledge, which can contribute to improving precise amino acid nutrition in broilers in the future: (i) the use of serum uric nitrogen content as a rapid biomarker of amino acid imbalances, and (ii) the design and modeling of de novo proteins that are fully digestible and fit exactly to the animal’s requirements. Both tools can open up new opportunities to form an integrated framework for precise amino acid nutrition in broilers, helping us to achieve more efficient, resilient, and sustainable production. This information can help to determine the exact ratio of amino acids that will improve the efficiency of the use of nitrogen by poultry. Abstract Precision nutrition in broilers requires tools capable of identifying amino acid imbalances individually or in groups, as well as knowledge on how more digestible proteins can be designed for innovative feeding programs adjusted to animals’ dynamic requirements. This work proposes two potential tools, combining traditional nutrition with biotechnological, metabolomic, computational and protein engineering knowledge, which can contribute to improving the precise amino acid nutrition of broilers in the future: (i) the use of serum uric nitrogen content as a rapid biomarker of amino acid imbalances, and (ii) the design and modeling of de novo proteins that are fully digestible and fit exactly to the animal’s requirements. Each application is illustrated with a case study. Case study 1 demonstrates that serum uric nitrogen can be a useful rapid indicator of individual or group amino acid deficiencies or imbalances when reducing dietary protein and adjusting the valine and arginine to lysine ratios in broilers. Case study 2 describes a stepwise approach to design an ideal protein, resulting in a potential amino acid sequence and structure prototype that is ideally adjusted to the requirements of the targeted animal, and is theoretically completely digestible. Both tools can open up new opportunities to form an integrated framework for precise amino acid nutrition in broilers, helping us to achieve more efficient, resilient, and sustainable production. This information can help to determine the exact ratio of amino acids that will improve the efficiency of the use of nitrogen by poultry.
Collapse
|
7
|
Interaction between xylanase and a proton pump inhibitor on broiler chicken performance and gut function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:277-288. [PMID: 35024465 PMCID: PMC8715139 DOI: 10.1016/j.aninu.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Three hundred thirty-six Ross 308 male broiler chicks were used in a 21-d study to explore performance and gut function when treated with a proton pump inhibitor (PPI; 0 or 89 mg/kg) in a 2 × 2 factorial arrangement with a xylanase (Xyl; 0 or 0.1 g/kg) to determine if the beneficial activity of arabinoxylan (AX) depolymerisation, through arabinoxylo-oligosaccharides (AXOS) production, starts in the upper gastrointestinal tract. Treatment with the PPI started from d 14, and by d 21 animal performance had deteriorated (P < 0.001). An interaction was observed between PPI and Xyl for feed conversion ratio (FCR) (P < 0.05), whereby the combination reduced the negative effect of PPI on FCR. Application of PPI raised digesta pH in the gizzard and caecum (P < 0.05), increased protein concentrations in the lower gut (P < 0.05) and reduced intake of digestible nutrients (P < 0.05). Caecal concentrations of indole, p-cresol, ammonia and the ratio of total volatile fatty acid (VFA) to butyric acid were increased with PPI (P < 0.05), indicating enhanced protein fermentation. Xylanase activity in the digesta were greatest in the caeca, especially when Xyl was supplemented (P < 0.001). The concentration of total soluble AX was greater in the gizzard and ileal digesta with Xyl supplementation (P < 0.05), supporting the depolymerisation action of xylanase even under acidic conditions. These data suggest xylanase may function in the gizzard even though pH is not optimal for activity and emphasises the importance of chlorohydric acid secretions in ensuring overall optimum gut function. AX depolymerisation benefits animal performance although it is still unknown how the AXOS produced with xylanase supplementation in the upper gastrointestinal tract influence the microbial populations and overall gut functionality.
Collapse
|
8
|
Comparative study of protease hydrolysis reaction demonstrating Normalized Peptide Bond Cleavage Frequency and Protease Substrate Broadness Index. PLoS One 2020; 15:e0239080. [PMID: 32956384 PMCID: PMC7505449 DOI: 10.1371/journal.pone.0239080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Two commercial proteases (subtilisin-typed FNA from Bacillus amyloliquefaciens, and chymotrypsin-like NPP from Nocardiopsis prasina), porcine pepsin, porcine pancreatin having protease activity and their combinations were studied in vitro by LC-MS for their ability to digest soy protein isolate (SPI) under conditions close to those found in the stomach (pH 3.7) and small intestine (pH 6.5). The total number of peptides generated, and their size distribution were obtained under each set of the digestion conditions. These peptides were grouped according to their C-terminal amino acid (AA) residue (P1) and mass, based on which two concepts were proposed, i.e., Normalized Peptide Bond Cleavage Frequency (NPBCF) and Protease Substrate Broadness Index (PSBI). At pH 3.7, FNA+pepsin increased PSBI vs. pepsin alone by 2.7 and 4.9 percentage points (p.p.) at a SPI:protease ratio of 20:1 and 100:1, respectively. At pH 6.5, FNA+pancreatin improved PSBI by 9.1 and 10.2 p.p. at SPI:protease 20:1 and 100:1, respectively, vs. pancreatin alone. NPP generated 38% more peptides than FNA when administered with pancreatin at SPI:protease 200:1:1 and pH 6.5, but FNA alone (28.9) or FNA+pancreatin (29.1) gave a higher PSBI than pancreatin (22.2), NPP (20.3) and NPP+pancreatin (22.0). At pH 3.7 FNA generated 59% and 39% of peptides of pepsin at SPI:protease of 20:1 and 100:1, respectively, and both groups of peptides had similar size distribution. At pH 6.5 more small sized peptides were generated by FNA or FNA+pancreatin than pancreatin and NPP alone or pancreatin+NPP. In conclusion, FNA showed complementary effects with pepsin and pancreatin in terms of PSBI and generated more small sized peptides compared to NPP.
Collapse
|
9
|
Réhault-Godbert S, Guyot N, Nys Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019; 11:E684. [PMID: 30909449 PMCID: PMC6470839 DOI: 10.3390/nu11030684] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Egg is an encapsulated source of macro and micronutrients that meet all requirements to support embryonic development until hatching. The perfect balance and diversity in its nutrients along with its high digestibility and its affordable price has put the egg in the spotlight as a basic food for humans. However, egg still has to face many years of nutritionist recommendations aiming at restricting egg consumption to limit cardiovascular diseases incidence. Most experimental, clinical, and epidemiologic studies concluded that there was no evidence of a correlation between dietary cholesterol brought by eggs and an increase in plasma total-cholesterol. Egg remains a food product of high nutritional quality for adults including elderly people and children and is extensively consumed worldwide. In parallel, there is compelling evidence that egg also contains many and still-unexplored bioactive compounds, which may be of high interest in preventing/curing diseases. This review will give an overview of (1) the main nutritional characteristics of chicken egg, (2) emerging data related to egg bioactive compounds, and (3) some factors affecting egg composition including a comparison of nutritional value between eggs from various domestic species.
Collapse
Affiliation(s)
| | - Nicolas Guyot
- Biologie des Oiseaux et Aviculture, INRA, Université de Tours, 37380 Nouzilly, France.
| | - Yves Nys
- Biologie des Oiseaux et Aviculture, INRA, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
10
|
Abstract
Rapeseed proteins are described to be poorly digestible in chickens. To further identify some molecular locks that may limit their use in poultry nutrition, we conducted a proteomic study on the various chicken digestive contents and proposed an integrative view of the proteins recruited in the crop, proventriculus/gizzard, duodenum, jejunum, and ileum for digestion of rapeseed by-products. Twenty-seven distinct rapeseed proteins were identified in the hydrosoluble fraction of the feed prior ingestion. The number of rapeseed proteins identified in digestive contents decreases throughout the digestion process while some are progressively solubilized in the most distal digestive segment, likely due to a combined effect of pH and activity of specific hydrolytic enzymes. Fifteen chicken proteins were identified in the hydrosoluble proventriculus/gizzard content, including chymotrypsin-like elastase and pepsin. Interestingly, on the 69 distinct proteins identified in duodenum, only 9 were proteolytic enzymes, whereas the others were associated with homeostasis, and carbohydrate, lipid, vitamin and hormone metabolisms. In contrast, chicken proteins identified in jejunal and ileal contents were mostly proteases and peptidases. The present work highlights the relevance of using integrative proteomics applied to the entire digestive tract to better appreciate the protein profile and functions of each digestive segment.
Collapse
|
11
|
Da Silva M, Labas V, Nys Y, Réhault-Godbert S. Investigating proteins and proteases composing amniotic and allantoic fluids during chicken embryonic development. Poult Sci 2018; 96:2931-2941. [PMID: 28379482 DOI: 10.3382/ps/pex058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/01/2017] [Indexed: 01/03/2023] Open
Abstract
In amniotes, the amniotic fluid is a significant contributor to fetal development and health. While numerous studies have been conducted in mammalian amniotic fluid, the composition of amniotic and other extraembryonic fluids in avian egg along with their physiological functions remain largely unexplored. In such a context, our objective was to characterize the chicken amniotic fluid (AmF) and allantoic fluid (AlF) properties, protein composition, and some associated functions from day 8 to day 16 of incubation. SDS-PAGE combined to mass spectrometry analysis revealed common and specific proteins to each fluid, suggesting distinct properties and functions. Indeed, major AlF proteins are mostly "egg yolk" proteins involved in lipid, vitamin metabolisms, and metal ion transport, while major AmF proteins resemble those of albumen. Drastic changes in the AmF protein profiles were observed during incubation, when the albumen transfers from day 12 onwards, while few changes were detected for the AlF protein profile. The decreases in osmolality (from 231 to 183 mOsm/kg) and pH (from 8.26 to 7.26) observed in the AlF during incubation are associated with water and electrolytes reallocation for the embryo needs. In contrast, AmF pH value remained stable (≈7.5). Active proteolytic enzymes have been identified in the 2 fluids using gelatin zymography, followed by mass spectrometry analysis for protease identification. A total of 12 proteases was detected in the AlF, compared to 5 in the AmF. We have shown that AlF concentrates proteolytic enzymes assumed to participate in digestive processes: aminopeptidase N, dipeptidyl peptidase-4, meprin A, and 72 kDa type IV collagenase preproprotein. The other proteases identified in both fluids also could have a role in morphogenesis (hepatocyte growth factor activator, suppressor of tumorigenicity 14, astacin-like metalloendopeptidase) and hemostasis (prothrombin and coagulation factor X). Altogether, these data suggest that the roles of chicken AlF and AmF are not merely associated with protection of the embryo and regulation of metabolic disposable wastes, but also they could have more sophisticated roles during embryonic development.
Collapse
Affiliation(s)
| | - V Labas
- PRC, CNRS, IFCE, INRA, University of Tours, 37380, Nouzilly, France
| | - Y Nys
- URA, INRA, 37380, Nouzilly, France
| | | |
Collapse
|
12
|
Lee SA, Dunne J, Febery E, Wilcock P, Mottram T, Bedford MR. Superdosing phytase reduces real-time gastric pH in broilers and weaned piglets. Br Poult Sci 2018; 59:330-339. [PMID: 29432032 DOI: 10.1080/00071668.2018.1440379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The current study was conducted to investigate the effect of high phytase doses on growth performance and real-time gastric pH measurements in broiler chickens and pigs. 2. In the first experiment, 576 male Ross 308 broilers were fed in two phases (0-21 and 21-42 d) with 4 treatment groups, with diets meeting nutrient requirements containing 0, 500, 1500 or 2500 FTU/kg phytase. In the second, 64 Landrace weaners were fed on diets meeting nutrient requirements with or without phytase (0 or 2500 FTU/kg) in two phases (0-21 and 21-42 d). Heidelberg pH capsules were administered to 7 broilers and approximately 13 pigs per treatment group, pre- and post-phase change, with readings monitored over several hours. 3. Addition of phytase into an adequate Ca and P diet had no significant effect on broiler performance although phytase tended (P < 0.07) to improve feed conversion in pigs over the entire experimental period. Real-time pH capsule readings in broilers demonstrated an increase (P < 0.05) in gizzard pH when phytase was dosed at 500 or 1500 FTU/kg, while higher doses of 2500 FTU/kg phytase lowered pH to a level comparable to control birds. Gastric pH increased (P < 0.01) when animals were exposed to dietary phase change, signifying a potential challenge period for nutrient digestibility. However, pigs fed 2500 FTU/kg were able to maintain gastric pH levels through diet phase change. In contrast, spear-tip probe measurements showed no treatment effect on gastric pH. 4. These findings demonstrate dietary manipulation of gastric pH and the value of real-time pH capsule technology as a means of determining phytase dose response.
Collapse
Affiliation(s)
- S A Lee
- a AB Vista , Marlborough, Wiltshire , UK
| | - J Dunne
- b Drayton Animal Health , Stratford-Upon-Avon , Warwickshire , UK
| | - E Febery
- b Drayton Animal Health , Stratford-Upon-Avon , Warwickshire , UK
| | - P Wilcock
- a AB Vista , Marlborough, Wiltshire , UK
| | - T Mottram
- c eCow Devon Ltd , Exeter , Devon , UK
| | | |
Collapse
|
13
|
Sabino M, Capomaccio S, Cappelli K, Verini-Supplizi A, Bomba L, Ajmone-Marsan P, Cobellis G, Olivieri O, Pieramati C, Trabalza-Marinucci M. Oregano dietary supplementation modifies the liver transcriptome profile in broilers: RNASeq analysis. Res Vet Sci 2017; 117:85-91. [PMID: 29197252 DOI: 10.1016/j.rvsc.2017.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/20/2022]
Abstract
Intensive farming of broilers involves stressful conditions that reduce animal welfare and performance. New dietary strategies to improve performance and meat quality include the administration of plant extracts. Oregano (Origanum vulgare L.) is known for its antimicrobial, anti-fungal, insecticidal and antioxidant properties. However, studies on diet supplementation with oregano are mainly focused on the evaluation of animal performance, while partial information is available on transcriptomics and nutrigenomics and, in particular, Next Generation Sequencing (NGS) is not widely applied. In this study we tested the effect of an oregano aqueous extract supplemented diet on gene expression in broiler chickens. Whole liver transcriptome of 10 birds fed with a supplemented diet versus 10 controls was analyzed using the RNA-Seq technique. One hundred and twenty-nine genes were differentially expressed with an absolute log fold change >1. The analysis reveals a massive down-regulation of genes involved in fatty acid metabolism and insulin signaling pathways in broilers fed with the oregano aqueous extract supplementation. Down-regulated genes could be associated to chicken lean line, suggesting the potential beneficial effect of oregano supplementation in reducing both abdominal and visceral fat deposition. Down-regulation of insulin signaling pathway related genes suggest that dietary oregano supplementation might be an option in obesity and diabetes conditions.
Collapse
Affiliation(s)
- Marcella Sabino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Andrea Verini-Supplizi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy.
| | - Lorenzo Bomba
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Gabriella Cobellis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Oliviero Olivieri
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Camillo Pieramati
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Massimo Trabalza-Marinucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| |
Collapse
|