1
|
Bergman MM, Schober JM, Novak R, Grief A, Plue C, Fraley GS. Transportation increases circulating corticosterone levels and decreases central serotonergic activity in a sex dependent manner in Pekin ducks. Poult Sci 2025; 104:104494. [PMID: 39541859 PMCID: PMC11609353 DOI: 10.1016/j.psj.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Previous studies from our lab suggest that transportation of early adulthood ducks can have long lasting physiological effects. To better understand how transportation affects the ducks' physiology, we evaluated several central and peripheral parameters. Thirty-six, 23-week-old ducks were collected at a commercial breeder facility and randomly assigned to one of three treatment groups (n = 6/sex/treatment): 1) caught and euthanized (control), 2) caught and put in a crated in the pen for 90 min (crate), or 3) caught, crated, and transported in a truck for 90 min (transport) to simulate actual transportation. Blood was collected for serum corticosterone and blood smear analyses. Brains were hemisected and each half was dissected into three brain areas: caudal mesencephalon (CM), rostral mesencephalon (RM), and diencephalon (DI). Mass spectrometry was run on the right half of the brain, and gene expression of TPH1, TPH2, TH, CRH, and NPY were measured on the left half of brain using qRT-PCR. Serum corticosterone levels were increased (p = 0.01) in crated hens and in transported hens and drakes (p = 0.0084) when compared to control. HLR was increased (p = 0.035) in crated hens and transported hens and drakes compared to control. No differences in serotonin turnover were observed in drakes but increased in hens within the CM and RM from control to crate (p = 0.01) and crate to transport (p = 0.016). There were no differences in DA turnover or in gene expression for all brain areas for drakes and CM and RM for hens. Within the DI, hens showed a decrease (p = 0.03) in TPH1 for transport compared to crate. Overall, transportation elicits an acutely stressful event that increases corticosterone and HLR in a sex dependent manner where hens appear to be more reactive to the stressor than drakes. Our data supports that when assessing a stress response, care must be given to the sex of the bird and to the relative timepoint of sampling compared to the perceived onset of the stressor.
Collapse
Affiliation(s)
- M M Bergman
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - J M Schober
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - R Novak
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - A Grief
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - C Plue
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Wein Y, Vaidenfeld O, Sabastian C, Bar Shira E, Mabjeesh SJ, Tagari H, Friedman A. The Effect of Environmental Enrichment on Selected Physiological and Immunological Stress-Related Markers in Dairy Goats. BIOLOGY 2024; 13:859. [PMID: 39596814 PMCID: PMC11591861 DOI: 10.3390/biology13110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Homeostasis preservation is essential for animal survival, and any event that causes a disturbance in homeostasis is defined as a stressor. Here, we aimed to evaluate the effect of scratch brushes and stages as an environmental enrichment to alleviate stress in dairy goats. Twenty-four mixed-breed goats were divided into two groups according to common physiological conditions in breeding farms: milking and dry (milk-producing and non-milk-producing, respectively). Ten days after exposure to environmental enrichment treatment or not (control), blood was sampled. Following the enrichment, we observed a reduction in reactive oxidative stress metabolites, advanced glycation end products (AGEs), and their binding protein (transferrin) in the dry goats, as determined by an ELISA. In contrast, no change in AGEs, along with an increase in transferrin levels, was observed in the milking goats. Moreover, oxytocin levels decreased in the dry and increased in the milking goats, while serotonin levels increased in the dry and remained unchanged in the milking goats. Additionally, gene expression of the cytokines, IL-6 and IL-1ß, and anti-oxidative proteins, lysozyme and transferrin (in peripheral blood leukocytes), as determined by qPCR, presented the same pattern: down-regulation in the dry or up-regulation in the milking goats. In conclusion, a reliable methodology was developed for measuring husbandry stress in goats and to improve dairy goats' husbandry practice. Current environmental enrichment produced different responsiveness in goats correlated to their physiological status: beneficial effect in dry goats, detrimental effect in milking goats.
Collapse
Affiliation(s)
- Yossi Wein
- Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | | | | | | | - Sameer J. Mabjeesh
- Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | | | | |
Collapse
|
3
|
Durosaro SO, Iyasere OS, Ilori BM, Oyeniran VJ, Ozoje MO. Molecular regulation, breed differences and genes involved in stress control in farm animals. Domest Anim Endocrinol 2023; 82:106769. [PMID: 36244194 DOI: 10.1016/j.domaniend.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Stress is a state of disturbed homeostasis evoking a multiplicity of somatic and mental adaptive reactions resulting from any of the 5 freedoms of animals being violated. Many environmental forces disrupt homeostasis in farm animals, such as extreme temperatures, poor nutrition, noise, hunger, and thirst. During stressful situations, neuronal circuits in the limbic system and prefrontal cortex are activated, which lead to the release of adrenalin and noradrenalin. The hormones released during stress are needed for adaptation to acute stress and are regulated by many genes. This review examined molecular regulation, breed differences, and genes involved in stress control in farm animals. Major molecular regulation of stress, such as oxidative, cytosolic heat shock, unfolded protein, and hypoxic responses, were discussed. The responses of various poultry, ruminant, and pig breeds to different stress types were also discussed. Gene expressions and polymorphisms in the neuroendocrine and neurotransmitter pathways were also elucidated. The information obtained from this review will help farmers mitigate stress in farm animals through appropriate breed and gene-assisted selection. Also, information obtained from this review will add to the field of stress genetics since stress is a serious welfare issue in farm animals.
Collapse
Affiliation(s)
- S O Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - B M Ilori
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - V J Oyeniran
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - M O Ozoje
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
4
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
5
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Ding C, Luo T, Qiu X. Non-Targeted Metabolomic Analysis of Chicken Kidneys in Response to Coronavirus IBV Infection Under Stress Induced by Dexamethasone. Front Cell Infect Microbiol 2022; 12:945865. [PMID: 35909955 PMCID: PMC9335950 DOI: 10.3389/fcimb.2022.945865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host’s tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.
Collapse
Affiliation(s)
- Jun Dai
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tingrong Luo
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| |
Collapse
|
6
|
Gonzalez Herrero ME, Kuehn C. A qualitative mathematical model of the immune response under the effect of stress. CHAOS (WOODBURY, N.Y.) 2021; 31:061104. [PMID: 34241308 DOI: 10.1063/5.0055784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, many studies have been developed in psychoneuroimmunology that associate stress, arising from multiple different sources and situations, to changes in the immune system, from the medical or immunological point of view as well as from the biochemical one. In this paper, we identify important behaviors of this interplay between the immune system and stress from medical studies and seek to represent them qualitatively in a paradigmatic, yet simple, mathematical model. To that end, we develop an ordinary differential equation model with two equations, for infection level and immune system, respectively, which integrates the effects of stress as an independent parameter. In addition, we perform a geometric analysis of the model for different stress values as well as the corresponding bifurcation analysis. In this context, we are able to reproduce a stable healthy state for little stress, an oscillatory state between healthy and infected states for high stress, and a "burn-out" or stable sick state for extremely high stress. The mechanism between the different dynamical regimes is controlled by two saddle-node in cycle bifurcations. Furthermore, our model is able to capture an induced infection upon dropping from moderate to low stress, and it predicts increasing infection periods upon increasing stress before eventually reaching a burn-out state.
Collapse
Affiliation(s)
| | - Christian Kuehn
- Department of Mathematics, Technical University Munich, 85748 Garching, Germany
| |
Collapse
|
7
|
Li C, Zhang R, Wei H, Wang Y, Chen Y, Zhang H, Li X, Liu H, Li J, Bao J. Enriched environment housing improved the laying hen's resistance to transport stress via modulating the heat shock protective response and inflammation. Poult Sci 2020; 100:100939. [PMID: 33652541 PMCID: PMC7936215 DOI: 10.1016/j.psj.2020.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
An enriched environment can promote adaptability of animals to cope with complex environments. A total of 18-week-old 216 laying hens were randomly divided into 2 groups; of which, one group was housed in conventional battery cages (CC, n = 36), and the others were housed in furnished cages (FC, n = 180). At the end of 64 wk of age, 24 chickens of each group were selected for 4-hour transport treatment. The spleen tissues of laying hens were collected before transportation (BT), immediately after transportation, and at 48 h after transportation to detect the expression of the heat shock protective response signaling pathway and inflammatory factors. Serum samples were collected to detect the content of immune cytokines. Transport stress decreased heat shock proteins (HSP; including Small HSP, HSP27, HSP40, HSP60, HS70, HSP90, HSP110) in the CC group (P < 0.05), whereas there was no significant difference in the expression of HSP (except for Small HSP and HSP40) in the FC group (P > 0.05) immediately after transportation. At 48 h after transportation, mRNA levels of HSP (except for Small HSP and HSP40) in the FC group were upregulated, which were higher than those at BT (P < 0.05). The changes in HSP60, HSP70, and HSP90 protein levels had similar tendencies. The results showed that housing in furnished cages alleviated the inhibition of expression of HSP in the hens' spleen induced by transport stress. In addition, the hens housed in the FC group had lower expression levels of proinflammatory factors (nuclear transcription factor-kappa B, inducible nitric oxide synthase, cyclooxygenase-2, prostaglandin E synthase, inflammatory cytokines [IL-1β and IL-6], and tumor necrosis factor alpha) (P < 0.05). We suggest that the enriched environment can reduce transport stress damage in laying hens and improve resistance to transport stress by regulating expression of heat shock response proteins and inflammatory cytokines.
Collapse
Affiliation(s)
- Chun Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministre of Agriculture and Rural Affaris, 150030 Harbin, China
| | - Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Yanan Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Yongjie Chen
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Hengyi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministre of Agriculture and Rural Affaris, 150030 Harbin, China.
| |
Collapse
|
8
|
Miretti S, Lecchi C, Ceciliani F, Baratta M. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Front Vet Sci 2020; 7:578193. [PMID: 33392281 PMCID: PMC7775535 DOI: 10.3389/fvets.2020.578193] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through the post-transcriptional regulation of gene expression. An intriguing aspect in identifying these molecules as biomarkers is derived from their role in cell-to-cell communication, their active secretion from cells into the extracellular environment, their high stability in body fluids, and their ease of collection. All these features confer on miRNAs the potential to become a non-invasive tool to score animal welfare. There is growing interest in the importance of miRNAs as biomarkers for assessing the welfare of livestock during metabolic, environmental, and management stress, particularly in ruminants, pigs, and poultry. This review provides an overview of the current knowledge regarding the potential use of tissue and/or circulating miRNAs as biomarkers for the assessment of the health and welfare status in these livestock species.
Collapse
Affiliation(s)
- Silvia Miretti
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
9
|
Zhang H, Chen F, Liang Z, Wu Y, Pi J, Wang L, Du J, Shen J, Pan A, Pu Y. Analysis of miRNAs and their target genes associated with mucosal damage caused by transport stress in the mallard duck intestine. PLoS One 2020; 15:e0237699. [PMID: 32810175 PMCID: PMC7437463 DOI: 10.1371/journal.pone.0237699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Bowel health is an important factor for duck rearing that has been linked to feed uptake and growth and death rates. Because the regulatory networks associated with acute stress-mediated injury in the duck gastrointestinal tract have not clearly elucidated, we aimed to explore potential miRNA-mRNA pairs and their regulatory roles in oxidative stress injury caused by transport stress. Here, 1-day-old mallard ducklings from the same breeder flock were collected and transported for 8 h, whereas the control group was not being transported. Various parameters reflecting oxidative stress and the tissue appearance of the intestine were assessed. The data showed that the plasma T-AOC and SOD concentrations were decreased in the transported ducklings. The intestine of the transported ducklings also displayed significant damage. High-throughput sequencing of the intestine revealed 44 differentially expressed miRNAs and 75 differentially expressed genes, which constituted 344 miRNA-mRNA pairs. KEGG pathway analysis revealed that the metabolic, FoxO signaling, influenza A and TGF-β signaling pathways were mainly involved in the mechanism underlying the induction of intestinal damage induced by simulated transport stress in ducks. A miRNA-mRNA pair, miR-217-5p/CHRDL1, was selected to validate the miRNA-mRNA negative relationship, and the results showed that miR-217-5p could influence CHRDL1 expression. This study provides new useful information for future research on the regulatory network associated with mucosal damage in the duck intestine.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Fang Chen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Lixia Wang
- Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| |
Collapse
|
10
|
Increased serum levels of advanced glycation end products due to induced molting in hen layers trigger a proinflammatory response by peripheral blood leukocytes. Poult Sci 2020; 99:3452-3462. [PMID: 32616239 PMCID: PMC7597842 DOI: 10.1016/j.psj.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Induced molting (IM), a severe detriment to animal welfare, is still used in the poultry industry in some countries to increase or rejuvenate egg production and is responsible for several physiological perturbations, possibly including reactive oxidative stress, a form of metabolic stress. Because metabolic stress has been shown to induce a proinflammatory response involved in attempts to restore homeostasis, we hypothesized that similar responses followed IM. To confirm this hypothesis, we initially confirmed the establishment of oxidative stress during IM in 75-wk-old layers by demonstrating increased production of advanced glycation end products (AGE). Concomitant with increased oxidative metabolites, cellular stress was demonstrated in peripheral blood leukocytes (PBL) by increased levels of stress gene products (the glucocorticoid receptor, sirtuin-1, and heat shock protein 70 mRNA). Increased expression of stress proteins in PBL was followed by a proinflammatory response as demonstrated by increased levels of proinflammatory gene products (IL-6 and IL-1β mRNA); increased expression of these gene products was also demonstrated in direct response to AGE in vitro, thus establishing a direct link between oxidative and cellular stress. To establish a possible pathway for inducing a proinflammatory response by PBL, we showed that AGE increased a time dependent expression of galactin-3, Toll-like receptor-4, and nuclear factor - κB, all involved in the proinflammatory activation pathway. In vivo, AGE formed complexes with increased levels of circulating acute phase proteins (lysozyme and transferrin), products of a proinflammatory immune response, thereby demonstrating an effector response to cope with the consequences of oxidative stress. Thus, the harmful consequences of IM for animal welfare are extended here by demonstrating the activation of a resource-demanding proinflammatory response.
Collapse
|
11
|
Behavioral responses of turkeys subjected to different climatic conditions. Trop Anim Health Prod 2020; 52:2855-2862. [PMID: 32556906 DOI: 10.1007/s11250-019-02106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 10/24/2022]
Abstract
I was evaluated the effect of seven different combinations of temperature, air velocity, and relative air humidity on the frequency and duration of eating, drinking, resting, cannibalism, dust bathing, scratching, ground pecking, shivering, and stretching behaviors of turkeys at three different ages. The combinations tested of temperature, relative air humidity, and air velocity were, respectively: 1 (22 °C, 50%, 1 m/s); 2 (26.2 °C, 73.2%, 0.45 m/s); 3 (26.6 °C, 71.2%, 1 m/s); 4 (28.9 °C, 72%, 1.4 m/s); 5 (31.1 °C, 85%, 0.45 m/s); 6 (34.1 °C, 82.1%, 1 m/s); and 7 (34.4 °C, 82.1%, 1.4 m/s) for three ages of birds (61, 96, and 131 days of age). Seven birds were housed per pen, at a density of 3 males/m2, totaling 147 birds in the entire experiment. Each combination was applied for 5 days. The data were analyzed considering the number of times the bird performed the behavior and the time it performed (in seconds). Each pen was considered a repetition. A comparison of the medians was used to compare the treatments by each age. The results showed that young birds were more likely to suffer from the combination of low temperature and high air velocity, reducing their frequency of normal behaviors. Increased humidity at a low temperature raised the frequency of scratching, shivering, and cannibalism behaviors leading to poorer bird welfare. It is recommended that the temperature, relative air humidity, and air velocity combination of 26.6 °C; 71.2%; and 1 m/s, respectively, for young birds, and 22 °C; 50%; and 1 m/s, respectively, for older birds should be used.
Collapse
|
12
|
Zhang C, Geng ZY, Chen KK, Zhao XH, Wang C. L-theanine attenuates transport stress-induced impairment of meat quality of broilers through improving muscle antioxidant status. Poult Sci 2019; 98:4648-4655. [PMID: 30951605 DOI: 10.3382/ps/pez164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
This study was to investigate the effect of dietary L-theanine (THE) supplementation (0, 600 mg/kg) on growth performance, carcass traits, immune organ indexes, meat quality, and muscle antioxidant status of transported broilers. A total of 180 one-day-old male Ross 308 broilers were randomly allotted to 2 treatment groups including a THE-free group with 12 replicates of 10 birds each and a THE group with 6 replicates of 10 birds each. On the morning of day 42, after a 9-h fast, the birds of THE-free group were divided into 2 equal groups, and then all birds in the 3 groups were placed into 18 crates and were transported according to the following protocols: 0-h transport of birds in the THE-free group (control group), 3-h transport of birds in the THE-free group (T group), and 3-h transport of birds in the THE group (T + THE group). Results showed that dietary THE supplementation improved feed conversion ratio and birds' final body weight (P < 0.05), while transport and dietary THE supplementation did not affect carcass traits of broilers (P > 0.05). Transport increased bird live weight loss, drip loss, L*24 h, muscle malondialdehyde (MDA), protein carbonyl (PC) and lactate contents, while it decreased thymus, spleen, and bursa of Fabricius indexes, pH24h, a*, and muscle total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase (GSH-PX) activities and glycogen content (P < 0.05). Nevertheless, compared with birds in the T group, birds in the T + THE group exhibited increased thymus, spleen, and bursa of Fabricius indexes, pH24h, a*24 h, and muscle T-AOC, CAT, and GSH-PX activities and glycogen content, and decreased drip loss, L*24 h, and muscle MDA, PC, and lactate contents (P < 0.05). This study provided the first evidence that dietary THE supplementation prevented transport-stress-impaired immune organ indexes and meat quality of broilers, and the reason for maintenance of meat quality by supplementation of THE may be partly ascribed to the changed muscle glycolysis metabolism and antioxidant status.
Collapse
Affiliation(s)
- C Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Z Y Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - K K Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - X H Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - C Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Presence of Virulence Genes in Enterococcus Species Isolated from Meat Turkeys in Germany Does Not Correlate with Chicken Embryo Lethality. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6147695. [PMID: 32083120 PMCID: PMC7012276 DOI: 10.1155/2019/6147695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
Virulence-associated traits have frequently been studied in enterococci and are considered to contribute towards the pathogenicity of infections. In the present study, Enterococcus isolates were collected during diagnostic investigations from meat turkeys in Germany. Twenty-eight isolates of three different Enterococcus species were analyzed for five selected putative virulence traits to understand their potential role in the pathogenicity using the chicken embryo lethality assay. Ten E. faecalis, ten E. faecium, and eight E. gallinarum isolates were examined for the presence of common virulence genes and their phenotypic expression, namely, the cytolysin operon, five individual cyl genes (cylLL, cylLS, cylM, cylB, and cylA), gelatinase (gelE), hyaluronidase (hylEfm), aggregation substance (asa1), and enterococcal surface protein (esp). The Enterococcus isolates showed significant species-dependent differences in the presence of genotypic traits (p < 0.001 by Fisher's exact test; Cramer's V = 0.68). At least one gene and up to three virulence traits were found in E. faecalis, while six E. faecium isolates and one E. gallinarum isolate did not display any virulence-associated pheno- or genotype. More than half of the Enterococcus isolates (n = 15) harbored the gelE gene, but only E. faecalis (n = 10) expressed the gelatinase activity in vitro. The hylEfm gene was found in five E. gallinarum isolates only, while seven isolates showed the hyaluronidase activity in the phenotypic assay. In Cramer's V statistic, a moderate association was indicated for species (V ≤ 0.35) or genotype (V < 0.43) and the results from the embryo lethality assay, but the differences were not significant. All E. gallinarum isolates were less virulent with mortality rates ranging between 0 and 30%. Two E. faecalis isolates were highly virulent, harboring the whole cyl-operon as well as gelE and asa1 genes. Likewise, one E. faecium isolate caused high embryo mortality but did not harbor any of the investigated virulence genes. For the first time, Enterococcus isolates of three different species collected from diseased turkeys were investigated for their virulence properties in comparison. The results differed markedly between the Enterococcus species, with E. faecalis harboring the majority of investigated genes and virulence traits. However, the genotype did not entirely correlate with the phenotype or the isolates' virulence potential and pathogenicity for chicken embryos.
Collapse
|
14
|
Ward SJ, Hosey G. The Need for a Convergence of Agricultural/Laboratory and Zoo-based Approaches to Animal Welfare. J APPL ANIM WELF SCI 2019; 23:484-492. [PMID: 31621407 DOI: 10.1080/10888705.2019.1678038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in animal welfare science have led to a high number of studies published for farm, laboratory and zoo animals, with a huge breadth of innovative topic areas and methodologies. This paper investigates the different approaches used to undertake welfare research in farm, laboratory and zoo animals due to the variety of constraints that each group brings. We also set recommendations to how groups can support each other in moving forwards to reduce animal suffering and promote a life worth living, a goal that all parties aim to achieve. We propose that researchers develop more collaborations across species, in particular to focus on the applied component of animal welfare and utilizing positive welfare indicators; facilitate knowledge transfer and share good practice worldwide; and accept small n based studies that can still be scientifically robust and provide individual-based steps into advances in our knowledge. Ultimately, we need to be progressing animal welfare science to a point beyond legislative needs, and ensure that "high animal welfare" becomes an additional mission statement for all animal-based industries.
Collapse
Affiliation(s)
- Samantha J Ward
- School of Animal Rural and Environmental Sciences, Nottingham Trent University , Nottingham, UK
| | | |
Collapse
|
15
|
Guijarro A, Mauri S, Aviles C, Peña F. Effects of Two CO 2 Stunning Methods on the Efficacy of Stunning and Blood Stress Indicators of Turkeys under Commercial Processing Conditions. J APPL ANIM WELF SCI 2019; 23:231-243. [PMID: 31415181 DOI: 10.1080/10888705.2019.1654384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of CO2 gas-stunning methods (G1: 30% CO2 15 sec, 55% CO2 40 sec, 70% CO2 45 sec; G2: 30% CO2 15 sec, 80% CO2 85 sec) on the efficacy of stunning, blood stress indicators and meat quality of turkeys were assessed. A total of 375 turkeys (125 heavy males, 125 light males, and 125 light females) were used. After stunning, clinical parameters (posture-loss, wing-flapping, breathing, response to toe-pinching, eye movements, and palpebral, corneal and pupillary reflexes) and glucose, lactate and cortisol levels were assessed. The G2 method showed a higher percentage of correctly stunned birds (81.3 vs. 70.7%) and lower cortisol levels (0.44 vs. 1.22 g/dL). The weight and sex had a significant influence on the behavioral and physiological responses after stunning. The G2 method was found to be acceptable for animal welfare during stunning, based on both the percentage of animals correctly stunned and dead (92% to 100%) and the blood cortisol level after stunning.
Collapse
Affiliation(s)
- Angela Guijarro
- Animal Production Department, University of Cordoba, Cordoba, Spain
| | - Soledad Mauri
- Animal Production Department, University of Cordoba, Cordoba, Spain
| | - Carmen Aviles
- Animal Production Department, University of Cordoba, Cordoba, Spain
| | - Francisco Peña
- Animal Production Department, University of Cordoba, Cordoba, Spain
| |
Collapse
|