1
|
Yang Y, Lei F, Zhang Z, Liu L, Li Q, Guo A. Effects of cassava root meal on the growth performance, apparent nutrient digestibility, organ and intestinal indices, and slaughter performance of yellow-feathered broiler chickens. Trop Anim Health Prod 2024; 56:274. [PMID: 39316312 DOI: 10.1007/s11250-024-04135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
With the global population growth and shortage of food, the competition between humans and animal for food will become increasingly fierce. Therefore, the development of unconventional energy feed cassava feed is of great significance. The objective of this study was to investigate the effects of cassava root meal (CRM) on the growth performance, apparent digestibility, and organ and intestinal indices of broiler chickens. A total of 140 one-day-old chicks were randomly assigned to four dietary treatment groups [control diet (CT), 15% CRM (CRM15), 30% CRM (CRM30), and 45% CRM (CRM45)] with five replicates of seven birds per replicate. The results showed that the body weight of broiler chickens fed diets containing CRM were significantly lower than that in the CT group at 21 and 42 days of age, the average daily gain and average daily feed intake in the CRM group were significantly lower than those in the CT group from 1 to 21 days of age. However, from days 22 to 42, there were no significant differences between CRM15 and CT birds regarding average daily gain and average daily feed intake. but there was no difference in feed conversion rate between the CRM15 and CT groups. At 42 days of age, there were no significant differences between CRM15 and CT birds in in body measurements, the slaughter performance and the percentage of semi-eviscerated yield. The addition of CRM reduced the proportion of breast and thigh muscles during the feeding period, although we detected no significant difference between CRM15 and CT regarding the apparent digestibility of nutrients. Collectively, our findings indicate that 15% cassava was the optimal proportion for supplementing diets for broiler chicken production.
Collapse
Affiliation(s)
- Y Yang
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - F Lei
- Moringa Oleifera Research Center, Yunnan Institute of Tropical Crops, Jinghong, 666101, People's Republic of China
| | - Z Zhang
- Moringa Oleifera Research Center, Yunnan Institute of Tropical Crops, Jinghong, 666101, People's Republic of China
| | - L Liu
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - Q Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - A Guo
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, 650224, People's Republic of China.
| |
Collapse
|
2
|
Mishra P, Das R, Chaudhary A, Mishra B, Jha R. Effects of microalgae, with or without xylanase supplementation, on growth performance, organs development, and gut health parameters of broiler chickens. Poult Sci 2023; 102:103056. [PMID: 37722276 PMCID: PMC10518709 DOI: 10.1016/j.psj.2023.103056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
Microalgae are becoming potential sustainable feed ingredients, whereas terrestrial feedstuffs are becoming scarce and costly. They are rich in nutritional and functional values but have lower digestibility. This study evaluated the effects of microalgae with or without xylanase supplementation on growth performance and gut health of broiler chickens. A total of 162-day-old Cobb 500 chicks were raised for 35 d. Birds were fed with either 1 of the 3 dietary treatments: 1) corn-soybean meal-based diet (CON), 2) CON + 3% microalgae (MAG), and 3) MAG + xylanase (MAG+XYN) in 2 phases (starter: d 0-21 and finisher: d 22-35) in mash form. Each dietary treatment had 6 replicates, with 9 birds in each replicate. The level of significance was considered at the P value <0.05. The BW, ADG, and ADFI were significantly higher in MAG by 50%, 52.5%, and 42.4%, respectively, and MAG+XYN by 44.1%, 49.7%, and 38.6%, respectively, compared to the CON group. No significant difference was observed for FCR; however, FCR was reduced by 6.3% in both MAG and MAG+XYN groups compared to the CON group. The carcass and organ weight relative to the total body weight were not significantly different among the treatments. The expressions of Zonula occludens 1 (ZO1), Cluster of differentiation 56 (CD56), and Solute carrier family 7 member 7 (SLC7A7) were significantly modulated, for example, by 3.7, 3.9, and 3.3 folds, respectively, in the MAG group compared to CON and 0.8, 0.6, and 1.1 folds, respectively, in the MAG group compared to MAG+XYN groups on d 35. Villi surface area (VSA) of ileum tended to increase on d 3 (P = 0.0725) and d 35 (P = 0.0785) in the MAG and MAG+XYN groups, compared to the CON group. The results suggest that adding microalgae with or without xylanase to broiler's diet could promote growth performance and show a tendency to improve gut health parameters. The nutrient profile and its functional properties make microalgae a valuable resource to the poultry industry as a part substitution of corn and soybean meal and a functional feed supplement to modulate the gut health of broilers.
Collapse
Affiliation(s)
- Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Lacroix-Lamandé S, Bernardi O, Pezier T, Barilleau E, Burlaud-Gaillard J, Gagneux A, Velge P, Wiedemann A. Differential Salmonella Typhimurium intracellular replication and host cell responses in caecal and ileal organoids derived from chicken. Vet Res 2023; 54:63. [PMID: 37525204 PMCID: PMC10391861 DOI: 10.1186/s13567-023-01189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission. Until now, studies on the interaction of Salmonella with the avian gut intestine have been limited by the absence of in vitro intestinal culture models. Here, we established intestinal crypt-derived chicken organoids to better decipher the impact of Salmonella intracellular replication on avian intestinal epithelium. Using a 3D organoid model, we observed a significantly higher replication rate of the intracellular bacteria in caecal organoids than in ileal organoids. Our model thus recreates intracellular environment, allowing Salmonella replication of avian epithelium according to the intestinal segment. Moreover, an inhibition of the cellular proliferation was observed in infected ileal and caecal organoids compared to uninfected organoids. This appears with a higher effect in ileal organoids, as well as a higher cytokine and signaling molecule response in infected ileal organoids at 3 h post-infection (hpi) than in caecal organoids that could explain the lower replication rate of Salmonella observed later at 24 hpi. To conclude, this study demonstrates that the 3D organoid is a model allowing to decipher the intracellular impact of Salmonella on the intestinal epithelium cell response and illustrates the importance of the gut segment used to purify stem cells and derive organoids to specifically study epithelial cell -Salmonella interaction.
Collapse
Affiliation(s)
| | | | - Tiffany Pezier
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Électronique, Université de Tours et CHRU de Tours, Tours, France
| | - Anissa Gagneux
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Philippe Velge
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France.
- IRSD, Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
4
|
Yadav S, Teng PY, Choi J, Singh AK, Kim WK. Nutrient profile and effects of carinata meal as alternative feed ingredient on broiler performance, tight junction gene expression and intestinal morphology. Poult Sci 2022; 101:101411. [PMID: 34942518 PMCID: PMC8704448 DOI: 10.1016/j.psj.2021.101411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Two studies were conducted to establish carinata meal as a partial replacement of conventional protein sources. Study I was conducted to determine the nutrient profile, nitrogen-corrected true metabolizable energy (TMEn), and amino acid (AA) digestibility of 2 groups: low glucosinolate carinata meal (LGCM) and high glucosinolate carinata meal (HGCM) using rooster assays. The LGCM contained 28 μmol/g glucosinolate, 11.5% moisture, 39.2% crude protein (CP), whereas the HGCM had 100 μmol/g glucosinolate, 10.1% moisture, 39.5% CP on as is basis. The precision-fed rooster assays were conducted to determine TMEn and AA digestibility. The TMEn levels of LGCM and HGCM were 1,814 and 1,690 kcal/kg on as is basis, respectively. Standardized digestibility for lysine, methionine, cysteine, threonine, and valine were 72, 88, 69, 75, and 79% for LGCM and 80, 89, 71, 76, and 80% for HGCM, respectively. Based on the nutrient profiles from study I, study II was conducted to evaluate the effects of LGCM and HGCM in broilers. A total of 504 one-day-old Cobb500 male broiler chickens were randomly divided into 42 battery cages with 6 replicates of 12 birds per cage. The seven dietary treatments were control diet, 3 inclusion levels of LGCM (4, 8, and 12%), and 3 of HGCM (4, 8, and12%) in a corn-SBM based diet fed for 21 d. No significant differences in BW, BWG, and FI were observed except for significantly lower BWG in 12% HGCM group compared to control for 14-21 days (P < 0.05). The FCR for 12% HGCM increased significantly compared to 4 and 8% of both LGCM and HGCM groups during wk 3 (14-21 d). Based on these studies, carinata meal could be recommended to partially replace conventional feed ingredients at a rate of 12% when LGCM is used and 8% when HGCM is used with no deleterious effects on growth performance, gut histology, and tight junction proteins.
Collapse
Affiliation(s)
- Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Liu L, Li Q, Yang Y, Guo A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front Vet Sci 2021; 8:736739. [PMID: 34733901 PMCID: PMC8558227 DOI: 10.3389/fvets.2021.736739] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites generated by bacterial fermentation of dietary fiber (DF) in the hindgut. SCFAs are mainly composed of acetate, propionate and butyrate. Many studies have shown that SCFAs play a significant role in the regulation of intestinal health in poultry. SCFAs are primarily absorbed from the intestine and used by enterocytes as a key substrate for energy production. SCFAs can also inhibit the invasion and colonization of pathogens by lowering the intestinal pH. Additionally, butyrate inhibits the expression of nitric oxide synthase (NOS), which encodes inducible nitric oxide synthase (iNOS) in intestinal cells via the PPAR-γ pathway. This pathway causes significant reduction of iNOS and nitrate, and inhibits the proliferation of Enterobacteriaceae to maintain overall intestinal homeostasis. SCFAs can enhance the immune response by stimulating cytokine production (e.g. TNF-α, IL-2, IL-6, and IL-10) in the immune cells of the host. Similarly, it has been established that SCFAs promote the differentiation of T cells into T regulatory cells (Tregs) and expansion by binding to receptors, such as Toll-like receptors (TLR) and G protein-coupled receptors (GPRs), on immune cells. SCFAs have been shown to repair intestinal mucosa and alleviate intestinal inflammation by activating GPRs, inhibiting histone deacetylases (HDACs), and downregulating the expression of pro-inflammatory factor genes. Butyrate improves tight-junction-dependent intestinal barrier function by promoting tight junction (TJ) assembly. In recent years, the demand for banning antibiotics has increased in poultry production. Therefore, it is extremely important to maintain the intestinal health and sustainable production of poultry. Taking nutrition strategies is important to regulate SCFA production by supplementing dietary fiber and prebiotics, SCFA-producing bacteria (SPB), and additives in poultry diet. However, excessive SCFAs will lead to the enteritis in poultry production. There may be an optimal level and proportion of SCFAs in poultry intestine, which benefits to gut health of poultry. This review summarizes the biological functions of SCFAs and their role in gut health, as well as nutritional strategies to regulate SCFA production in the poultry gut.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co., Ltd., Kunming, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
6
|
Zhang H, Zhou Y, Xu H, Liang C, Zhai Z. Bacillus amyloliquefaciens BLCC1-0238 Alone or in Combination with Mannan-Oligosaccharides Alleviates Subclinical Necrotic Enteritis in Broilers. Probiotics Antimicrob Proteins 2021; 14:158-168. [PMID: 34623584 DOI: 10.1007/s12602-021-09853-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
Subclinical necrotic enteritis (SNE) is a severe intestinal disease in broilers which brings huge economic losses to poultry industry. Herein, the effects of Bacillus amyloliquefaciens BLCC1-0238 (B. amyloliquefaciens BLCC1-0238) alone or in combination with mannan-oligosaccharides (MOS) on the SNE challenge model in broilers were comprehensively explored. A total of 360 broilers were randomly divided into 4 groups, including an SNE infection control (IC), an antibiotic pretreatment control (AC), a B. amyloliquefaciens BLCC1-0238 pretreatment (BP), and a B. amyloliquefaciens BLCC1-0238 + MOS pretreatment (BMP). The results showed that compared with the IC, three pretreatment groups significantly improved the growth performance, lowered the overall mortality, and reduced intestinal mucosal lesions in broilers. Additionally, the expression levels of claudin-3 and peroxisome proliferator-activated receptor-gamma coactivator-1α in the BP and BMP groups and the levels of mucin-2 and mechanistic target of rapamycin in the BMP group were significantly upregulated compared with the IC. By contrast, the expression levels of interferon-γ, interleukin-10, and secretory immunoglobulin A in the BP and BMP groups were significantly downregulated. In conclusion, these findings show that B. amyloliquefaciens BLCC1-0238 in combination with MOS can exert synergetic effects by the interplay between them on improving growth performance and combating the SNE infection in broilers.
Collapse
Affiliation(s)
- Hongna Zhang
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
| | - Yufa Zhou
- Center for Disease Control, Bureau of Animal Husbandry in Daiyue District, Tai'an 271000, China
| | - Hong Xu
- , Longkou Customs, Longkou 265700, China
| | - Chao Liang
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
| | - Zhenzhen Zhai
- Central Hospital of Tai'an City, No. 29 Longtan Road, Tai'an 271000, China.
| |
Collapse
|
7
|
Singh A, Mandal R, Bedford M, Jha R. Xylanase improves growth performance, enhances cecal short-chain fatty acids production, and increases the relative abundance of fiber fermenting cecal microbiota in broilers. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Macadamia nut cake as an alternative feedstuff for broilers: Effect on growth performance. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Zhang B, Chen G, Zhang H, Lan J, Yang C. Effects of rhamnolipids on growth performance and intestinal health parameters in Linnan yellow broilers. Poult Sci 2021; 100:810-819. [PMID: 33518135 PMCID: PMC7858087 DOI: 10.1016/j.psj.2020.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
This study determined the effects of dietary supplementation of rhamnolipids (RLS) on the growth performance, gut morphology, immune function, intestinal volatile fatty acid, and microflora community in Linnan yellow broilers. A total of 480 1-day-old broiler chicks were randomly assigned to groups for supplementation with one of the following for 56 d: no supplement (control), 30 mg/kg bacitracin (ANT), 500 mg/kg RLS, or 1,000 mg/kg RLS (RLS2). The RLS2 diet was found to improve the final BW and ADG on day 56. The RLS diet reduced jejunal crypt depth, increased jejunal villus length, and increased serum IgA, IgM, IgY, IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels. The RLS broilers had higher cecum concentrations of acetic acid, propionic acid, butyrate, isobutyric acid, valerate, and isovalerate. High-throughput sequencing indicated that RLS affected microbial quantity and diversity in the cecum. Bacterial richness was higher in the RLS broilers than the ANT broilers. The RLS broilers had higher relative abundances of Megasphaera hypermegale and Lachnospiraceae bacterium 19gly4 on day 28 and Clostridium spiroforme and Alistipes obesi on day 56. These results suggest that RLS supplementation improves growth performance, benefits the intestinal villus morphology, regulates host immune function, and raises intestinal volatile fatty acid content and the relative abundance of the gut microbiota in broiler chickens.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Wasti S, Sah N, Kuehu DL, Kim YS, Jha R, Mishra B. Expression of follistatin is associated with egg formation in the oviduct of laying hens. Anim Sci J 2020; 91:e13396. [PMID: 32468659 DOI: 10.1111/asj.13396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
The objective of this study was to examine the expression profiles of follistatin (FST) and its associated molecules (MSTN, INHA, INHBB, INHBA, ACVR2A, and ACVR2B) in the oviduct of laying hens at 3 hr and 20 hr post-ovulation (p.o., n = 5; 35 weeks old), molting (n = 5; 60 weeks old), and non-laying (n = 4; 35-60 weeks old) hens and also to localize the FST by using immunohistochemistry assay. Expression of FST was significantly higher (p < .05), and MSTN was lower in the uterus of laying hens around 15-20 hr p.o. (during eggshell formation), however, their expressions in the magnum remain unchanged across different physiological stages of hens. FST was mainly expressed in the luminal and glandular epithelium of the uterine tissues, and their expression intensity was highest in laying hens during the eggshell mineralization. There was a relatively increased expression of INHA in the magnum of laying hens around 3 hr p.o. as compared to non-laying and molting hens. At the same time (3 hr p.o.), there was a significant (p < .05) decrease in the expression of the INHBB, ACVR2A, and ACV2B. These results indicate that follistatin may regulate the differentiation of uterine luminal and glandular epithelium during eggshell biomineralization.
Collapse
Affiliation(s)
- Sanjeev Wasti
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Nirvay Sah
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Donna L Kuehu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yong S Kim
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Rajesh Jha
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Birendra Mishra
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
11
|
Yadav S, Teng PY, Souza Dos Santos T, Gould RL, Craig SW, Lorraine Fuller A, Pazdro R, Kim WK. The effects of different doses of curcumin compound on growth performance, antioxidant status, and gut health of broiler chickens challenged with Eimeria species. Poult Sci 2020; 99:5936-5945. [PMID: 33142511 PMCID: PMC7647913 DOI: 10.1016/j.psj.2020.08.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Supplementation of broiler diets with feed additives such as chemotherapeutic drugs and antibiotics has side effects, meat residues, and antibiotics resistance complications. Plant-derived natural compounds could be safe and easy substitutes for chemical additives. One of the natural compounds is curcumin, the extract from herbal plant Curcuma longa, known for its antioxidant and antimicrobial properties which may be effective in reducing coccidia infection in poultry. The objective of this study was to evaluate the effects of curcumin on Eimeria challenged (C) and nonchallenged (NC) Cobb 500 broilers. A total of 360 12-day-old male chicks were housed in 36 cages in a completely randomized design with 6 replicates per treatment of 10 birds each cage. The six corn–soybean meal–based treatment diets were fed from day 12 to 20 to C and NC birds in 3-by-two factorial arrangement: nonchallenged control (NCC), NC + 100 mg/kg curcumin, NC + 200 mg/kg curcumin, challenged control (CC), C + 100 mg/kg curcumin, and C + 200 mg/kg curcumin. Broilers in C groups were inoculated orally with 50,000 oocysts of Eimeria maxima, 50,000 oocysts of Eimeria tenella, and 250,000 oocysts of Eimeria acervulina on day 14. The intestinal permeability (day 19), growth performance parameters, and intestinal lesion scoring were measured and recorded on day 20. The means were subjected to two-way ANOVA, and main factors effect and their interactions were considered. The growth performance and permeability were higher (P < 0.001) in the NC and C groups, respectively. However, no interaction was observed between curcumin dose and cocci challenge on both of these parameters. Results from lesion scores and oocyst shedding showed reduction (P < 0.050) in birds fed C + 200 mg/kg curcumin compared with those fed C + 100 mg/kg curcumin or CC. Curcumin treatment showed higher production of GSH (P = 0.002) and total glutathione (GSH+2GSSG) (P = 0.002) but lower GSH/GSSG ratio (P < 0.001) than the NCC group. Curcumin exhibited some positive responses on antioxidant capacity, lesion score, and oocyst shedding in the present study, suggesting that curcumin alone or a combination with other feed additives could be a dietary strategy to improve gut health in broilers.
Collapse
Affiliation(s)
- Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Tatiane Souza Dos Santos
- Department of Breeding and Animal Nutrition, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | | | - Robert Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
Singh AK, Tiwari UP, Berrocoso JD, Dersjant-Li Y, Awati A, Jha R. Effects of a combination of xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers. Poult Sci 2020; 98:5571-5581. [PMID: 31198939 DOI: 10.3382/ps/pez310] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/18/2019] [Indexed: 12/23/2022] Open
Abstract
This study evaluated the effects of a combination of xylanase, amylase, and protease (XAP), with probiotics (3 Bacillus spp.) supplementation on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients in Cobb 500 broilers from 0 to 21 d. A completely randomized 2 × 4 factorial design (2 levels of fiber; 4 types of supplements) with 8 replicate cages (6 birds/cage) was used. Each low and high-fiber diet contained 500 FTU/kg Buttiauxella sp. phytase and was supplemented with: (a) none (control), (b) XAP (2,000 U xylanase + 200 U amylase + 4,000 U protease/kg diet), (c) probiotics (75,000 CFU/g of Bacillus spp.), or (d) XAP + probiotics. High fiber decreased (P < 0.05) nitrogen-corrected apparent metabolizable energy (AMEn), AID of all amino acids (AA), AID and ATTD of dry matter (DM), crude protein (CP), starch, and gross energy (GE). High fiber increased (P < 0.01) the flow of total non-starch polysaccharides (NSP) in both ileum and total tract. The XAP + probiotics increased (P < 0.01) AMEn as well as AID and ATTD of DM, CP, GE, starch, while alone, XAP yielded similar improvement except for DM compared with control. The supplemental XAP alone improved (P < 0.01) the digestibility of most of the AAs compared with control. Moreover, XAP + probiotics increased (P < 0.05) AID of all AA except arginine and serine compared with control. A fiber × supplements interaction (P < 0.05) was found for AID of histidine and threonine, and their digestibility in high-fiber diet was improved to a level comparable to low-fiber diet by XAP + probiotics. The flow of NSP in XAP group was 5 to 6% lower than in control while NSP flow in XAP + probiotic group was further 4% lower than that of XAP group (P < 0.01). The results infer that the combination of XAP and probiotics can effectively optimize the nutrient digestibility in broilers fed both low and high-fiber diets.
Collapse
Affiliation(s)
- A K Singh
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - U P Tiwari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - J D Berrocoso
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Y Dersjant-Li
- Danisco Animal Nutrition/DuPont, Marlborough SN8 1XN, UK
| | - A Awati
- Danisco Animal Nutrition/DuPont, Marlborough SN8 1XN, UK
| | - R Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|