1
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Xiang X, Huang X, Wang J, Zhang H, Zhou W, Xu C, Huang Y, Tan Y, Yin Z. Transcriptome Analysis of the Ovaries of Taihe Black-Bone Silky Fowls at Different Egg-Laying Stages. Genes (Basel) 2022; 13:2066. [PMID: 36360303 PMCID: PMC9691135 DOI: 10.3390/genes13112066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 01/01/2025] Open
Abstract
The poor egg-laying performance and short peak egg-laying period restrict the economic benefits of enterprises relating to the Taihe black-bone silky fowl. Ovaries are the main organ for egg production in poultry. Unlike that of mammals, the spawning mechanism of poultry has rarely been reported. As a prominent local breed in China, the reproductive performance of Taihe black-bone silky fowls is in urgent need of development and exploitation. To further explore the egg-laying regulation mechanism in the different periods of Taihe black-bone silky fowls, the ovarian tissues from 12 chickens were randomly selected for transcriptome analysis, and 4 chickens in each of the three periods (i.e., the pre-laying period (102 days old, Pre), peak laying period (203 days old, Peak), and late laying period (394 days old, Late)). A total of 12 gene libraries were constructed, and a total of 9897 differential expression genes (DEGs) were identified from three comparisons; the late vs. peak stage had 509 DEGs, the pre vs. late stage had 5467 DEGs, and the pre vs. peak stage had 3921 DEGs (pre-stage: pre-egg-laying period (102 days old), peak-stage: peak egg-laying period (203 days old), and late-stage: late egg-laying period (394 days old)). In each of the two comparisons, 174, 84, and 2752 differentially co-expressed genes were obtained, respectively, and 43 differentially co-expressed genes were obtained in the three comparisons. Through the analysis of the differential genes, we identified some important genes and pathways that would affect reproductive performance and ovarian development. The differential genes were LPAR3, AvBD1, SMOC1, IGFBP1, ADCY8, GDF9, PTK2B, PGR, and CD44, and the important signaling pathways included proteolysis, extracellular matrices, vascular smooth muscle contraction, the NOD-like receptor signaling pathway and the phagosome. Through the analysis of the FPKM (Fragments Per Kilobase of exon model per Million mapped fragments) values of the genes, we screened three peak egg-laying period-specific expressed genes: IHH, INHA, and CYP19A1. The twelve genes and five signaling pathways mentioned above have rarely been reported in poultry ovary studies, and our study provides a scientific basis for the improvement of the reproductive performance in Taihe black-bone silky fowls.
Collapse
Affiliation(s)
- Xin Xiang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | | | - Haiyang Zhang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhou
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Ying L, Wu H, Zhou S, Lu H, Ding M, Wang B, Wang S, Mao Y, Xiao F, Li Y. Toll-Like Receptors Signaling Pathway of Quercetin Regulating Avian Beta-Defensin in the Ileum of Broilers. Front Cell Dev Biol 2022; 10:816771. [PMID: 35281079 PMCID: PMC8906402 DOI: 10.3389/fcell.2022.816771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
The purpose of the experiment was to investigate the Toll-like receptor signaling pathway of quercetin regulating avian beta-defensin (AvBD) in the ileum of Arbor Acre (AA) broilers. Four hundred and eighty one-day-old Arbor Acre broilers with similar body weight, half male and female, were randomly allotted to four treatments; the control treatment and three dietary treatments were fed with the basal diets supplemented with 0, 0.02%, 0.04, and 0.06% quercetin, respectively. The results showed that dietary quercetin supplementation did not significantly influence growth performance (p > 0.05), but significantly decreased the mortality rate of broilers by 85.74%, 85.74, and 71.28%, respectively (p < 0.05, F = 9.06). Compared with control, dietary supplementation with 0.04 and 0.06% quercetin significantly upregulated mRNA expression of total AvBD (p < 0.05), and there were no significant differences in the mRNA expression of AvBD1, AvBD2, and AvBD14 in three quercetin supplementation groups in the ileum of AA broilers (p > 0.05). Dietary supplementation with 0.02 and 0.06% quercetin significantly downregulated the mRNA expression of total Toll-like receptors (p < 0.05). Dietary quercetin supplementation significantly downregulated the mRNA expression of TLR1A, TLR1B, and TLR2A (p < 0.05); however, there were no significant differences in the mRNA expression of TLR2B, TLR5, and TLR15 (p > 0.05). Dietary quercetin supplementation significantly downregulated the mRNA expression of myeloid differentiation primary response protein 88 (MyD88) and TIR domain-containing adaptor protein/MyD88-adaptor-like (TIRAP/MAL) (p < 0.05), 0.02% quercetin significantly downregulated the mRNA expression of tank-binding kinase1 (TBK1), IκB kinase complex-α (IKKα), IKKβ, IKKε, nuclear factor-kappa B (NF-κB), NF-κB inhibitor-alpha (IκBα), IκBα, IκBβ, TNF-receptor-associated factor 3 (TRAF3), and interferons regulatory factor 7 (IRF7) (p < 0.05), 0.04% quercetin significantly downregulated the mRNA expression of IKKβ, IKKε, NF-κB, IκBα, IκBβ, TRAF3, and TRAF6 (p < 0.05), and 0.06% quercetin significantly downregulated the mRNA expression of TBK1 and IKKα (p < 0.05). 0.02% quercetin significantly decreased the relative abundance of Escherichia, Staphylococcus (p < 0.05), and Salmonella (p < 0.01), 0.04% quercetin significantly decreased the relative abundance of Staphylococcus (p < 0.05), Escherichia, and Salmonella (p < 0.01), and 0.06% quercetin significantly decreased the relative abundance of Salmonella (p < 0.05) and Staphylococcus (p < 0.01) in the ileum of AA broilers. These findings suggested that dietary quercetin supplementation regulated the mRNA expression of AvBD, TLR, and the TLR signaling pathways and NF-κB signalling pathways, thereby maintaining the microecological balance of the intestinal tract and decreasing the mortality of broilers, and the optimum addition amount of quercetin is 0.04% under the test conditions.
Collapse
|
4
|
Yoshimura Y, Kondo H, Takamatsu K, Tsugami Y, Nii T, Isobe N. Modulation of the innate immune system by lipopolysaccharide in the proventriculus of chicks inoculated with or without Newcastle disease and infectious bronchitis vaccine. Poult Sci 2022; 101:101719. [PMID: 35247652 PMCID: PMC8897715 DOI: 10.1016/j.psj.2022.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine whether the innate immune system in the proventriculus of broiler chicks responds to lipopolysaccharide (LPS) and whether this response is affected by Newcastle disease and infectious bronchitis (ND/IB) vaccination. Chicks were divided into 4 groups: nonvaccinated and injected with PBS or LPS (V-L- and V-L+), and vaccinated and injected with PBS or LPS (V+L- and V+L+). Vaccination was performed on d 1, and LPS was intraperitoneally injected on d 11 of age. The gene expression and protein levels of immune molecules, including toll-like receptors (TLRs), antimicrobial peptides, interleukin-1β (IL-1B), and immunoglobulin A (IgA) in the proventriculus and serum were analyzed. The results showed that the expression levels of TLR21 were higher in vaccinated (V+L-) group than in nonvaccinated (V-L-) group. Gene expression levels of avian β-defensin (AvBDs) and cathelicidin1 (Cath1) were not different among the 4 groups. However, the results of LC/MS analysis showed that the levels of AvBD2, 6, and 7 significantly increased after the LPS challenge in nonvaccinated and vaccinated chicks; the levels were higher in V-L+ and V+L+ than in V-L- and V+L-, respectively. Immunohistochemistry analysis revealed the localization of AvBD1 protein in the epithelial cells of the surface glands and AvBD2 and CATH1 in the heterophil-like cells in the lamina propria of surface glands. Although IL-1B gene expression and protein concentration in the proventriculus tissues were not different among the 4 groups, serum IL-1B levels were upregulated by LPS in both the nonvaccinated and vaccinated groups (V-L- vs. V-L+, V+L- vs. V+L+). Moreover, IgA levels in the proventriculus and serum were not affected by vaccination or LPS challenge. Taken together, we conclude that LPS derived from gram-negative bacteria upregulates the innate immune system, including antimicrobial peptide synthesis in the proventriculus. ND/IB vaccination may not significantly affect antimicrobial peptide synthesis in response to LPS; however, TLR21 expression is upregulated by that vaccination. The antimicrobial peptides synthesized in the proventriculus probably prevent pathogenic microbes from entering the intestine.
Collapse
Affiliation(s)
- Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| | - Hiroya Kondo
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Kyota Takamatsu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
5
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Ying S, Qin J, Dai Z, An H, Zhu H, Chen R, Yang X, Wu W, Shi Z. Effects of LPS on the Secretion of Gonadotrophin Hormones and Expression of Genes in the Hypothalamus-Pituitary-Ovary (HPG) Axis in Laying Yangzhou Geese. Animals (Basel) 2020; 10:ani10122259. [PMID: 33266293 PMCID: PMC7760895 DOI: 10.3390/ani10122259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Lipopolysaccharide (LPS), an endotoxin from E. coli, has been proven to impair follicle development and steroidogenesis, secretion of pituitary and hypothalamus reproductive hormones in mammals. However, the effects of LPS on the avian reproductive axis remain elusive. Pathogenic bacterial infection due to the particular mating behavior on the water containing pathogens was reported to decrease the laying rate and cause economic loss in goose production. In this study, we showed that LPS infection disturbed the plasma pituitary gonadotrophin hormone concentrations and the gene expression of the reproductive axis in Yangzhou geese. Notably, for the first time we proved that both the expression of gonadotrophin-releasing hormone (GnRH) and gonadotropin-inhibiting hormone (GnIH), two important reproductive genes from the hypothalamus, were altered after LPS treatment in birds. Our results can explain the decreased laying rate in goose after bacterial infection, and also provide new insights into reproductive dysfunction caused by LPS and the immune challenge in birds. Abstract Lipopolysaccharide (LPS) from gram-negative bacteria was found to be involved in the decrease in laying performance in goose flocks with high stocking density during summer months. LPS injection delayed the increase in the laying rate and altered hierarchical follicle morphology. While there is evidence that LPS exerts suppressive effects on goose reproduction, the time course effects of LPS on the hypothalamus-pituitary-ovary (HPG) axis remain elusive. In this study, we investigated the expression of genes in the HPG axis and the plasma gonadotrophin hormone concentrations in breeding geese at 0, 6, 12, 24, and 36 h after intravenous injection with LPS. The results showed that LPS treatment enhanced and suppressed expression of hypothalamic gonadotropin-inhibiting hormone (GnIH) and gonadotrophin-releasing hormone (GnRH) mRNA, respectively, and similar effects were observed on the mRNA expression of their receptors, GnIHR and GnRHR, in the pituitary. LPS treatment transiently increased follicle FSHβ mRNA expression at 12 h and exerted no significant effect on LHβ mRNA expression in the pituitary. Regardless of the expression of FSHβ and LHβ, plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were significantly increased during 24–36 h after LPS treatment. In the ovary, StAR and Cyp11a1 were mainly expressed in the granulosa layer (GL) of hierarchical follicles, while Cyp17a1 and Cyp19a1 were mainly expressed in white follicles (WFs) and yellowish follicles (YFs), and to a lesser extent in the theca layer (TL). After LPS treatment, the mRNA levels of Cyp11a1 in the GLs, Cyp17a1 in the WFs and TL, and Cyp19a1 in the WFs, YFs, and TL were significantly decreased. However, LPS treatment transiently upregulated StAR expression at 12 h. These results indicate that the exposure of laying geese to LPS may impair the HPG axis and disturb ovarian steroidogenesis. Our research provides new insights into reproductive dysfunction caused by LPS and the immune challenge in birds.
Collapse
Affiliation(s)
- Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence: (S.Y.); (Z.S.)
| | - Jialin Qin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Hao An
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Rong Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xiaojin Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.Q.); (H.A.); (X.Y.); (W.W.)
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.Z.); (R.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence: (S.Y.); (Z.S.)
| |
Collapse
|
7
|
Shimizu M, Nii T, Isobe N, Yoshimura Y. Effects of avian infectious bronchitis with Newcastle disease and Marek's disease vaccinations on the expression of toll-like receptors and avian β-defensins in the kidneys of broiler chicks. Poult Sci 2020; 99:7092-7100. [PMID: 33248626 PMCID: PMC7486820 DOI: 10.1016/j.psj.2020.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine the effect of vaccinations for avian infectious bronchitis with Newcastle disease (IB/ND) and Marek's disease (MD) on the expression of toll-like receptors (TLR) that recognize viral RNA and microbial DNA, and AvBD in chick kidneys. Day-old chicks were vaccinated with MD or IB/ND vaccines or received no treatment (control group). The gene expression of TLR and AvBD in the kidneys of 3-day-old chicks and 10-day-old chicks was examined using real-time PCR. The localization of AvBD2 and AvBD4 was examined by immunohistochemistry at day three only. At 3 days of age, the expression of TLR7 and TLR21 was significantly higher in the IB/ND group (but not in the MD group) than in the control group. Conversely, at 10 days of age there was no significant difference in the expression of the three TLR between groups. In the 3-day-old chicks the expression levels of AvBD4, 5, 6, and 7 were higher in the MD group than in the control group. Furthermore, at this age, the expression levels of other AvBD were not significantly different between the control and vaccination (MD and IB/ND) groups. At 10 days of age, no AvBD expression was affected by MD and IB/ND vaccinations. Immunohistochemistry results localized AvBD2 in the leukocytes in the interstitial tissue and AvBD4 in the surface of microvillus epithelial cells of renal tubules, and in the epithelial cells of the collecting ducts and ureter. The localization of AvBD2 and AvBD4 was identified in all chicks. We suggest that the expression of innate immune molecules (including TLR and AvBD) in kidneys could be modulated by MD and IB/ND vaccination when performed at the day-old stage. Although the effects of both vaccinations may subside within 10 days, the enhanced expression of those innate immune molecules may support the innate immunodefense function in the kidneys of young chicks.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
8
|
Zhang X, Liao K, Chen S, Yan K, Du X, Zhang C, Guo M, Wu Y. Evaluation of the reproductive system development and egg-laying performance of hens infected with TW I-type infectious bronchitis virus. Vet Res 2020; 51:95. [PMID: 32736651 PMCID: PMC7393890 DOI: 10.1186/s13567-020-00819-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The prevalence of TW I-type infectious bronchitis virus (IBV) has been increasing rapidly, and it has become the second most common genotype of IBV in China threatening the poultry industry. In this study, 1-day-old specific-pathogen-free (SPF) chickens infected with TW I-type IBV were continuously observed for 200 days. TW I-type IBV affected the respiratory, urinary, and female reproductive systems, resulting in a mortality rate of 10% as well as a decrease in egg quantity and an increase in inferior eggs. During the monitoring period, serious lesions occurred in the female reproductive system, such as yolk peritonitis, a shortened oviduct, and cysts of different sizes with effusion in the degenerated right oviduct. The infective viruses persisted in vivo for a long time, and due to the stress of laying, virus shedding was detected again after the onset of egg production. Our findings suggest that TW I-type IBV is deadly to chickens and could cause permanent damage to the oviduct, resulting in the poor laying performance of female survivors and decreasing the breeding value and welfare of the infected flock.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Kai Liao
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Shuqin Chen
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Kun Yan
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xubin Du
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Kang Y, Nii T, Isobe N, Yoshimura Y. Effects of Salmonella enteritidis Vaccination on the Expression of Innate Immune Molecules and Histone Modifications in the Follicular Theca of Laying Hens. J Poult Sci 2019; 56:298-307. [PMID: 32055228 PMCID: PMC7005392 DOI: 10.2141/jpsa.0190034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to examine whether Salmonella enteritidis (SE) vaccination affects innate immune function and histone modifications responsible for epigenetic reprogramming in the follicular theca of laying hens. White Leghorn laying hens were administered the SE vaccine or phosphate buffered saline (PBS; control) one week before sample collection. The largest follicles (F1) were collected for total RNA and histone protein extraction. Gene expression levels of immune molecules (Toll-like receptors [TLRs], cytokines, and avian β-defensins [AvBDs]), and histone modifications in the follicular thecal tissues, were examined using real-time PCR and western blot, respectively. The results showed that the expression levels of TLR1-1, 2-1, 4, and 15 were upregulated by SE vaccination. Although vaccination caused no significant change in cytokine expression, AvBDl, 2, 4, and 7 expression levels were significantly upregulated in the vaccinated group. In addition, the relative density of histone H3-lysine9 dimethylation (H3K9me2) was increased by the vaccination. These results suggest that SE vaccination enhances innate immune functions in the ovary of laying hens, including upregulating TLR and AvBD expression, and is also associated with an increase in histone H3K9me2 in thecal cells.
Collapse
Affiliation(s)
- Ye Kang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|