1
|
Wahab A, Suhag R, Kellil A, Tenuta MC, Scampicchio M, Ferrentino G. Oxidation kinetics of speck fat: Insights into its oxidizability and antioxidant efficiency of Salvia officinalis L. and Origanum vulgare L. ethanolic extracts. Meat Sci 2025; 226:109846. [PMID: 40344785 DOI: 10.1016/j.meatsci.2025.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
This study aimed to determine the oxidizability of speck fat and the efficiency of natural antioxidants extracted from sage (Salvia officinalis L.) and oregano (Origanum vulgare L.) in inhibiting its oxidation using isothermal calorimetry. The rate of radical initiation (Ri) was controlled using azobis(isobutyronitrile) (AIBN) (Ri = 4.0 ± 0.1 × 10-9 M/s) to accurately determine the kinetic parameters. Propagation rate constant (kp) and oxidizability index (O.I.) for speck fat were found to be 6.88 ± 0.08 × 10-3 M-1/2 s-1/2 and 21.77 ± 0.20 M-1 s-1, respectively. In terms of antioxidant efficiency (A.E.), oregano extract exhibited (P < 0.05) greater value compared to sage extract. When compared to synthetic antioxidants, oregano extract did not report significant different A.E. values. Furthermore, the rate constant of inhibition (kinh) for both the extracts was in the order of 103 M-1 s-1. These findings highlight the potential of isothermal calorimetry to determine kinetic parameters from oxidation measurements for solid fats and the role of natural extracts in food preservation.
Collapse
Affiliation(s)
- Abdul Wahab
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Abdessamie Kellil
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Maria Concetta Tenuta
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
2
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
3
|
Effect of Different Genotypes and Harvest Times of Sage (Salvia spp. Labiatae) on Lipid Oxidation of Cooked Meat. Antioxidants (Basel) 2023; 12:antiox12030616. [PMID: 36978863 PMCID: PMC10045671 DOI: 10.3390/antiox12030616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lipid oxidation is the primary non-microbial reason for quality deterioration of meat and meat products. Lipid oxidation can be prevented or delayed by antioxidants. In this study, 15 sage (Salvia spp. Labiatae) extracts (five genotypes, three harvest times) were tested for their ability to reduce lipid oxidation (peroxide value (PV) and thiobarbituric acid reactive substances (TBARS)) in ground, uncured, cooked porcine and bovine meat (60%/40% mixture) during 14 days of refrigerated storage. Additionally, total phenolic content was determined, and the antioxidant capacity of the extracts was measured as radical scavenging activity (2,2-diphenyl-1-picrylhydrazyl assay), reducing power, and superoxide anion scavenging activity. All 15 sage extracts were able to reduce lipid oxidation, though showing expected differences depending on genotype and harvest time. The extracts of S. officinalis accession from Foggia, Italy performed better than the other genotypes when looking at the entire storage period and considering both PV and TBARS. Of the applied methods for determining antioxidant capacity, superoxide anion scavenging activity proved to be the best determinant of the ability of sage to reduce lipid oxidation in the meat sample.
Collapse
|
4
|
Šojić B, Milošević S, Savanović D, Zeković Z, Tomović V, Pavlić B. Isolation, Bioactive Potential, and Application of Essential Oils and Terpenoid-Rich Extracts as Effective Antioxidant and Antimicrobial Agents in Meat and Meat Products. Molecules 2023; 28:molecules28052293. [PMID: 36903538 PMCID: PMC10005741 DOI: 10.3390/molecules28052293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Using food additives (e.g., preservatives, antioxidants) is one of the main methods for preserving meat and meat product quality (edible, sensory, and technological) during processing and storage. Conversely, they show negative health implications, so meat technology scientists are focusing on finding alternatives for these compounds. Terpenoid-rich extracts, including essential oils (EOs), are remarkable since they are generally marked as GRAS (generally recognized as safe) and have a wide ranging acceptance from consumers. EOs obtained by conventional or non-conventional methods possess different preservative potentials. Hence, the first goal of this review is to summarize the technical-technology characteristics of different procedures for terpenoid-rich extract recovery and their effects on the environment in order to obtain safe, highly valuable extracts for further application in the meat industry. Isolation and purification of terpenoids, as the main constituents of EOs, are essential due to their wide range of bioactivity and potential for utilization as natural food additives. Therefore, the second goal of this review is to summarize the antioxidant and antimicrobial potential of EOs and terpenoid-rich extracts obtained from different plant materials in meat and various meat products. The results of these investigations suggest that terpenoid-rich extracts, including EOs obtained from several spices and medicinal herbs (black pepper, caraway, Coreopsis tinctoria Nutt., coriander, garlic, oregano, sage, sweet basil, thyme, and winter savory) can be successfully used as natural antioxidants and antimicrobials in order to prolong the shelf-life of meat and processed meat products. These results could be encouraged for higher exploitation of EOs and terpenoid-rich extracts in the meat industry.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Sanja Milošević
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Danica Savanović
- Faculty of Technology, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Zoran Zeković
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Tomović
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
5
|
Myint KZ, Yu Q, Qing J, Zhu S, Shen J, Xia Y. Botanic antimicrobial agents, their antioxidant properties, application and safety issue. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Yu HH, Chin YW, Paik HD. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021; 10:2418. [PMID: 34681466 PMCID: PMC8535775 DOI: 10.3390/foods10102418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products.
Collapse
Affiliation(s)
- Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
7
|
Alleviation of Lead Stress on Sage Plant by 5-Aminolevulinic Acid (ALA). PLANTS 2021; 10:plants10091969. [PMID: 34579503 PMCID: PMC8466212 DOI: 10.3390/plants10091969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Oxidative stress is imparted by a varying range of environmental factors involving heavy metal stress. Thus, the mechanisms of antioxidant resistance may advance a policy to improve metal tolerance. Lead as a toxic heavy metal negatively affects the metabolic activities and growth of medicinal and aromatic plants. This investigation aimed to assess the function of 5-aminolevulinic acid (ALA) in the alleviation of Pb stress in sage plants (Salvia officinalis L.) grown either hydroponically or in pots. Various concentrations of Pb (0, 100, 200, and 400 µM) and different concentrations of ALA (0, 10, and 20 mg L-1) were tested. This investigation showed that Pb altered the physiological parameters. Pb stress differentially reduced germination percentage and protein content compared to control plants. However, lead stress promoted malondialdehyde (MDA) and H2O2 contents in the treated plants. Also, lead stress enhanced the anti-oxidative enzyme activities; ascorbate peroxidase superoxide, dismutase, glutathione peroxidase, and glutathione reductase in Salvia plants. ALA application enhanced the germination percentage and protein content compared to their corresponding controls. Whereas, under ALA application MDA and H2O2 contents, as well as the activities of SOD, APX, GPX, and GR, were lowered. These findings suggest that ALA at the 20 mgL-1 level protects the Salvia plant from Pb stress. Therefore, the results recommend ALA application to alleviate Pb stress.
Collapse
|
8
|
Canan C, Kalschne DL, Ongaratto GC, Leite OD, Cursino ACT, Flores ELDM, Ida EI. Antioxidant effect of rice bran purified phytic acid on mechanically deboned chicken meat. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristiane Canan
- Centro de Ciências Agrárias Universidade Estadual de Londrina Londrina Brazil
- Departamento de Alimentos Universidade Tecnológica Federal do Paraná Medianeira Brazil
| | | | | | - Oldair Donizeti Leite
- Departamento de Química Universidade Tecnológica Federal do Paraná Medianeira Brazil
| | | | | | - Elza Iouko Ida
- Centro de Ciências Agrárias Universidade Estadual de Londrina Londrina Brazil
| |
Collapse
|
9
|
Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021; 10:foods10071598. [PMID: 34359468 PMCID: PMC8305275 DOI: 10.3390/foods10071598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Microbial food contamination is a major concern for consumers and food industries. Consumers desire nutritious, safe and “clean label” products, free of synthetic preservatives and food industries and food scientists try to meet their demands by finding natural effective alternatives for food preservation. One of the alternatives to synthetic preservatives is the use of natural anti-microbial agents in the food products and/or in the packaging materials. Meat and processed meat products are characteristic examples of products that are highly perishable; hence natural anti-microbials can be used for extending their shelf-life and enhancing their safety. Despite several examples of the successful application of natural anti-microbial agents in meat products reported in research studies, their commercial use remains limited. This review objective is to present an extensive overview of recent research in the field of natural anti-microbials, covering essential oils, plant extracts, flavonoids, animal-derived compounds, organic acids, bacteriocins and nanoparticles. The anti-microbial mode of action of the agents, in situ studies involving meat products, regulations and, limitations for usage and future perspectives are described. The review concludes that naturally derived anti-microbials can potentially support the meat industry to provide “clean label”, nutritious and safe meat products for consumers.
Collapse
|
10
|
Sage (Salvia officinalis L.) Essential Oil as a Potential Replacement for Sodium Nitrite in Dry Fermented Sausages. Processes (Basel) 2021. [DOI: 10.3390/pr9030424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study investigates the effects of sodium nitrite replacement by the sage essential oil (SEO), on the physico-chemical, microbiological and sensory quality of dry fermented sausages (DFS) during 225 days of storage. The SEO (0.00, 0.05 and 0.10 µL/g) was added in DFS batters formulated with different levels of pork back fat (15% and 25%) and sodium nitrite (0, 75 and 150 mg/kg). The inclusion of SEO had no negative impact on pH, color (instrumental and sensory) and texture parameters. Total plate counts were lower than 6 log CFU (colony forming units)/g in all samples throughout the storage. Furthermore, the addition of SEO at concentration of 0.05 µL/g provided acceptable TBARS (2-Thiobarbituric acid reactive substances) values (<0.3 mg MDA (malondialdehyde)/kg) in the samples produced with reduced levels of sodium nitrite (0 and 75 mg/kg) without negative alternations on sensory attributes of odor and flavor. Generally, our findings confirmed that the usage of SEO could be a good solution to produce healthier DFS with reduced levels of sodium nitrite.
Collapse
|
11
|
Brezoiu AM, Prundeanu M, Berger D, Deaconu M, Matei C, Oprea O, Vasile E, Negreanu-Pîrjol T, Muntean D, Danciu C. Properties of Salvia officinalis L. and Thymus serpyllum L. Extracts Free and Embedded into Mesopores of Silica and Titania Nanomaterials. NANOMATERIALS 2020; 10:nano10050820. [PMID: 32344938 PMCID: PMC7712395 DOI: 10.3390/nano10050820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
This study evidenced the nanoconfinement effect on polyphenolic extracts prepared from Salvia officinalis L. and Thymus serpyllum L. into the mesopores of silica and titania nanomaterials on their radical scavenging capacity and antimicrobial potential. The ethanolic and hydroalcoholic extracts obtained either by conventional or microwave-assisted extraction were characterized in terms of total polyphenols, total flavonoids, and chlorophyll content, as well as radical scavenging activity by consecrated spectrometric determinations. The phytochemical fingerprint of extracts was analyzed by high-performance liquid chromatography-photodiode array detector. Salvia officinalis extracts exhibited better radical scavenging capacity and antimicrobial potential than Thymus serpyllum extracts. The mesoporous MCM-41 silica and titania nanomaterials, prepared by the sol-gel method, were characterized by small- and wide-angle powder diffraction, FTIR spectroscopy, nitrogen adsorption-desorption isotherms, scanning electron microscopy and transmission electron microscopy, while the materials containing embedded extracts were analyzed through Fourier-transform infrared spectroscopy, N2 sorption measurements, and thermal analysis. All extracts free and embedded in mesoporous matrix exhibited high radical scavenger properties and good bactericidal activity against several reference strains. It was proved that by embedding the polyphenolic extracts into mesopores of silica or titania nanoparticles, the phytochemicals stability was enhanced as the materials containing extract exhibited higher radical scavenger activity after 3-6 months storage than that of the free extracts. Additionally, the extract-loaded material showed mild improved antimicrobial activity in comparison with the corresponding free extract.
Collapse
Affiliation(s)
- Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Mioara Prundeanu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Mihaela Deaconu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| | - Ticuța Negreanu-Pîrjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Aleea Universitatii No. 1, 900470 Constanta, Romania;
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
12
|
González-Alonso V, Cappelletti M, Bertolini FM, Lomolino G, Zambon A, Spilimbergo S. Research Note: Microbial inactivation of raw chicken meat by supercritical carbon dioxide treatment alone and in combination with fresh culinary herbs. Poult Sci 2019; 99:536-545. [PMID: 32416840 PMCID: PMC7587702 DOI: 10.3382/ps/pez563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 01/22/2023] Open
Abstract
The objective of the present study was to assess the potential synergistic effect between supercritical carbon dioxide (SC-CO2) and fresh culinary herbs (Coriandrum sativum and Rosmarinus officinalis) on the microbial inactivation of raw chicken meat. The microbiological inactivation was performed on Escherichia coli and natural flora (total mesophilic bacteria, yeasts, and molds). High pressure treatments were carried out at 40°C, 80 or 140 bar from 15 to 45 min. Microbial inactivation had a strong dependence on treatment time, achieving 1.4 log CFU/g reduction of E. coli after 15 min, and up to 5 log after 45 min, while a pressure increase from 80 up to 140 bar was not significant on the microbial inactivation. Mesophilic microorganisms were strongly reduced (>2.6 log CFU/g) after 45 min, and yeasts and molds were below the detection limits of the technique (<100 CFU/g) in most cases. The combination of fresh herbs together with SC-CO2 treatment did not significantly increase the inactivation of either E. coli or natural flora, which was similar to the SC-CO2 alone. The synergistic effect was obtained on the inactivation of E. coli using a proper concentration of coriander essential oil (EO) (0.5% v/w), while rosemary EO did not show a significant effect. Color analysis after the treatment showed an increment of lightness (L*), and a decrease of redness (a*) on the surface of the sample, making the product visually similar to cooked meat. Texture analysis demonstrated the modification of the texture parameters as a function of the process pressure making the meat more similar to the cooked one.
Collapse
Affiliation(s)
| | - Martina Cappelletti
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | | | - Giovanna Lomolino
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, DAFNAE University of Padova, 35020 Legnaro, Italy
| | - Alessandro Zambon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy.
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| |
Collapse
|