1
|
Wang Y, Wu Y, Wu Y, Feng Z, Li D, Liu Q. A gold nanoflower particle-based immunochromatographic assay sensor for on-site detection of six species of Salmonella in water and food samples. Anal Chim Acta 2025; 1350:343813. [PMID: 40155160 DOI: 10.1016/j.aca.2025.343813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Salmonella is a prevalent zoonotic pathogen that threatens food safety and human health. Owing to the large number of Salmonella species and their significant variations in pathogenicity and virulence, it is difficult to classify Salmonella strains quickly, which makes rapid detection of Salmonella outbreaks and research on foodborne diseases difficult. RESULTS Therefore, in this study, an ICA sensor for the detection of multiple Salmonella strains with high pathogenicity based on broad-spectrum Salmonella antibodies was developed using AuNFs as probes. Compared with other Salmonella ICA sensors, the sensor was able to detect six different types of Salmonella. The ICA sensor had a visual LOD of 104 CFU/mL for S. Paratyphi A, S. Typhimurium, S. Paratyphi B, S. Saintpaul, S. Heidelberg and S. enterica. The ICA sensor had no cross-reaction with 20 common foodborne pathogens, which could effectively avoid incorrect results caused by cross-reaction and delay accurate tracing of pathogenic bacteria. Moreover, the feasibility of the ICA sensor was verified by detecting Salmonella in spiked drinking water, orange juice, and milk. The ICA sensor achieved a visual detection limit of 104 CFU/mL and detected as low as 1 CFU/mL in chicken and egg samples after 6-8 h of enrichment. SIGNIFICANCE In conclusion, this sensor offers a rapid, cost-effective, and reliable solution for the on-site detection of multiple Salmonella strains, addressing critical needs in food safety and public health.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yafang Wu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Youxue Wu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhaoyi Feng
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Dezhi Li
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qing Liu
- College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Meng Y, Zhang Q, Xu M, Ding K, Yu Z, Li J. Pyroptosis regulation by Salmonella effectors. Front Immunol 2024; 15:1464858. [PMID: 39507539 PMCID: PMC11538000 DOI: 10.3389/fimmu.2024.1464858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The genus Salmonella contains the most common foodborne pathogens frequently isolated from food-producing animals and is responsible for zoonotic infections in humans and animals. Salmonella infection in humans and animals can cause intestinal damage, resulting in intestinal inflammation and disruption of intestinal homeostasis more severe cases can lead to bacteremia. Pyroptosis, a proinflammatory form of programmed cell death, is involved in many disease processes. Inflammasomes, pyroptosis, along with their respective signaling cascades, are instrumental in the preservation of intestinal homeostasis. In recent years, with the in-depth study of pyroptosis, our comprehension of the virulence factors and effector proteins in Salmonella has reached an extensive level, a deficit persists in our knowledge regarding the intrinsic pathogenic mechanisms about pyroptosis, necessitating a continued pursuit of understanding and investigation. In this review, we discuss the occurrence of pyroptosis induced by Salmonella effectors to provide new ideas for elucidating the regulatory mechanisms through which Salmonella virulence factors and effector proteins trigger pyroptosis could pave the way for novel concepts and strategies in the clinical prevention of Salmonella infections and the treatment of associated diseases.
Collapse
Affiliation(s)
- Yuan Meng
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qianjin Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengen Xu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
3
|
Mai Q, Lai W, Deng W, Guo J, Luo Y, Bai R, Gu C, Luo G, Mai R, Luo M. Prevalence, Serotypes and Antimicrobial Resistance of Salmonella Isolated from Children in Guangzhou, China, 2018-2023. Infect Drug Resist 2024; 17:4511-4520. [PMID: 39439916 PMCID: PMC11495190 DOI: 10.2147/idr.s486907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Acute gastroenteritis caused by Salmonella spp. among children post a great threat for global public health. The increasing rate of drug-resistant Salmonella spp. has also become a challenging problem worldwide. In this study, the prevalence, serotypes, and antimicrobial characteristics of Salmonella isolated from children in Guangzhou, China, were investigated to provide supporting information for clinical treatment and prevention. Methods Clinical data of children featured with gastroenteritis symptoms from 2018 to 2023 in Guangdong Women and Children Hospital were collected. The difference and fluctuation of antimicrobial resistance between serotypes and years were retrospectively analyzed. Results A total of 1304 Salmonella isolates were cultural-confirmed. The overall positive rate of Salmonella isolated from stool samples was 22.0% (1304/5924). Salmonella infections occur mainly from June to September and the majority of infected children aged under 4 years. Serogroup B was the most common serogroup among Salmonella isolates (74.6%, 973/1304). The predominant serotypes of Salmonella isolates were Typhimurium (63.1%, 823/1304). Higher drug resistance rate of Salmonella spp. to ceftriaxone was observed in 2023. The drug resistance rates of Salmonella isolates to sulfamethoxazole/trimethoprim and ampicillin are at high level during the past 6 years. Notably, higher multi-drug resistance (MDR) rate was demonstrated in Salmonella Typhimurium compared with other serotypes. Conclusion Salmonella Typhimurium was the most common serotype isolated from children in Guangzhou, China, and it may mainly account for the high drug resistance rate in Salmonella spp. to most of the antimicrobial profiles. For controlling the high drug resistance rate of Salmonella spp. continuous surveillance of drug resistance and appropriate use of antibiotics based on clinical and laboratory results are of great significance.
Collapse
Affiliation(s)
- Qiongdan Mai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Weiming Lai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Wenyu Deng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Junfei Guo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Yasha Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Ru Bai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Chunming Gu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Guanbin Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Rongjia Mai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Mingyong Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Neamah M, Mahdi E, Sameir M, Hussein S, Saber A. Clustered Regularly Interspaced Short Palindromic Repeat-1 (CRISPR-1) Locus as a Tool for Tracing the Zoonotic History of Salmonella enterica Strains. Cureus 2024; 16:e62050. [PMID: 38989365 PMCID: PMC11235391 DOI: 10.7759/cureus.62050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background Salmonella enterica is a significant foodborne pathogen that causes considerable illness and death in humans and animals. The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system in bacteria acts as an adaptive immune defense against invasive genetic elements by incorporating short intergenic spacers (IGSs) into CRISPR loci. These loci serve as molecular records of past interactions with phages and plasmids, providing insights into the transmission and evolution of bacterial strains across different hosts. Aim This study aimed to investigate the diversity of IGSs in the CRISPR-1 locus of S. enterica isolates from humans and camels. The objective was to assess the potential of IGSs to distinguish strains, track sources, and understand patterns of zoonotic transmission. Materials and methods Genomic DNA was extracted from multiple strains of S. enterica, and the CRISPR-1 locus was polymerase chain reaction (PCR) amplified and sequenced. The sequences were compared to identify distinct patterns of IGSs and potential host-specific characteristics. Sanger sequencing and bioinformatics tools were used to classify the IGSs and determine their similarity to known sequences in the National Center for Biotechnology Information (NCBI) database. Results Sequence analysis revealed five distinct CRISPR-1 types among S. enterica isolates from humans and three among camel isolates. The presence of shared IGSs between human and camel S. enterica isolates suggested zoonotic or reverse-zoonotic transmission events. Additionally, host-specific unknown IGSs (UIGS) were identified. Importantly, camel isolates initially identified as S. enterica subspecies enterica serovar Enteritidis based on rrnH gene sequencing were reclassified as S. enterica serovar Enteritidis based on CRISPR-1 profiling, demonstrating the higher resolution of CRISPR-based genotyping. Conclusion The diversity of IGSs in the CRISPR-1 locus effectively differentiated S. enterica strains and provided insights into their evolutionary origins and transmission dynamics. CRISPR-based genotyping proves to be a promising tool to complement traditional serotyping methods, enhancing the molecular epidemiology of salmonellosis and potentially leading to better management and control strategies for this pathogen.
Collapse
Affiliation(s)
- Maan Neamah
- Department of Medical Biotechnology, Al-Qasim Green University, Babil, IRQ
| | - Evan Mahdi
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, IRQ
| | - Muhammed Sameir
- Hammurabi College of Medicine, University of Babylon, Babil, IRQ
| | - Safin Hussein
- Department of Biology, University of Raparin, Sulaymaniyah, IRQ
| | - Abdulmalik Saber
- Department of Psychiatric and Mental Health Nursing, Hawler Medical University, Erbil, IRQ
| |
Collapse
|
5
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|
6
|
Shakir MZ, Rizvi F, Javed MT, Arshad MI. Seroprevalence and pathological studies of Salmonella infection in commercial white layer birds. Microb Pathog 2021; 159:105146. [PMID: 34400282 DOI: 10.1016/j.micpath.2021.105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
The present study was conducted to determine the seroprevalence and pathology of Salmonella infection in white commercial layer birds of District Faisalabad during June 2018 and June 2020. The current study aimed to determine the isolation, identification of Salmonella gallinarum (S. gallinarum), its cultural prevalence, antimicrobial resistance, molecular characterization, and pathological lesions produced in different organs of commercial layer birds. Initial screening of poultry flocks was done through serum plate agglutination test followed by culturing in different media, motility test, molecular confirmation, and histopathology. Based on the serum plate agglutination test, seroprevalence in the commercial white layer in dead and live flocks was 40.09%. The cultural prevalence of Salmonella in the seropositive group was 75.36% and in the seronegative was 31.84%. Cultural prevalence in the liver of dead birds was 62.06%, in spleen 58.62%, and in cloacal swabs was 67.24%. A total of 178 isolates were characterized through cultural characteristic and motility tests, among them 63.48% isolates were S. gallinarum, and 36.51% isolates were S. pullorum. The antibiogram study revealed that all the tested isolates were resistant to amoxicillin, gentamycin, kanamycin, doxycyclin, and tetracyclin. While tested isolates were sensitive to ciprofloxacin against S. gallinarum. Pathologically liver was friable, showing bonze discoloration with focal necrosis, enteritis of various grades, mottled white spleen, and enlarged kidneys were found. Microscopically, leukocytic infiltration with focal necrosis and degeneration, in mucosa and submucosa of intestinal inflammatory cells were observed. In conclusion, the seroprevalence, antibiogram, and molecular characterization of Salmonella help to control the disease in a better way through bacterin production of local isolates.
Collapse
Affiliation(s)
- Muhammad Zulqarnain Shakir
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
| | - Farzana Rizvi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
| | - M Tariq Javed
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
| | - M Imran Arshad
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
7
|
|
8
|
Genomic Characterization of Salmonella Minnesota Clonal Lineages Associated with Poultry Production in Brazil. Animals (Basel) 2020; 10:ani10112043. [PMID: 33167341 PMCID: PMC7694379 DOI: 10.3390/ani10112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella serotype Minnesota has been increasingly detected in Brazilian poultry farms and food products (chicken meat, eggs) in recent years. In addition, S. Minnesota isolates from poultry are generally resistant to several antibiotics and persistent in farm environments. The present study aimed to assess phylogenomic diversity of S. Minnesota isolates from the poultry production chain in Brazil. In total, 107 worldwide S. Minnesota whole genomes (including 12 from Brazil) were analyzed using a comparative approach. Phylogenetic analysis demonstrated two clades more related to poultry production in Brazil: S. Minnesota poultry lineages I and II (SM-PLI and SM-PLII). Phylodynamic analysis demonstrated that SM-PLI had a common ancestor in 1915, while SM-PLII originated circa 1971. SM-PLII encompassed a higher number of isolates and presented a recent increase in effective population size (mainly from 2009 to 2012). Plasmids IncA/C2 and ColRNA, antimicrobial resistance genes (aph(3')-Ia, blaCMY-2, qnrB19, sul2, and tet(A)) and mainly a virulence genetic cluster (including the yersiniabactin operon) were detected in isolates from SM-PLI and/or SM-PLII. This study demonstrates the dissemination of two distinct S. Minnesota lineages with high resistance to antibiotics and important virulence genetic clusters in Brazilian poultry farms.
Collapse
|