1
|
Pokrywka K, Grzechowiak M, Sliwiak J, Worsztynowicz P, Loch JI, Ruszkowski M, Gilski M, Jaskolski M. Controlling enzyme activity by mutagenesis and metal exchange to obtain crystal structures of stable substrate complexes of Class 3 l-asparaginase. FEBS J 2025; 292:1159-1173. [PMID: 39754186 DOI: 10.1111/febs.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 12/20/2024] [Indexed: 03/06/2025]
Abstract
Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases. The uniqueness of the ReAV sequence and 3D structure make the enzyme an interesting candidate as potential replacement for the immunogenic bacterial-type asparaginases that are currently in use for the treatment of acute lymphoblastic leukemia. The detailed catalytic mechanism of ReAV is still unknown; therefore, the enzyme was subjected to mutagenetic experiments to investigate its catalytic apparatus. In this work, we generated two ReAV variants of the conserved Lys138 residue (K138A and K138H) that is involved in zinc coordination in the wild-type protein and studied them kinetically and structurally. We established that the activity of wild-type ReAV and the generated variants is significantly reduced in the presence of Cd2+ cations, which slow down the proteins while improving their apparent substrate affinity. Moreover, the inhibitory effect of Cd2+ is enhanced by the substitutions of Lys138, which disrupt the metal coordination sphere. The proteins with impaired activity but increased affinity were cocrystallized with the L-Asn substrate. Here, we present the crystal structures of wild-type ReAV and its K138A and K138H variants, unambiguously revealing bound l-asparagine in the active site. After careful analysis of the stereochemistry of the nucleophilic attack, we assign the role of the primary nucleophile of ReAV to Ser48. Furthermore, we propose that the reaction catalyzed by ReAV proceeds according to a double-displacement mechanism.
Collapse
Affiliation(s)
- Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Joanna I Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Wlodawer A, Dauter Z, Lubkowski J, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Towards a dependable data set of structures for L-asparaginase research. Acta Crystallogr D Struct Biol 2024; 80:506-527. [PMID: 38935343 PMCID: PMC11220836 DOI: 10.1107/s2059798324005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityCracowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Ściuk A, Wątor K, Staroń I, Worsztynowicz P, Pokrywka K, Sliwiak J, Kilichowska M, Pietruszewska K, Mazurek Z, Skalniak A, Lewandowski K, Jaskolski M, Loch JI, Surmiak M. Substrate Affinity Is Not Crucial for Therapeutic L-Asparaginases: Antileukemic Activity of Novel Bacterial Enzymes. Molecules 2024; 29:2272. [PMID: 38792133 PMCID: PMC11124013 DOI: 10.3390/molecules29102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
L-asparaginases are used in the treatment of acute lymphoblastic leukemia. The aim of this work was to compare the antiproliferative potential and proapoptotic properties of novel L-asparaginases from different structural classes, viz. EcAIII and KpAIII (class 2), as well as ReAIV and ReAV (class 3). The EcAII (class 1) enzyme served as a reference. The proapoptotic and antiproliferative effects were tested using four human leukemia cell models: MOLT-4, RAJI, THP-1, and HL-60. The antiproliferative assay with the MOLT-4 cell line indicated the inhibitory properties of all tested L-asparaginases. The results from the THP-1 cell models showed a similar antiproliferative effect in the presence of EcAII, EcAIII, and KpAIII. In the case of HL-60 cells, the inhibition of proliferation was observed in the presence of EcAII and KpAIII, whereas the proliferation of RAJI cells was inhibited only by EcAII. The results of the proapoptotic assays showed individual effects of the enzymes toward specific cell lines, suggesting a selective (time-dependent and dose-dependent) action of the tested L-asparaginases. We have, thus, demonstrated that novel L-asparaginases, with a lower substrate affinity than EcAII, also exhibit significant antileukemic properties in vitro, which makes them interesting new drug candidates for the treatment of hematological malignancies. For all enzymes, the kinetic parameters (Km and kcat) and thermal stability (Tm) were determined. Structural and catalytic properties of L-asparaginases from different classes are also summarized.
Collapse
Affiliation(s)
- Anna Ściuk
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Kinga Wątor
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Izabela Staroń
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Paulina Worsztynowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
| | - Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
| | - Marta Kilichowska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Kamila Pietruszewska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| | - Zofia Mazurek
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| | - Anna Skalniak
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland;
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.W.); (K.P.); (J.S.); (M.J.)
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.Ś.); (M.K.)
| | - Marcin Surmiak
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland; (K.P.); (Z.M.); (A.S.)
| |
Collapse
|
4
|
Pokrywka K, Grzechowiak M, Sliwiak J, Worsztynowicz P, Loch JI, Ruszkowski M, Gilski M, Jaskolski M. Probing the active site of Class 3 L-asparaginase by mutagenesis. I. Tinkering with the zinc coordination site of ReAV. Front Chem 2024; 12:1381032. [PMID: 38638878 PMCID: PMC11024299 DOI: 10.3389/fchem.2024.1381032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ReAV, the inducible Class-3 L-asparaginase from the nitrogen-fixing symbiotic bacterium Rhizobium etli, is an interesting candidate for optimizing its enzymatic potential for antileukemic applications. Since it has no structural similarity to known enzymes with this activity, it may offer completely new ways of approach. Also, as an unrelated protein, it would evade the immunological response elicited by other asparaginases. The crystal structure of ReAV revealed a uniquely assembled protein homodimer with a highly specific C135/K138/C189 zinc binding site in each subunit. It was also shown before that the Zn2+ cation at low and optimal concentration boosts the ReAV activity and improves substrate specificity, which indicates its role in substrate recognition. However, the detailed catalytic mechanism of ReAV is still unknown. In this work, we have applied site-directed mutagenesis coupled with enzymatic assays and X-ray structural analysis to elucidate the role of the residues in the zinc coordination sphere in catalysis. Almost all of the seven ReAV muteins created in this campaign lost the ability to hydrolyze L-asparagine, confirming our predictions about the significance of the selected residues in substrate hydrolysis. We were able to crystallize five of the ReAV mutants and solve their crystal structures, revealing some intriguing changes in the active site area as a result of the mutations. With alanine substitutions of Cys135 or Cys189, the zinc coordination site fell apart and the mutants were unable to bind the Zn2+ cation. Moreover, the absence of Lys138 induced atomic shifts and conformational changes of the neighboring residues from two active-site Ser-Lys tandems. Ser48 from one of the tandems, which is hypothesized to be the catalytic nucleophile, usually changes its hydration pattern in response to the mutations. Taken together, the results provide many useful clues about the catalytic mechanism of the enzyme, allowing one to cautiously postulate a possible enzymatic scenario.
Collapse
Affiliation(s)
- Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|