1
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
2
|
Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, Nasiri K, Esfahaniani M, Yasamineh S. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev Rep 2024; 20:688-721. [PMID: 38308730 DOI: 10.1007/s12015-024-10687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
3
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
4
|
Gross T, Dieterle MP, Vach K, Altenburger MJ, Hellwig E, Proksch S. Biomechanical Modulation of Dental Pulp Stem Cell (DPSC) Properties for Soft Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10030323. [PMID: 36978714 PMCID: PMC10045720 DOI: 10.3390/bioengineering10030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as “trophic mediators”. Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.
Collapse
Affiliation(s)
- Tara Gross
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Correspondence: ; Tel.: +49-(0)761-270-48850; Fax: +49-(0)761-270-47620
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs—University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Markus Joerg Altenburger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Dental Clinic 1–Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstr. 11, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. Latest Findings of the Regenerative Materials Application in Periodontal and Peri-Implant Surgery: A Scoping Review. Bioengineering (Basel) 2022; 9:594. [PMID: 36290567 PMCID: PMC9598513 DOI: 10.3390/bioengineering9100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Regenerative dentistry represents a therapeutic modern approach involving biomaterials and biologics such as mesenchymal stem cells. The role of regenerative dentistry is promising in all branches of dentistry, especially in periodontology and implantology for the treatment of bony defects around teeth and implants, respectively. Due to the number of different materials that can be used for this purpose, the aim of the present review is to evidence the regenerative properties of different materials both in periodontitis and peri-implantitis as well as to compare their efficacy. Clinical trials, case-control studies, cross-sectional studies, and cohort studies have been considered in this review. The outcome assessed is represented by the regenerative properties of bone grafts, barrier membranes, and biological materials in the treatment of intrabony and furcation defects, peri-implantitis sites, alveolar ridge preservation, and implant site development. Based on the studies included, it can be stated that in the last years regenerative materials in periodontal and peri-implant defects treatments have shown excellent results, thus providing valuable support to surgical therapy. To achieve optimal and predictable results, clinicians should always consider factors like occlusal load control, prevention of microbial contamination, and wound dehiscence. Further evidence is required about the use of enamel matrix derivative in alveolar ridge preservation, as well as of stem cells and bone morphogenetic proteins-2 in furcation defects and peri-implantitis sites. Considering the high amount of research being conducted in this field, further evidence is expected to be obtained soon.
Collapse
Affiliation(s)
- Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Pulicari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Mattia Manfredini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Zampetti
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Spadari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Carlo Maiorana
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
The Four Pillars for Successful Regenerative Therapy in Endodontics: Stem Cells, Biomaterials, Growth Factors, and Their Synergistic Interactions. Stem Cells Int 2022; 2022:1580842. [PMID: 36193253 PMCID: PMC9526564 DOI: 10.1155/2022/1580842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Endodontics has made significant progress in regenerative approaches in recent years, thanks to advances in biologically based procedures or regenerative endodontic therapy (RET). In recent years, our profession has witnessed a clear conceptual shift in this therapy. RET was initially based on a blood clot induced by apical bleeding without harvesting the patient’s cells or cell-free RET. Later, the RET encompassed the three principles of tissue engineering, stromal/stem cells, scaffolds, and growth factors, aiming for the regeneration of a functional dentin pulp complex. The regenerated dental pulp will recover the protective mechanisms including innate immunity, tertiary dentin formation, and pain sensitivity. This comprehensive review covers the basic knowledge and practical information for translational applications of stem cell-based RET and tissue engineering procedures for the regeneration of dental pulp. It will also provide overall information on the emerging technologies in biological and synthetic matrices, biomaterials, and signaling molecules, recent advances in stem cell therapy, and updated experimental results. This review brings useful and timely clinical evidence for practitioners to understand the challenges faced for a successful cell-based RET and the importance of preserving or reestablishing tooth vitality. The clinical translation of these current bioengineering approaches will undoubtedly be beneficial to the future practice of endodontics.
Collapse
|
7
|
Al-Serwi RH, El-Kersh AOFO, El-Akabawy G. Human dental pulp stem cells attenuate streptozotocin-induced parotid gland injury in rats. Stem Cell Res Ther 2021; 12:577. [PMID: 34775989 PMCID: PMC8591949 DOI: 10.1186/s13287-021-02646-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Diabetes mellitus causes deterioration in the body, including serious damage of the oral cavity related to salivary gland dysfunction, characterised by hyposalivation and xerostomia. Human dental pulp stem cells (hDPSCs) represent a promising therapy source, due to the easy, minimally invasive surgical access to these cells and their high proliferative capacity. It was previously reported that the trophic support mediated by these cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of hDPSCs in diabetic-induced parotid gland damage have not been investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of hDPSCs on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. METHODS Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ + hDPSCs). The hDPSCs or the vehicles were injected into the rats' tail veins, 7 days after STZ injection. Fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor, proliferating cell nuclear antigen, neuronal nitric oxide synthase, endothelial nitric oxide synthase, and tetrahydrobiopterin biosynthetic enzyme expression levels in parotid tissues were assessed 28 days post-transplantation. RESULTS Transplantation of hDPSCs decreased blood glucose, improved parotid gland weight and salivary flow rate, and reduced oxidative stress. The cells migrated to the STZ-injured parotid gland and differentiated into acinar, ductal, and myoepithelial cells. Moreover, hDPSCs downregulated the expression of caspase-3 and upregulated the expression of vascular endothelial growth factor and proliferating cell nuclear antigen, likely exerting pro-angiogenic and anti-apoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide-tetrahydrobiopterin pathway. CONCLUSIONS Our results showed that hDPSCs migrated to and survived within the STZ-injured parotid gland, where functional and morphological damage was prevented due to the restoration of normal glucose levels, differentiation into parotid cell populations, and stimulation of paracrine-mediated regeneration. Thus, hDPSCs may have potential in the treatment of diabetes-induced parotid gland injury.
Collapse
Affiliation(s)
- Rasha H Al-Serwi
- Oral Basic Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Gehan El-Akabawy
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
8
|
Solderer A, Schmidlin PR. Regenerative Surgical Therapy of Peri-implantitis: An Umbrella Review of Answered/Unanswered Questions and Future Perspectives. FRONTIERS IN DENTAL MEDICINE 2020. [DOI: 10.3389/fdmed.2020.614240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose: To systemically summarize current knowledge about regeneration of peri-implant defects based on available systematic reviews.Materials and Methods: A systematic search for review articles published between 2010 and 2020 in four databases was conducted. Only systematic reviews and meta-analyses were included. Based on the available literature, five questions of clinical importance on indication for regenerative approaches, surgical technique, methods of decontamination, outcome of therapy and adjunctive use of biological factors were formulated and answered.Results: The electronic search resulted in 312 studies, from which 264 studies were published between 2010 and 2020. Finally, 18 systematic reviews and one consensus report were chosen. Data of the included studies were based on 58 to 840 implants. Data on over 4.904 implants were assessed. From the 19 studies that were included, 15 assessed the outcome of regenerative therapy; three, the surgical protocol of regenerative therapy; two, the use of laser in regenerative therapy; and one, the additional use of growth factors in regenerative peri-implant therapy. Three studies assessed more than one topic.Conclusions: In general, a partial bone fill can be expected in 85% of regenerative procedures. Regeneration leads to a mean of 57% of greater bone fill, compared to open flap surgery only. Defect configuration plays a crucial role in the outcome, whereas the role and extent of benefit of different surgical protocols are still not clear.
Collapse
|
9
|
Ejeian F, Razmjou A, Nasr-Esfahani MH, Mohammad M, Karamali F, Ebrahimi Warkiani M, Asadnia M, Chen V. ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration. Int J Nanomedicine 2020; 15:10029-10043. [PMID: 33335393 PMCID: PMC7737945 DOI: 10.2147/ijn.s269169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Despite the significant advances in modeling of biomechanical aspects of cell microenvironment, it remains a major challenge to precisely mimic the physiological condition of the particular cell niche. Here, the metal-organic frameworks (MOFs) have been introduced as a feasible platform for multifactorial control of cell-substrate interaction, given the wide range of physical and mechanical properties of MOF materials and their structural flexibility. RESULTS In situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the polydopamine (PDA)-modified membrane significantly raised surface energy, wettability, roughness, and stiffness of the substrate. This modulation led to an almost twofold increment in the primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed (more than 100-folds rather than tissue culture plate) in response to biomechanical characteristics of the ZIF-8 layer. CONCLUSION Hence, surface modification of cell culture platforms with MOF nanostructures proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue engineering.
Collapse
Affiliation(s)
- Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan73441-81746, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan73441-81746, Iran
- UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Munirah Mohammad
- UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Cao HL, Chung JH, Choung PH. Allogeneic Fibrin Clot for Odontogenic/Cementogenic Differentiation of Human Dental Mesenchymal Stem Cells. Tissue Eng Regen Med 2020; 17:511-524. [PMID: 32592130 DOI: 10.1007/s13770-020-00279-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fetal bovine serum is widely used as a growth supplement for cell culture medium; however, animal-borne pathogens increase the risk of transmitting infectious agents. Platelet-rich fibrin is recently considered as a successful alternative but leukocytes present limits to its allogeneic feasibility. The aim of this study was to explore the effects of allogeneic fibrin clot (AFC) without leukocytes on inducing odontogenic/cementogenic differentiation of human dental pulp stem cells (hDPSCs) and human periodontal ligament stem cells (hPDLSCs) in vitro and in vivo. METHODS AFC was prepared by high-speed centrifugation and leukocytes were almost removed, and AFC serum was obtained through three freeze-thaw cycles. hDPSCs and hPDLSCs were treated with AFC serum to investigate the odontogenic or cementogenic associated markers by real-time polymerase chain reaction. hDPSCs were treated with AFC serum and placed inside of dentin canal, hPDLSCs were treated with AFC serum to wrap outside of dentin, the mixture was then transplanted into the subcutaneous of nude mice for 12 weeks. RESULTS AFC serum exhibited enough growth factors and cytokines to induce odontogenic/cementogenic differentiation of hDPSCs and hPDLSCs in vitro. Furthermore, AFC seurum could induce hDPSCs to differentiate into odontoblasts-like cells and pulp-like tissues, and hPDLSCs to regenerate cementum-like tissues. CONCLUSION AFC could be an alternative safe source with growth factors for the expansion of human dental mesenchymal stem cells (hDMSCs).
Collapse
Affiliation(s)
- Hua-Lian Cao
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Chongno-gu, Seoul, 03080, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials, Science and Engineering, Seoul National University, 599 Gwanakno, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Chongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
Lauritano D, Limongelli L, Moreo G, Favia G, Carinci F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. NANOMATERIALS 2020; 10:nano10040605. [PMID: 32218206 PMCID: PMC7221778 DOI: 10.3390/nano10040605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/15/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
Introduction. Several biomaterials are used in periodontal tissue engineering in order to obtain a three-dimensional scaffold, which could enhance the oral bone regeneration. These novel biomaterials, when placed in the affected area, activate a cascade of events, inducing regenerative cellular responses, and replacing the missing tissue. Natural and synthetic polymers can be used alone or in combination with other biomaterials, growth factors, and stem cells. Natural-based polymer chitosan is widely used in periodontal tissue engineering. It presents biodegradability, biocompatibility, and biological renewability properties. It is bacteriostatic and nontoxic and has hemostatic and mucoadhesive capacity. The aim of this systematic review is to obtain an updated overview of the utilization and effectiveness of chitosan-based scaffold (CS-bs) in the alveolar bone regeneration process. Materials and Methods. During database searching (using PubMed, Cochrane Library, and CINAHL), 72 items were found. The title, abstract, and full text of each study were carefully analyzed and only 22 articles were selected. Thirteen articles were excluded based on their title, five after reading the abstract, twenty-six after reading the full text, and six were not considered because of their publication date (prior to 2010). Quality assessment and data extraction were performed in the twelve included randomized controlled trials. Data concerning cell proliferation and viability (CPV), mineralization level (M), and alkaline phosphatase activity (ALPA) were recorded from each article Results. All the included trials tested CS-bs that were combined with other biomaterials (such as hydroxyapatite, alginate, polylactic-co-glycolic acid, polycaprolactone), growth factors (basic fibroblast growth factor, bone morphogenetic protein) and/or stem cells (periodontal ligament stem cells, human jaw bone marrow-derived mesenchymal stem cells). Values about the proliferation of cementoblasts (CB) and periodontal ligament cells (PDLCs), the activity of alkaline phosphatase, and the mineralization level determined by pure chitosan scaffolds resulted in lower than those caused by chitosan-based scaffolds combined with other molecules and biomaterials. Conclusions. A higher periodontal regenerative potential was recorded in the case of CS-based scaffolds combined with other polymeric biomaterials and bioceramics (bio compared to those provided by CS alone. Furthermore, literature demonstrated that the addition of growth factors and stem cells to CS-based scaffolds might improve the biological properties of chitosan.
Collapse
Affiliation(s)
- Dorina Lauritano
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, 20126 Milan, Italy;
- Correspondence:
| | - Luisa Limongelli
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy; (L.L.); (G.F.)
| | - Giulia Moreo
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Gianfranco Favia
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy; (L.L.); (G.F.)
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
12
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Sukpaita T, Chirachanchai S, Suwattanachai P, Everts V, Pimkhaokham A, Ampornaramveth RS. In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells. Int J Mol Sci 2019; 20:ijms20194883. [PMID: 31581495 PMCID: PMC6801435 DOI: 10.3390/ijms20194883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
Chitosan/dicarboxylic acid (CS/DA) scaffold has been developed as a bone tissue engineering material. This study evaluated a CS/DA scaffold with and without seeded primary human periodontal ligament cells (hPDLCs) in its capacity to regenerate bone in calvarial defects of mice. The osteogenic differentiation of hPDLCs was analyzed by bone nodule formation and gene expression. In vivo bone regeneration was analyzed in mice calvarial defects. Eighteen mice were divided into 3 groups: one group with empty defects, one group with defects with CS/DA scaffold, and a group with defects with CS/DA scaffold and with hPDLCs. After 6 and 12 weeks, new bone formation was assessed using microcomputed tomography (Micro-CT) and histology. CS/DA scaffold significantly promoted in vitro osteoblast-related gene expression (RUNX2, OSX, COL1, ALP, and OPN) by hPDLCs. Micro-CT revealed that CS/DA scaffolds significantly promoted in vivo bone regeneration both after 6 and 12 weeks (p < 0.05). Histological examination confirmed these findings. New bone formation was observed in defects with CS/DA scaffold; being similar with and without hPDLCs. CS/DA scaffolds can be used as a bone regenerative material with good osteoinductive/osteoconductive properties.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Research Unit on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Suwabun Chirachanchai
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchanok Suwattanachai
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Atiphan Pimkhaokham
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | | |
Collapse
|
14
|
CKIP-1 regulates the immunomodulatory function of mesenchymal stem cells. Mol Biol Rep 2019; 46:3991-3999. [DOI: 10.1007/s11033-019-04844-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/30/2019] [Indexed: 01/14/2023]
|
15
|
Oral Plaque from Type 2 Diabetic Patients Reduces the Clonogenic Capacity of Dental Pulp-Derived Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:1516746. [PMID: 30755774 PMCID: PMC6348930 DOI: 10.1155/2019/1516746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a major metabolic disease and a key epigenetic risk factor for the development of additional clinical complications. Among them, periodontitis (PD), a severe inflammatory disease ascribable to a dysregulated physiology and composition of the oral microbiota, represents one of the most relevant complications. Periodontitis can impact the structure of the tooth and likely the stem and progenitor cell pool, which actively contributes to the periodontal microenvironment and homeostasis. Modifications of the oral plaque play a key role in the etiopathogenesis of PD caused by T2D. However, to what extent the biology of the progenitor pool is affected has still to be elucidated. In this short report, we aimed to explore the biological effects of oral plaque derived from T2D patients with PD in comparison to non-diabetic patients with PD. Oral plaque samples were isolated from T2D and non-diabetic subjects with PD. Dental pulp stem cells (DPSCs), derived from the premolar tooth, were conditioned for 21 days with oral plaque samples and tested for their clonogenic ability. Cultures were also induced to differentiate towards the osteogenic lineage, and ALP and osteocalcin gene expression levels were evaluated by real-time qPCR. Results have shown that the number of clones generated by DPSCs exposed to T2D oral plaque was significantly lower compared to controls (ctl). The multivariate analysis confirmed that the decreased clonogenesis was significantly correlated only with T2D diagnosis. Moreover, the effect of T2D oral plaque was specific to DPSCs. Indicators of osteogenic differentiation were not significantly affected. This study provides a new biological insight into the effects ascribable to T2D in PD.
Collapse
|
16
|
Proksch S, Galler KM. Scaffold Materials and Dental Stem Cells in Dental Tissue Regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40496-018-0197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|