1
|
Dalrymple AN, Jones ST, Fallon JB, Shepherd RK, Weber DJ. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron Med 2025; 11:6. [PMID: 40083033 PMCID: PMC11907899 DOI: 10.1186/s42234-025-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improving the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades and improving the health and quality of life of many patient populations. Despite these successes, implanted neural interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsulation of the device. This review describes the challenges faced by developers of neural interface systems, particularly devices already in use in humans. The mechanical and technological failure modes of each component of an implant system is described. The acute and chronic reactions to devices in the peripheral and central nervous system and how they affect system performance are depicted. Further, physical challenges such as micro and macro movements are reviewed. The clinical implications of device failures are summarized and a guide for determining the severity of complication was developed and provided. Common methods to diagnose and examine mechanical, technological, and biological failure modes at various stages of development and testing are outlined, with an emphasis on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface systems.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA.
- NERVES Lab, University of Utah, Salt Lake City, UT, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Sonny T Jones
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- NERVES Lab, University of Utah, Salt Lake City, UT, USA
| | - James B Fallon
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Robert K Shepherd
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Corrigendum to "Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes" [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290]. Acta Biomater 2024; 182:303-308. [PMID: 38845260 PMCID: PMC11295673 DOI: 10.1016/j.actbio.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
3
|
Duncan JL, Wang JJ, Glusauskas G, Weagraff GR, Gao Y, Hoeferlin GF, Hunter AH, Hess-Dunning A, Ereifej ES, Capadona JR. In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies. MICROMACHINES 2024; 15:286. [PMID: 38399014 PMCID: PMC10893395 DOI: 10.3390/mi15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: Intracortical microelectrodes (IMEs) are an important part of interfacing with the central nervous system (CNS) and recording neural signals. However, recording electrodes have shown a characteristic steady decline in recording performance owing to chronic neuroinflammation. The topography of implanted devices has been explored to mimic the nanoscale three-dimensional architecture of the extracellular matrix. Our previous work used histology to study the implant sites of non-recording probes and showed that a nanoscale topography at the probe surface mitigated the neuroinflammatory response compared to probes with smooth surfaces. Here, we hypothesized that the improvement in the neuroinflammatory response for probes with nanoscale surface topography would extend to improved recording performance. (2) Methods: A novel design modification was implemented on planar silicon-based neural probes by etching nanopatterned grooves (with a 500 nm pitch) into the probe shank. To assess the hypothesis, two groups of rats were implanted with either nanopatterned (n = 6) or smooth control (n = 6) probes, and their recording performance was evaluated over 4 weeks. Postmortem gene expression analysis was performed to compare the neuroinflammatory response from the two groups. (3) Results: Nanopatterned probes demonstrated an increased impedance and noise floor compared to controls. However, the recording performances of the nanopatterned and smooth probes were similar, with active electrode yields for control probes and nanopatterned probes being approximately 50% and 45%, respectively, by 4 weeks post-implantation. Gene expression analysis showed one gene, Sirt1, differentially expressed out of 152 in the panel. (4) Conclusions: this study provides a foundation for investigating novel nanoscale topographies on neural probes.
Collapse
Affiliation(s)
- Jonathan L. Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jaime J. Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gabriele Glusauskas
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Gwendolyn R. Weagraff
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Yue Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Allen H. Hunter
- Michigan Center for Materials Characterization, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Evon S. Ereifej
- Department of Biomedical Engineering, University of Michigan, 500 S. State St, Ann Arbor, MI 48109, USA
- Veterans Affairs Hospital, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Perna A, Angotzi GN, Berdondini L, Ribeiro JF. Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 2023; 17:1275908. [PMID: 38027514 PMCID: PMC10644322 DOI: 10.3389/fnins.2023.1275908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device. Interestingly, the recent adoption of Complementary Metal Oxide Semiconductor (CMOS) technology to realize implantable neural probes capable of monitoring hundreds to thousands of neurons simultaneously, may open new opportunities to face the FBR challenge. Indeed, this shift from passive Micro Electro-Mechanical Systems (MEMS) to active CMOS neural probe technologies creates important, yet unexplored, opportunities to tune probe features such as the mechanical properties of the probe, its layout, size, and surface physicochemical properties, to minimize tissue damage and consequently FBR. Here, we will first review relevant literature on FBR to provide a better understanding of the processes and sources underlying this tissue response. Methods to assess FBR will be described, including conventional approaches based on the imaging of biomarkers, and more recent transcriptomics technologies. Then, we will consider emerging opportunities offered by the features of CMOS probes. Finally, we will describe a prototypical neural probe that may meet the needs for advancing clinical BCIs, and we propose axial insertion force as a potential metric to assess the influence of probe features on acute tissue damage and to control the implantation procedure to minimize iatrogenic injury and subsequent FBR.
Collapse
Affiliation(s)
- Alberto Perna
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - João Filipe Ribeiro
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| |
Collapse
|
5
|
Hoeferlin GF, Bajwa T, Olivares H, Zhang J, Druschel LN, Sturgill BS, Sobota M, Boucher P, Duncan J, Hernandez-Reynoso AG, Cogan SF, Pancrazio JJ, Capadona JR. Antioxidant Dimethyl Fumarate Temporarily but Not Chronically Improves Intracortical Microelectrode Performance. MICROMACHINES 2023; 14:1902. [PMID: 37893339 PMCID: PMC10609067 DOI: 10.3390/mi14101902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a brain-computer interface (BCI) system aimed at restoring function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site. Antioxidants offer a means for mitigating oxidative stress and improving tissue health and MEA performance. Here, we investigate using the clinically available antioxidant dimethyl fumarate (DMF) to reduce the neuroinflammatory response and improve MEA performance in a rat MEA model. Daily treatment of DMF for 16 weeks resulted in a significant improvement in the recording capabilities of MEA devices during the sub-chronic (Weeks 5-11) phase (42% active electrode yield vs. 35% for control). However, these sub-chronic improvements were lost in the chronic implantation phase, as a more exacerbated neuroinflammatory response occurs in DMF-treated animals by 16 weeks post-implantation. Yet, neuroinflammation was indiscriminate between treatment and control groups during the sub-chronic phase. Although worse for chronic use, a temporary improvement (<12 weeks) in MEA performance is meaningful. Providing short-term improvement to MEA devices using DMF can allow for improved use for limited-duration studies. Further efforts should be taken to explore the mechanism behind a worsened neuroinflammatory response at the 16-week time point for DMF-treated animals and assess its usefulness for specific applications.
Collapse
Affiliation(s)
- George F. Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Tejas Bajwa
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Hannah Olivares
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Lindsey N. Druschel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Michael Sobota
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Pierce Boucher
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Jonathan Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA (J.J.P.)
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA (H.O.); (J.D.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes. Acta Biomater 2023; 166:278-290. [PMID: 37211307 PMCID: PMC10330779 DOI: 10.1016/j.actbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Intracortical microelectrodes induce vascular injury upon insertion into the cortex. As blood vessels rupture, blood proteins and blood-derived cells (including platelets) are introduced into the 'immune privileged' brain tissues at higher-than-normal levels, passing through the damaged blood-brain barrier. Blood proteins adhere to implant surfaces, increasing the likelihood of cellular recognition leading to activation of immune and inflammatory cells. Persistent neuroinflammation is a major contributing factor to declining microelectrode recording performance. We investigated the spatial and temporal relationship of blood proteins fibrinogen and von Willebrand Factor (vWF), platelets, and type IV collagen, in relation to glial scarring markers for microglia and astrocytes following implantation of non-functional multi-shank silicon microelectrode probes into rats. Together with type IV collagen, fibrinogen and vWF augment platelet recruitment, activation, and aggregation. Our main results indicate blood proteins participating in hemostasis (fibrinogen and vWF) persisted at the microelectrode interface for up to 8-weeks after implantation. Further, type IV collagen and platelets surrounded the probe interface with similar spatial and temporal trends as vWF and fibrinogen. In addition to prolonged blood-brain barrier instability, specific blood and extracellular matrix proteins may play a role in promoting the inflammatory activation of platelets and recruitment to the microelectrode interface. STATEMENT OF SIGNIFICANCE: Implanted microelectrodes have substantial potential for restoring function to people with paralysis and amputation by providing signals that feed into natural control algorithms that drive prosthetic devices. Unfortunately, these microelectrodes do not display robust performance over time. Persistent neuroinflammation is widely thought to be a primary contributor to the devices' progressive decline in performance. Our manuscript reports on the highly local and persistent accumulation of platelets and hemostatic blood proteins around the microelectrode interface of brain implants. To our knowledge neuroinflammation driven by cellular and non-cellular responses associated with hemostasis and coagulation has not been rigorously quantified elsewhere. Our findings identify potential targets for therapeutic intervention and a better understanding of the driving mechanisms to neuroinflammation in the brain.
Collapse
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
7
|
Franklin ME, Bennett C, Arboite M, Alvarez-Ciara A, Corrales N, Verdelus J, Dietrich WD, Keane RW, de Rivero Vaccari JP, Prasad A. Activation of inflammasomes and their effects on neuroinflammation at the microelectrode-tissue interface in intracortical implants. Biomaterials 2023; 297:122102. [PMID: 37015177 PMCID: PMC10614166 DOI: 10.1016/j.biomaterials.2023.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Invasive neuroprosthetics rely on microelectrodes (MEs) to record or stimulate the activity of large neuron assemblies. However, MEs are subjected to tissue reactivity in the central nervous system (CNS) due to the foreign body response (FBR) that contribute to chronic neuroinflammation and ultimately result in ME failure. An endogenous, acute set of mechanisms responsible for the recognition and targeting of foreign objects, called the innate immune response, immediately follows the ME implant-induced trauma. Inflammasomes are multiprotein structures that play a critical role in the initiation of an innate immune response following CNS injuries. The activation of inflammasomes facilitates a range of innate immune response cascades and results in neuroinflammation and programmed cell death. Despite our current understanding of inflammasomes, their roles in the context of neural device implantation remain unknown. In this study, we implanted a non-functional Utah electrode array (UEA) into the rat somatosensory cortex and studied the inflammasome signaling and the corresponding downstream effects on inflammatory cytokine expression and the inflammasome-mediated cell death mechanism of pyroptosis. Our results not only demonstrate the continuous activation of inflammasomes and their contribution to neuroinflammation at the electrode-tissue interface but also reveal the therapeutic potential of targeting inflammasomes to attenuate the FBR in invasive neuroprosthetics.
Collapse
Affiliation(s)
- Melissa E Franklin
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cassie Bennett
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Maelle Arboite
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Natalie Corrales
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Jennifer Verdelus
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
Khodadadei F, Arshad R, Morales DM, Gluski J, Marupudi NI, McAllister JP, Limbrick DD, Harris CA. The effect of A1 and A2 reactive astrocyte expression on hydrocephalus shunt failure. Fluids Barriers CNS 2022; 19:78. [PMID: 36171630 PMCID: PMC9516791 DOI: 10.1186/s12987-022-00367-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background The composition of tissue obstructing neuroprosthetic devices is largely composed of inflammatory cells with a significant astrocyte component. In a first-of-its-kind study, we profile the astrocyte phenotypes present on hydrocephalus shunts. Methods qPCR and RNA in-situ hybridization were used to quantify pro-inflammatory (A1) and anti-inflammatory (A2) reactive astrocyte phenotypes by analyzing C3 and EMP1 genes, respectively. Additionally, CSF cytokine levels were quantified using ELISA. In an in vitro model of astrocyte growth on shunts, different cytokines were used to prevent the activation of resting astrocytes into the A1 and A2 phenotypes. Obstructed and non-obstructed shunts were characterized based on the degree of actual tissue blockage on the shunt surface instead of clinical diagnosis. Results The results showed a heterogeneous population of A1 and A2 reactive astrocytes on the shunts with obstructed shunts having a significantly higher proportion of A2 astrocytes compared to non-obstructed shunts. In addition, the pro-A2 cytokine IL-6 inducing proliferation of astrocytes was found at higher concentrations among CSF from obstructed samples. Consequently, in the in vitro model of astrocyte growth on shunts, cytokine neutralizing antibodies were used to prevent activation of resting astrocytes into the A1 and A2 phenotypes which resulted in a significant reduction in both A1 and A2 growth. Conclusions Therefore, targeting cytokines involved with astrocyte A1 and A2 activation is a promising intervention aimed to prevent shunt obstruction. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00367-3.
Collapse
Affiliation(s)
- Fatemeh Khodadadei
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
| | - Rooshan Arshad
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob Gluski
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolyn A Harris
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA. .,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
Song S, Regan B, Ereifej ES, Chan ER, Capadona JR. Neuroinflammatory Gene Expression Analysis Reveals Pathways of Interest as Potential Targets to Improve the Recording Performance of Intracortical Microelectrodes. Cells 2022; 11:2348. [PMID: 35954192 PMCID: PMC9367362 DOI: 10.3390/cells11152348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Intracortical microelectrodes are a critical component of brain-machine interface (BMI) systems. The recording performance of intracortical microelectrodes used for both basic neuroscience research and clinical applications of BMIs decreases over time, limiting the utility of the devices. The neuroinflammatory response to the microelectrode has been identified as a significant contributing factor to its performance. Traditionally, pathological assessment has been limited to a dozen or so known neuroinflammatory proteins, and only a few groups have begun to explore changes in gene expression following microelectrode implantation. Our initial characterization of gene expression profiles of the neuroinflammatory response to mice implanted with non-functional intracortical probes revealed many upregulated genes that could inform future therapeutic targets. Emphasis was placed on the most significant gene expression changes and genes involved in multiple innate immune sets, including Cd14, C3, Itgam, and Irak4. In previous studies, inhibition of Cluster of Differentiation 14 (Cd14) improved microelectrode performance for up to two weeks after electrode implantation, suggesting CD14 can be explored as a potential therapeutic target. However, all measures of improvements in signal quality and electrode performance lost statistical significance after two weeks. Therefore, the current study investigated the expression of genes in the neuroinflammatory pathway at the tissue-microelectrode interface in Cd14-/- mice to understand better how Cd14 inhibition was connected to temporary improvements in recording quality over the initial 2-weeks post-surgery, allowing for the identification of potential co-therapeutic targets that may work synergistically with or after CD14 inhibition to improve microelectrode performance.
Collapse
Affiliation(s)
- Sydney Song
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA; (S.S.); (E.S.E.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Brianna Regan
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evon S. Ereifej
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA; (S.S.); (E.S.E.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA; (S.S.); (E.S.E.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Tsai CS, Hu MH, Hsu YC, Huang GS. Platelet Toll-like Receptor 4–Related Innate Immunity Potentially Participates in Transfusion Reactions Independent of ABO Compatibility: An Ex Vivo Study. Biomedicines 2021; 10:biomedicines10010029. [PMID: 35052709 PMCID: PMC8772939 DOI: 10.3390/biomedicines10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The role of platelet TLR4 in transfusion reactions remains unclear. This study analyzed platelet TLR4 and certain damage-associated molecular patterns (DAMPs) and evaluated how ABO compatibility affected TLR4 expression after a simulated ex vivo transfusion. A blood bank was the source of donor red blood cells. Blood from patients undergoing cardiac surgery was processed to generate a washed platelet suspension to which the donor blood was added in concentrations 1, 5, and 10% (v/v). Blood-mixing experiments were performed on four groups: a 0.9% saline control group (n = 31); a matched-blood-type mixing group (group M, n = 20); an uncross-matched ABO-specific mixing group (group S, n = 20); and an ABO-incompatible blood mixing group (group I, n = 20). TLR4 expression in the platelets was determined after blood mixing. We evaluated levels of TLR4-binding DAMPs (HMGB1, S100A8, S100A9, and SAA), lipopolysaccharide-binding protein, and endpoint proteins in the TLR4 signaling pathway. In the M, S, and I groups, 1, 5, and 10% blood mixtures significantly increased TLR4 expression (all p < 0.001) in a concentration-dependent manner. Groups M, S, and I were not discovered to have significantly differing TLR4 expression (p = 0.148). HMGB1, S100A8, and S100A9 levels were elevated in response to blood mixing, but SAA, lipopolysaccharide-binding protein, TNF-α, IL-1β, and IL-6 levels were not. Blood mixing may elicit innate immune responses by upregulating platelet TLR4 and DAMPs unassociated with ABO compatibility, suggesting that innate immunity through TLR4-mediated signaling may induce transfusion reactions.
Collapse
Affiliation(s)
- Chien-Sung Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Mei-Hua Hu
- Department of Pediatrics, Division of Pediatric General Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Chi Hsu
- National Defense Medical Center, Department of Anesthesiology, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Go-Shine Huang
- National Defense Medical Center, Department of Anesthesiology, Tri-Service General Hospital, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-(2)-8792-7128; Fax: +886-(2)-8792-7127
| |
Collapse
|
11
|
Khodadadei F, Liu AP, Harris CA. A high-resolution real-time quantification of astrocyte cytokine secretion under shear stress for investigating hydrocephalus shunt failure. Commun Biol 2021; 4:387. [PMID: 33758339 PMCID: PMC7988003 DOI: 10.1038/s42003-021-01888-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
It has been hypothesized that physiological shear forces acting on medical devices implanted in the brain significantly accelerate the rate to device failure in patients with chronically indwelling neuroprosthetics. In hydrocephalus shunt devices, shear forces arise from cerebrospinal fluid flow. The shunt's unacceptably high failure rate is mostly due to obstruction with adherent inflammatory cells. Astrocytes are the dominant cell type bound directly to obstructing shunts, rapidly manipulating their activation via shear stress-dependent cytokine secretion. Here we developed a total internal reflection fluorescence microscopy combined with a microfluidic shear device chip (MSDC) for quantitative analysis and direct spatial-temporal mapping of secreted cytokines at the single-cell level under physiological shear stress to identify the root cause for shunt failure. Real-time secretion imaging at 1-min time intervals enabled successful detection of a significant increase of astrocyte IL-6 cytokine secretion under shear stress greater than 0.5 dyne/cm2, validating our hypothesis and highlighting the importance of reducing shear stress activation of cells.
Collapse
Affiliation(s)
- Fatemeh Khodadadei
- Dept. of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Allen P Liu
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Dept. of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Dept. of Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Carolyn A Harris
- Dept. of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
- Dept. of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
- Dept. of Neurosurgery, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Mahajan S, Hermann JK, Bedell HW, Sharkins JA, Chen L, Chen K, Meade SM, Smith CS, Rayyan J, Feng H, Kim Y, Schiefer MA, Taylor DM, Capadona JR, Ereifej ES. Toward Standardization of Electrophysiology and Computational Tissue Strain in Rodent Intracortical Microelectrode Models. Front Bioeng Biotechnol 2020; 8:416. [PMID: 32457888 PMCID: PMC7225268 DOI: 10.3389/fbioe.2020.00416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Progress has been made in the field of neural interfacing using both mouse and rat models, yet standardization of these models' interchangeability has yet to be established. The mouse model allows for transgenic, optogenetic, and advanced imaging modalities which can be used to examine the biological impact and failure mechanisms associated with the neural implant itself. The ability to directly compare electrophysiological data between mouse and rat models is crucial for the development and assessment of neural interfaces. The most obvious difference in the two rodent models is size, which raises concern for the role of device-induced tissue strain. Strain exerted on brain tissue by implanted microelectrode arrays is hypothesized to affect long-term recording performance. Therefore, understanding any potential differences in tissue strain caused by differences in the implant to tissue size ratio is crucial for validating the interchangeability of rat and mouse models. Hence, this study is aimed at investigating the electrophysiological variances and predictive device-induced tissue strain. Rat and mouse electrophysiological recordings were collected from implanted animals for eight weeks. A finite element model was utilized to assess the tissue strain from implanted intracortical microelectrodes, taking into account the differences in the depth within the cortex, implantation depth, and electrode geometry between the two models. The rat model demonstrated a larger percentage of channels recording single unit activity and number of units recorded per channel at acute but not chronic time points, relative to the mouse model Additionally, the finite element models also revealed no predictive differences in tissue strain between the two rodent models. Collectively our results show that these two models are comparable after taking into consideration some recommendations to maintain uniform conditions for future studies where direct comparisons of electrophysiological and tissue strain data between the two animal models will be required.
Collapse
Affiliation(s)
- Shreya Mahajan
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - John K. Hermann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Hillary W. Bedell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jonah A. Sharkins
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Lei Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Keying Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Seth M. Meade
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Cara S. Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jacob Rayyan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - He Feng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Matthew A. Schiefer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Dawn M. Taylor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Neuroscience, The Cleveland Clinic, Cleveland, OH, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Evon S. Ereifej
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Bedell HW, Schaub NJ, Capadona JR, Ereifej ES. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes. Acta Biomater 2020; 102:205-219. [PMID: 31733330 DOI: 10.1016/j.actbio.2019.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Higher order tasks in development for brain-computer interfacing applications require the invasiveness of intracortical microelectrodes. Unfortunately, the resulting inflammatory response contributes to the decline of detectable neural signal. The major components of the neuroinflammatory response to microelectrodes have been well-documented with histological imaging, leading to the identification of broad pathways of interest for its inhibition such as oxidative stress and innate immunity. To understand how to mitigate the neuroinflammatory response, a more precise understanding is required. Advancements in genotyping have led the development of new tools for developing temporal gene expression profiles. Therefore, we have meticulously characterized the gene expression profiles of the neuroinflammatory response to mice implanted with non-functional intracortical probes. A time course of differential acute expression of genes of the innate immune response were compared to naïve sham mice, identifying significant changes following implantation. Differential gene expression analysis revealed 22 genes that could inform future therapeutic targets. Particular emphasis is placed on the largest changes in gene expression occurring 24 h post-implantation, and in genes that are involved in multiple innate immune sets including Itgam, Cd14, and Irak4. STATEMENT OF SIGNIFICANCE: Current understanding of the cellular response contributing to the failure of intracortical microelectrodes has been limited to the evaluation of cellular presence around the electrode. Minimal research investigating gene expression profiles of these cells has left a knowledge gap identifying their phenotype. This manuscript represents the first robust investigation of the changes in gene expression levels specific to the innate immune response following intracortical microelectrode implantation. To understand the role of the complement system in response to implanted probes, we performed gene expression profiling over acute time points from implanted subjects and compared them to no-surgery controls. This manuscript provides valuable insights into inflammatory mechanisms at the tissue-probe interface, thus having a high impact on those using intracortical microelectrodes to study and treat neurological diseases and injuries.
Collapse
|
14
|
Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2019; 46:341-367. [PMID: 30806249 DOI: 10.1615/critrevbiomedeng.2018027166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.
Collapse
Affiliation(s)
- John K Hermann
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| |
Collapse
|
15
|
Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Front Neurosci 2019; 13:689. [PMID: 31333407 PMCID: PMC6624471 DOI: 10.3389/fnins.2019.00689] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
The development of implantable neuroelectrodes is advancing rapidly as these tools are becoming increasingly ubiquitous in clinical practice, especially for the treatment of traumatic and neurodegenerative disorders. Electrodes have been exploited in a wide number of neural interface devices, such as deep brain stimulation, which is one of the most successful therapies with proven efficacy in the treatment of diseases like Parkinson or epilepsy. However, one of the main caveats related to the clinical application of electrodes is the nervous tissue response at the injury site, characterized by a cascade of inflammatory events, which culminate in chronic inflammation, and, in turn, result in the failure of the implant over extended periods of time. To overcome current limitations of the most widespread macroelectrode based systems, new design strategies and the development of innovative materials with superior biocompatibility characteristics are currently being investigated. This review describes the current state of the art of in vitro, ex vivo, and in vivo models available for the study of neural tissue response to implantable microelectrodes. We particularly highlight new models with increased complexity that closely mimic in vivo scenarios and that can serve as promising alternatives to animal studies for investigation of microelectrodes in neural tissues. Additionally, we also express our view on the impact of the progress in the field of neural tissue engineering on neural implant research.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Donghoon Kim
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Sofia Duque Santos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Semenkov V, Mikhalskii A, Sapoznikov A. Influence of heat shock proteins in individual sensitivity of human neutrophils to heat stress. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Bennett C, Mohammed F, Álvarez-Ciara A, Nguyen MA, Dietrich WD, Rajguru SM, Streit WJ, Prasad A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials 2019; 188:144-159. [PMID: 30343257 PMCID: PMC6300159 DOI: 10.1016/j.biomaterials.2018.09.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Abstract
The use of intracortical microelectrode arrays has gained significant attention in being able to help restore function in paralysis patients and study the brain in various neurological disorders. Electrode implantation in the cortex causes vasculature or blood-brain barrier (BBB) disruption and thus elicits a foreign body response (FBR) that results in chronic inflammation and may lead to poor electrode performance. In this study, a comprehensive insight into the acute molecular mechanisms occurring at the Utah electrode array-tissue interface is provided to understand the oxidative stress, neuroinflammation, and neurovascular unit (astrocytes, pericytes, and endothelial cells) disruption that occurs following microelectrode implantation. Quantitative real time polymerase chain reaction (qRT-PCR) was used to quantify the gene expression at acute time-points of 48-hr, 72-hr, and 7-days for factors mediating oxidative stress, inflammation, and BBB disruption in rats implanted with a non-functional 4 × 4 Utah array in the somatosensory cortex. During vascular disruption, free iron released into the brain parenchyma can exacerbate the FBR, leading to oxidative stress and thus further contributing to BBB degradation. To reduce the free iron released into the brain tissue, the effects of an iron chelator, deferoxamine mesylate (DFX), was also evaluated.
Collapse
Affiliation(s)
- Cassie Bennett
- Department of Biomedical Engineering, University of Miami, FL, USA
| | - Farrah Mohammed
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | | | | | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, FL, USA
| | | | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, FL, USA.
| |
Collapse
|
18
|
Semenkov V, Mikhalskii A, Sapoznikov A. Influence of heat shock proteins in individual sensitivity of human neutrophils to heat stress. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|