1
|
Khairulin A, Kuchumov AG, Silberschmidt VV. In silico model of stent performance in multi-layered artery using 2-way fluid-structure interaction: Influence of boundary conditions and vessel length. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108327. [PMID: 39018788 DOI: 10.1016/j.cmpb.2024.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerotic lesions of coronary arteries (stenosis) are caused by the buildup of lipids and blood-borne substances within the artery wall. Their qualitative and rapid assessment is still a challenging task. The primary therapy for this pathology involves implanting coronary stents, which help to restore the blood flow in atherosclerosis-prone arteries. In-stent restenosis is a stenting-procedure complication detected in about 10-40% of patients. A numerical study using 2-way fluid-structure interaction (FSI) assesses the stenting procedure quality and can decrease the number of negative post-operative results. Nevertheless, boundary conditions (BCs) used in simulation play a crucial role in implementation of an adequate computational analysis. METHODS Three CoCr stents designs were modelled with the suggested approach. A multi-layer structure describing the artery and plaque with anisotropic hyperelastic mechanical properties was adopted in this study. Two kinds of boundary conditions for a solid domain were examined - fixed support (FS) and remote displacement (RD) - to assess their impact on the hemodynamic parameters to predict restenosis. Additionally, the influence of artery elongation (short-artery model vs. long-artery model) on numerical results with the FS boundary condition was analyzed. RESULTS The comparison of FS and RD boundary conditions demonstrated that the variation of hemodynamic parameters values did not exceed 2%. The analysis of short-artery and long-artery models revealed that the difference in hemodynamic parameters was less than 5.1%, and in most cases, it did not exceed 2.5%. The RD boundary conditions were found to reduce the computation time by up to 1.7-2.0 times compared to FS. Simple stent model was shown to be susceptible to restenosis development, with maximum WSS values equal to 183 Pa, compared to much lower values for other two stents. CONCLUSIONS The study revealed that the stent design significantly affected the hemodynamic parameters as restenosis predictors. Moreover, the stress-strain state of the system artery-plaque-stent also depends on a proper choice of boundary conditions.
Collapse
Affiliation(s)
- Aleksandr Khairulin
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia; Biofluids Laboratory, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia
| | - Alex G Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia; Biofluids Laboratory, Perm National Research Polytechnic University, Komsomolskiy prospect 29, Perm 614990, Russia.
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Vanaei S, Hashemi M, Solouk A, Asghari Ilani M, Amili O, Hefzy MS, Tang Y, Elahinia M. Manufacturing, Processing, and Characterization of Self-Expanding Metallic Stents: A Comprehensive Review. Bioengineering (Basel) 2024; 11:983. [PMID: 39451359 PMCID: PMC11505524 DOI: 10.3390/bioengineering11100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Abstract
This paper aims to review the State of the Art in metal self-expanding stents made from nitinol (NiTi), showing shape memory and superelastic behaviors, to identify the challenges and the opportunities for improving patient outcomes. A significant contribution of this paper is its extensive coverage of multidisciplinary aspects, including design, simulation, materials development, manufacturing, bio/hemocompatibility, biomechanics, biomimicry, patency, and testing methodologies. Additionally, the paper offers in-depth insights into the latest practices and emerging trends, with a special emphasis on the transformative potential of additive manufacturing techniques in the development of metal stents. By consolidating existing knowledge and highlighting areas for future innovation, this review provides a valuable roadmap for advancing nitinol stents.
Collapse
Affiliation(s)
- Saeedeh Vanaei
- Mechanical Industrial and Manufacturing Engineering Department, University of Toledo, Toledo, OH 43606, USA; (O.A.); (M.S.H.); (M.E.)
| | - Mahdi Hashemi
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran;
| | - Mohsen Asghari Ilani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran;
| | - Omid Amili
- Mechanical Industrial and Manufacturing Engineering Department, University of Toledo, Toledo, OH 43606, USA; (O.A.); (M.S.H.); (M.E.)
| | - Mohamed Samir Hefzy
- Mechanical Industrial and Manufacturing Engineering Department, University of Toledo, Toledo, OH 43606, USA; (O.A.); (M.S.H.); (M.E.)
| | - Yuan Tang
- Department of Bioengineering, University of Toledo, Toledo, OH 43606, USA;
| | - Mohammad Elahinia
- Mechanical Industrial and Manufacturing Engineering Department, University of Toledo, Toledo, OH 43606, USA; (O.A.); (M.S.H.); (M.E.)
| |
Collapse
|
3
|
Reza Sayah M, Ebrahimi S, Mirafzal I, Shamloo A. Investigation of the size and shape of nano-microcarriers for targeted drug delivery to atherosclerotic plaque in ischemic stroke prevention. Int J Pharm 2024; 662:124469. [PMID: 39004292 DOI: 10.1016/j.ijpharm.2024.124469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Recognizing the significance of drug carriers in the treatment of atherosclerotic plaque is crucial in light of the worldwide repercussions of ischemic stroke. Conservative methodologies, specifically targeted drug delivery, present encouraging substitutes that mitigate the hazards linked to invasive procedures. With the intention of illuminating their considerable significance and prospective benefits, this study examines the impact of the geometry and dimensions of drug-loaded nano-microcarriers on atherosclerotic plaque. The research utilizes a finite element approach to simulate the motion and fluid dynamics of nano-microcarriers loaded with drugs within the carotid arteries. Carriers are available in a variety of shapes and sizes to accommodate patient-specific geometries, pulsatile fluid flow, and non-Newtonian blood properties. Optimization of drug delivery is achieved through the examination of carrier interaction with the inner wall. The results demonstrated that the interaction data between particles and the inner wall of atherosclerotic plaques exhibits micro- and nanoscale patterns that are distinct. Symmetric plaques demonstrate that nanoparticles with a 0.4 shape factor and diameters below 200 nm show the highest interaction rate. Conversely, larger particles (200 and 500 nm) with shape factors of 1 demonstrate comparatively elevated interaction rates. The optimal shape factor for drug-loaded microparticles has been determined to be one, and the number of interactions increases as the diameter of the nanoparticles increases, with a significant increase observed at a shape factor of one. Asymmetric plaques exhibit the maximum interaction rates among particles that have a shape factor of 0.4 and have diameters smaller than 500 µm. The findings establish a foundation for novel therapeutic strategies, establishing nano-microparticles as auspicious contenders for accurate and efficacious drug delivery systems that inhibit plaque proliferation.
Collapse
Affiliation(s)
- Mohammad Reza Sayah
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Iman Mirafzal
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
He S, Wei L, Wang G, Pugno NM, Chen Q, Li Z. In Silico Evaluation of In Vivo Degradation Kinetics of Poly(Lactic Acid) Vascular Stent Devices. J Funct Biomater 2024; 15:135. [PMID: 38786646 PMCID: PMC11122488 DOI: 10.3390/jfb15050135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.
Collapse
Affiliation(s)
- Shicheng He
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingling Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Xie A, Hao J, Duan F, Mitchell K, Jin Y, Zhao D. Mechanical analysis of radial performance in biodegradable polymeric vascular stents manufactured using micro-injection molding. J Mech Behav Biomed Mater 2024; 150:106362. [PMID: 38169208 DOI: 10.1016/j.jmbbm.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Micro-injection molding (MiM) is a promising technique for manufacturing biodegradable polymeric vascular stents (BPVSs) at scale, in which a trapezoidal strut cross section is needed to ensure high-quality de-molding. However, there is a lack of research on the influence of the strut cross-sectional shape on its mechanical properties, posing a challenge in determining the key geometries of the strut when using MiM to produce BPVSs. Hence, this work has investigated the relationships between the geometry parameters, including the de-molding angle, and the radial support property of BPVSs using the finite element method. The results reveal that the radial stiffness of BPVSs is significantly affected by the de-molding angle, which can be counteracted by adjusting strut height, bending radius, and strut thickness. Stress distribution analysis underscores the crucial role of the curved portion of the support ring during compression, with the inner side of the curved region experiencing stress concentration. A mathematical model has been established to describe the relationships between the geometry parameters and the radial support property of the BPVSs. Notably, the radius of the neutral layer emerges as a key determinant of radial stiffness. This study is expected to serve as a guideline for the development of BPVSs that can be manufactured using MiM.
Collapse
Affiliation(s)
- Ankun Xie
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jiangtao Hao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fei Duan
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada Reno, Reno, NV, 89557, USA
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada Reno, Reno, NV, 89557, USA.
| | - Danyang Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
6
|
Gupta K, Meena K. A novel double arrowhead auxetic coronary stent. Comput Biol Med 2023; 166:107525. [PMID: 37778216 DOI: 10.1016/j.compbiomed.2023.107525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
A stent implantation is a standard medical procedure for treating coronary artery diseases. Over the years, various different designs have been explored for the stents which come with a range of limitations, including late in-stent restenosis (due to low radial strength), foreshortening, radial recoil, etc. Contrary, stents with auxetic design, characterized by a negative Poisson's ratio, display unique deformation characteristics that result in enhanced mechanical properties in terms of its radial strength, radial recoil, foreshortening, and more. In this study, we have analysed a novel double arrowhead (DA) auxetic stent that aims to overcome the limitations associated with traditional stents, specifically in terms of radial strength, foreshortening, and radial recoil. The parametric analysis was done initially on the DA's unit ring structure to optimize the design by evaluating the effect of three design parameters (angle, amplitude, and width) on the mechanical characteristics (radial strength and radial recoil) using finite element analysis. The width of the strut was found to be the primary determinant of the stent structure's properties. Consequently, the angle and width were found to have the least effect on altering the stent's mechanical properties. After performing the parametric analysis, optimal design factors were selected to design the full-length DA auxetic stent. The mechanical characteristics of the DA auxetic stent were assessed and compared in a case study with the Cypher™ commercial stent. The radial strength of DA auxetic stent was found to be 7.26 N/mm, which is more than double the Cypher™ commercial stent's radial strength. Additionally, the proposed stent possesses reduced radial recoil property and completely eliminates the stent foreshortening issue, which shows the superior mechanical properties of the proposed auxetic stent and its potential as a promising candidate for future stent designs.
Collapse
Affiliation(s)
- Khanish Gupta
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India.
| | - Kusum Meena
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
7
|
Zafar H, Soleimani S, Ijaz M, Zafar J, Sharif F. Complex mitral valve anatomy and open issues in transcatheter mitral valve replacement. SURGERY IN PRACTICE AND SCIENCE 2023; 13:100182. [PMID: 39845382 PMCID: PMC11749407 DOI: 10.1016/j.sipas.2023.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Higher and prohibitive mitral valve disease surgical scenarios are preferred cases for transcatheter mitral valve replacement as they offer unrelenting mitral valve regurgitation reduction. This review entails medical technologies that are evolving bioprosthetic devices for mitral valve repair and replacement purposes. Transcatheter mitral valve replacement is compared with transcatheter aortic valve implantation based on the etiology and driving factors. Leading anchoring systems to place and fix the mitral valve prosthesis in left atrium/ventricle annulus are discussed. Furthermore, accessing modalities to stretch to the mitral valve including transapical, trans- aorta and transseptal are included along with the associated key challenges.
Collapse
Affiliation(s)
- Haroon Zafar
- Cardiovascular Research & Innovation, School of Medicine, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
- College of Science and Engineering, University of Galway, Galway, Ireland
| | - Sajjad Soleimani
- Department of Chemistry, Materials, and Chemical Engineering, Politecnico di Milano, Milan, Italy
| | - Masooma Ijaz
- Cardiovascular Research & Innovation, School of Medicine, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Junaid Zafar
- Faculty of Engineering, Government College University, Lahore, Pakistan
| | - Faisal Sharif
- Cardiovascular Research & Innovation, School of Medicine, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
- College of Science and Engineering, University of Galway, Galway, Ireland
- Department of Cardiology, University Hospital Galway, Galway, Ireland
- CÚRAM-SFI Centre for Research in Medical Devices, Galway, Ireland
| |
Collapse
|
8
|
Liu H, Liu Y, Ip BYM, Ma SH, Abrigo J, Soo YOY, Leung TW, Leng X. Effects of stent shape on focal hemodynamics in intracranial atherosclerotic stenosis: A simulation study with computational fluid dynamics modeling. Front Neurol 2022; 13:1067566. [PMID: 36582612 PMCID: PMC9792661 DOI: 10.3389/fneur.2022.1067566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims The shape of a stent could influence focal hemodynamics and subsequently plaque growth or in-stent restenosis in intracranial atherosclerotic stenosis (ICAS). In this preliminary study, we aim to investigate the associations between stent shapes and focal hemodynamics in ICAS, using computational fluid dynamics (CFD) simulations with manually manipulated stents of different shapes. Methods We built an idealized artery model, and reconstructed four patient-specific models of ICAS. In each model, three variations of stent geometry (i.e., enlarged, inner-narrowed, and outer-narrowed) were developed. We performed static CFD simulation on the idealized model and three patient-specific models, and transient CFD simulation of three cardiac cycles on one patient-specific model. Pressure, wall shear stress (WSS), and low-density lipoprotein (LDL) filtration rate were quantified in the CFD models, and compared between models with an inner- or outer-narrowed stent vs. an enlarged stent. The absolute difference in each hemodynamic parameter was obtained by subtracting values from two models; a normalized difference (ND) was calculated as the ratio of the absolute difference and the value in the enlarged stent model, both area-averaged throughout the arterial wall. Results The differences in focal pressure in models with different stent geometry were negligible (ND<1% for all cases). However, there were significant differences in the WSS and LDL filtration rate with different stent geometry, with ND >20% in a static model. Observable differences in WSS and LDL filtration rate mainly appeared in area adjacent to and immediately distal to the stent. In the transient simulation, the LDL filtration rate had milder temporal fluctuations than WSS. Conclusions The stent geometry might influence the focal WSS and LDL filtration rate in ICAS, with negligible effect on pressure. Future studies are warranted to verify the relevance of the changes in these hemodynamic parameters in governing plaque growth and possibly in-stent restenosis in ICAS.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Yu Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y. M. Ip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Ho Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yannie O. Y. Soo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Thomas W. Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,*Correspondence: Xinyi Leng
| |
Collapse
|
9
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
10
|
Finite Element Analysis of Fluid–Structure Interaction in a Model of an L-Type Mg Alloy Stent-Stenosed Coronary Artery System. METALS 2022. [DOI: 10.3390/met12071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The coronary stent deployment and subsequent service process is a complex geometric/physical nonlinear and fluid–structure coupling system. Analyzing the distribution of stress–strain on the stent is of great significance in studying the deformation and failure behavior. A coupled system dynamics model comprising stenotic coronary artery vessels and L-type Mg alloy stents was established by applying the polynomial hyperelastic constitutive theory. The nonlinear, significant deformation behavior of the stent was systematically studied. The stress–strain distribution of the coupling system during stent deployment was analyzed. The simulation results show that the edges of the supporting body fixed without a bridge are the weakest zone. The stress changes on the inside of the wave of the supporting body are very large, and the residual stress accumulated in this area is the highest. The peak stress of the plaque and the arterial wall was lower than the damage threshold. The velocity of the blood between the wave crest of the supporting body is large and the streamline distribution is concentrated. In addition, the inner surface pressure on the stent is evenly distributed along its axial dimension. The maximum arterial wall shear stress always appears on the inside of the wave crest of the supporting body fixed with a bridge, and, as such, the largest obstacle to the blood flow is in this zone.
Collapse
|
11
|
Pan C, Zeng X, Han Y, Lu J. Investigation of braided stents in curved vessels in terms of "Dogbone" deformation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5717-5737. [PMID: 35603375 DOI: 10.3934/mbe.2022267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
"Dogbone" deformation that the diameters of two ends are larger than the middle diameter of the stent under the effect of the balloon expanding, is one of the important standards to evaluate the mechanical properties of vascular stents. It is a huge challenge to simulate and evaluate the "Dogbone" behaviors of braided stents in the curved vessels. In this study, the key work was to investigate the "Dogbone" deformations of braided stents in the curved vessels by designing main parameters including strut diameter, braiding angle, and the circumferential number of unit cell. Based on the "Dogbone" stents in the curved vessels, the impact of "Dogbone" on the fatigue properties of braided stents was analyzed under the pulsatile effect of vessels. The influence of "Dogbone" stents on stress distribution of vascular walls was studied. To evaluate the "Dogbone" behaviors of stents in the curved vessels, the calculation method of "Dogbone" was improved by calculating the centerline and the bus bar of the curved vessels. Braided stents with various parameters (strut diameter t = 100,125 and 152 μm, braiding angle α = 30, 40 and 50°, the circumferential number of unit cell N = 8, 10, and 12) were designed respectively. Numerical simulation method was used to mimic the "Dogbone" deformation after stent expansion. The results showed that strut diameter and braiding angle had more influence on "Dogbone" deformations than the circumferential number of unit cell. "Dogbone" deformation could adversely affect fatigue performance and vascular walls.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyun Zeng
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Su Y, Xiang Z, Song X, Zheng S, Xu X. Design and Optimization of a New Anti-reflux Biliary Stent With Retractable Bionic Valve Based on Fluid-Structure Interaction Analysis. Front Bioeng Biotechnol 2022; 10:824207. [PMID: 35419358 PMCID: PMC8995556 DOI: 10.3389/fbioe.2022.824207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Duodenal biliary reflux has been a challenging common problem which could cause dreadful complications after biliary stent implantation. A novel anti-reflux biliary stent with a retractable bionic valve was proposed according to the concertina motion characteristics of annelids. A 2D equivalent fluid-structure interaction (FSI) model based on the axial section was established to analyze and evaluate the mechanical performances of the anti-reflux biliary stent. Based on this model, four key parameters (initial shear modulus of material, thickness, pitch, and width) were selected to investigate the influence of design parameters on anti-reflux performance via an orthogonal design to optimize the stent. The results of FSI analysis showed that the retrograde closure ratio of the retractable valve primarily depended on initial shear modulus of material (p < 0.05) but not mainly depended on the thickness, pitch, and width of the valve (p > 0.05). The optimal structure of the valve was finally proposed with a high retrograde closing ratio of 95.89%. The finite element model revealed that the optimized anti-reflux stent possessed improved radial mechanical performance and nearly equal flexibility compared with the ordinary stent without a valve. Both the FSI model and experimental measurement indicated that the newly designed stent had superior anti-reflux performance, effectively preventing the duodenobiliary reflux while enabling the bile to pass smoothly. In addition, the developed 2D equivalent FSI model provides tremendous significance for resolving the fluid-structure coupled problem of evolution solid with large deformation and markedly shortens the calculation time.
Collapse
Affiliation(s)
- Yushan Su
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | - Zhongxia Xiang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | - Xiaofei Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | - Shuxian Zheng
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | | |
Collapse
|
13
|
Effects of residual stenosis on carotid artery after stent implantation: A numerical study. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
15
|
Conway C, Nezami FR, Rogers C, Groothuis A, Squire JC, Edelman ER. Acute Stent-Induced Endothelial Denudation: Biomechanical Predictors of Vascular Injury. Front Cardiovasc Med 2021; 8:733605. [PMID: 34722666 PMCID: PMC8553954 DOI: 10.3389/fcvm.2021.733605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
Recent concern for local drug delivery and withdrawal of the first Food and Drug Administration-approved bioresorbable scaffold emphasizes the need to optimize the relationships between stent design and drug release with imposed arterial injury and observed pharmacodynamics. In this study, we examine the hypothesis that vascular injury is predictable from stent design and that the expanding force of stent deployment results in increased circumferential stress in the arterial tissue, which may explain acute injury poststent deployment. Using both numerical simulations and ex vivo experiments on three different stent designs (slotted tube, corrugated ring, and delta wing), arterial injury due to device deployment was examined. Furthermore, using numerical simulations, the consequence of changing stent strut radial thickness on arterial wall shear stress and arterial circumferential stress distributions was examined. Regions with predicted arterial circumferential stress exceeding a threshold of 49.5 kPa compared favorably with observed ex vivo endothelial denudation for the three considered stent designs. In addition, increasing strut thickness was predicted to result in more areas of denudation and larger areas exposed to low wall shear stress. We conclude that the acute arterial injury, observed immediately following stent expansion, is caused by high circumferential hoop stresses in the interstrut region, and denuded area profiles are dependent on unit cell geometric features. Such findings when coupled with where drugs move might explain the drug–device interactions.
Collapse
Affiliation(s)
- Claire Conway
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Trinity Centre for Biomedical Engineering, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Farhad R Nezami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Thoracic and Cardiac Surgery Division, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Campbell Rogers
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,HeartFlow Inc., Redwood City, CA, United States
| | - Adam Groothuis
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - James C Squire
- Department of Electrical and Computer Engineering, Virginia Military Institute, Lexington City, KY, United States
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Gamage PT, Dong P, Lee J, Gharaibeh Y, Zimin VN, Dallan LAP, Bezerra HG, Wilson DL, Gu L. Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. Comput Biol Med 2021; 139:104962. [PMID: 34715552 DOI: 10.1016/j.compbiomed.2021.104962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023]
Abstract
In this work, hemodynamic alterations in a patient-specific, heavily calcified coronary artery following stent deployment and post-dilations are quantified using in silico and ex-vivo approaches. Three-dimensional artery models were reconstructed from OCT images. Stent deployment and post-dilation with various inflation pressures were performed through both the finite element method (FEM) and ex vivo experiments. Results from FEM agreed very well with the ex-vivo measurements, interms of lumen areas, stent underexpansion, and strut malapposition. In addition, computational fluid dynamics (CFD) simulations were performed to delineate the hemodynamic alterations after stent deployment and post-dilations. A pressure time history at the inlet and a lumped parameter model (LPM) at the outlet were adopted to mimic the aortic pressure and the distal arterial tree, respectively. The pressure drop across the lesion, pertaining to the clinical measure of instantaneous wave-free flow ratio (iFR), was investigated. Results have shown that post-dilations are necessary for the lumen gain as well as the hemodynamic restoration towards hemostasis. Malapposed struts induced much higher shear rate, flow disturbances and lower time-averaged wall shear stress (TAWSS) around struts. Post-dilations mitigated the strut malapposition, and thus the shear rate. Moreover, stenting induced larger area of low TAWSS (<0.4 Pa) and lager volume of high shear rate (>2000 s-1), indicating higher risks of in-stent restenosis (ISR) and stent thrombosis (ST), respectively. Oscillatory shear index (OSI) and relative residence time (RRT) indicated the wall regions more prone to ISR are located near the malapposed stent struts.
Collapse
Affiliation(s)
- Peshala T Gamage
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Luis A P Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, The University of South Florida, Tampa, FL, 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
17
|
Xue H, Saha SC, Beier S, Jepson N, Luo Z. Topological Optimization of Auxetic Coronary Stents Considering Hemodynamics. Front Bioeng Biotechnol 2021; 9:728914. [PMID: 34589473 PMCID: PMC8473832 DOI: 10.3389/fbioe.2021.728914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022] Open
Abstract
This paper is to design a new type of auxetic metamaterial-inspired structural architectures to innovate coronary stents under hemodynamics via a topological optimization method. The new architectures will low the occurrence of stent thrombosis (ST) and in-stent restenosis (ISR) associated with the mechanical factors and the adverse hemodynamics. A multiscale level-set approach with the numerical homogenization method and computational fluid dynamics is applied to implement auxetic microarchitectures and stenting structure. A homogenized effective modified fluid permeability (MFP) is proposed to efficiently connect design variables with motions of blood flow around the stent, and a Darcy-Stokes system is used to describe the coupling behavior of the stent structure and fluid. The optimization is formulated to include three objectives from different scales: MFP and auxetic property in the microscale and stenting stiffness in the macroscale. The design is numerically validated in the commercial software MATLAB and ANSYS, respectively. The simulation results show that the new design can not only supply desired auxetic behavior to benefit the deliverability and reduce incidence of the mechanical failure but also improve wall shear stress distribution to low the induced adverse hemodynamic changes. Hence, the proposed stenting architectures can help improve safety in stent implantation, to facilitate design of new generation of stents.
Collapse
Affiliation(s)
- Huipeng Xue
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Susann Beier
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Nigel Jepson
- Department Cardiology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Zhen Luo
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Abstract
Stenting is a common method for treating atherosclerosis. A metal or polymer stent is deployed to open the stenosed artery or vein. After the stent is deployed, the blood flow dynamics influence the mechanics by compressing and expanding the structure. If the stent does not respond properly to the resulting stress, vascular wall injury or re-stenosis can occur. In this work, a Discrete Multiphysics modelling approach is used to study the mechanical deformation of the coronary stent and its relationship with the blood flow dynamics. The major parameters responsible for deforming the stent are sorted in terms of dimensionless numbers and a relationship between the elastic forces in the stent and pressure forces in the fluid is established. The blood flow and the stiffness of the stent material contribute significantly to the stent deformation and affect its rate of deformation. The stress distribution in the stent is not uniform with the higher stresses occurring at the nodes of the structure. From the relationship (correlation) between the elastic force and the pressure force, depending on the type of material used for the stent, the model can be used to predict whether the stent is at risk of fracture or not after deployment.
Collapse
|
19
|
Wei L, Wang J, Chen Q, Li Z. Impact of stent malapposition on intracoronary flow dynamics: An optical coherence tomography-based patient-specific study. Med Eng Phys 2021; 94:26-32. [PMID: 34303498 DOI: 10.1016/j.medengphy.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Percutaneous coronary intervention with stent implantation has emerged as a popular approach to treat coronary artery stenosis. Stent malapposition (SM), also referred as incomplete stent apposition, could reduce stent tissue coverage and hence increase the risk of late stent thrombosis. The objective of this study was to investigate the impact of SM on intracoronary flow dynamics by combining optical coherence tomography (OCT) image-based model reconstruction and computational analysis. Firstly, a stenosed coronary artery model was reconstructed from OCT and angiography imaging data of a patient. Two structural analyses were carried out to simulate two types of coronary artery stent implantations: a fully-apposed (FA) case and a SM case. Then, based on the two deformed coronary geometries, two computational fluid dynamics (CFD) analyses were performed to evaluate the differences of hemodynamic metrics between the FA and the SM cases, including wall shear stress (WSS), time-averaged WSS (TWSS), oscillatory shear index (OSI), WSS gradient (WSSG), time-averaged WSSG (TWSSG), and relative residence time (RRT). The results indicated that maximum flow velocity was higher in the SM case than that of the FA case, due to the incomplete expansion of the stent and artery. Moreover, the SM case had a lower percentage of areas of adverse WSS (< 0.5 Pa) and RRT (> 10/Pa) but a higher percentage of areas of adverse OSI (> 0.1) and WSSG (> 5000 Pa/m). Specifically, the differences of OSI, WSSG, and RRT between the two cases were relatively small. It was suggested that SM might not be responsible for negative hemodynamic metrics which would further result in stent thrombosis on the basis of the present specific model.
Collapse
Affiliation(s)
- Lingling Wei
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, PR China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia.
| |
Collapse
|
20
|
Cai Y, Meng Z, Jiang Y, Zhang X, Yang X, Wang S. Finite element modeling and simulation of the implantation of braided stent to treat cerebral aneurysm. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|