1
|
Ai Y, Zhan Y, Cai D, Chen S. A Convenient and Highly Efficient Strategy for Esterification of Poly (γ-Glutamic Acid) with Alkyl Halides at Room Temperature. Polymers (Basel) 2024; 17:10. [PMID: 39795414 PMCID: PMC11723209 DOI: 10.3390/polym17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The presented work discusses the highly efficient esterification of poly (γ-glutamic acid) (γ-PGA) with alkyl halides at room temperature. The esterification reaction was completed within 3 h, and the prepared γ-PGA esters were obtained with excellent yields (98.6%) when 1,1,3,3-tetramethylguanidine (TMG) was used as a promoter. The influence of the amount of TMG, solvent, reaction conditions, and alkyl halides on the esterification reaction was examined. It was found that polar aprotic solvents, such as N-Methylpyrrolidone (NMP) and 1,3-Dimethyl-2-imidazolidinone (DMI), were favorable for the esterification. Non-polar or weakly polar solvents (i.e., dichloroethane, acetonitrile) were not favorable for the esterification. Water as a solvent had a negative effect on esterification. The reactivity of bromine halogenated compounds was higher than that of chlorine halogenated compounds but lower than that of iodine halogenated compounds. The structures of the prepared γ-PGA ester were confirmed by 1H NMR and FT-IR spectroscopy. Thermal stability and hydrophobic properties of the resulting product were tested. The results showed that the prepared γ-PGA propyl ester had high thermal stability (up to 267 °C) and showed good hydrophobicity (contact angle 118.7°).
Collapse
Affiliation(s)
- Youhong Ai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Z.); (D.C.)
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Z.); (D.C.)
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Z.); (D.C.)
| |
Collapse
|
2
|
Zhang X, Wu W, Mou H, Liu J, Lei L, Li X, Cai D, Zhan Y, Ma X, Chen S. Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting. Microorganisms 2024; 12:2398. [PMID: 39770601 PMCID: PMC11679365 DOI: 10.3390/microorganisms12122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer whose molecular weight and viscosity are critical for its application in various fields. However, research on super-high-molecular-weight or -viscosity γ-PGA is limited. In this study, the pgdS gene in Bacillus licheniformis WX-02 was knocked out using homologous recombination, and the batch fermentation performances of the recombinant strain WX-ΔpgdS were compared to those of WX-02. Nitrate accumulation was observed in the early fermentation stages of WX-ΔpgdS, and gene transcription analysis and cell morphology observations revealed that nitrite accumulation was caused by oxygen limitation due to cell aggregation. When the aeration and agitation rates were increased to 2.5 vvm and 600 r/min, respectively, and citrate was used as a precursor, nitrite accumulation was alleviated in WX-ΔpgdS fermentation broth, while γ-PGA yield and broth viscosity reached 17.3 g/L and 4988 mPa·s. Scanning electron microscopy (SEM) showed that the γ-PGA produced by WX-ΔpgdS exhibited a three-dimensional porous network structure. At a γ-PGA concentration of 5 mg/L, the fermentation broth of WX-ΔpgdS achieved a flocculation efficiency of 95.7% after 30 min of microalgae settling. These findings demonstrate that pgdS knockout results in super-high-viscosity γ-PGA, positioning it as an eco-friendly and cost-effective biocoagulant for microalgae harvesting.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Wei Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Hongxiao Mou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Jun Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Xin Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| |
Collapse
|
3
|
Sawada K, Hagihara H, Takimura Y, Kataoka M. Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios. Biosci Biotechnol Biochem 2024; 88:1217-1224. [PMID: 38955395 DOI: 10.1093/bbb/zbae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Poly-γ-glutamic acid (PGA) has been of interest as a sustainable biopolymer in industrial applications. PGA biosynthesis in Bacillus subtilis is catalyzed by a transmembrane protein complex comprising PgsB, PgsC, and PgsA. To determine the Pgs component responsible for PGA overproduction, we constructed recombinants in which the promoter of the host-derived pgs gene was replaced with another host-derived gene promoter. These recombinants were then transformed using high-copy-number plasmids with various pgs-gene combinations to enhance Pgs component in different ratios. Subsequently, PGA production was investigated in batch cultures with l-glutamate supplemented medium. The recombinant strain enhanced with pgsB alone significantly overproduced PGA (maximum production 35.8 g/L) than either the pgsC- or pgsA-enhanced strain. The molecular weight of the PGA produced with the pgsB-enhanced strain was also greater than that for the pgsC- or pgsA-enhanced strain (approximately 10-fold). Hence, PgsB enhancement alone contributes to PGA overproduction with increased molecular weight.
Collapse
Affiliation(s)
- Kazuhisa Sawada
- Global R&D-Biological Science Research, Kao Corporation, Haga, Tochigi, Japan
- Department of Biomedical Engineering, Graduate School of Shinshu University, Wakasato, Nagano, Japan
| | - Hiroshi Hagihara
- Global R&D-Biological Science Research, Kao Corporation, Haga, Tochigi, Japan
| | - Yasushi Takimura
- Global R&D-Biological Science Research, Kao Corporation, Haga, Tochigi, Japan
| | - Masakazu Kataoka
- Department of Biomedical Engineering, Graduate School of Shinshu University, Wakasato, Nagano, Japan
| |
Collapse
|
4
|
Wei X, Yang L, Chen Z, Xia W, Chen Y, Cao M, He N. Molecular weight control of poly-γ-glutamic acid reveals novel insights into extracellular polymeric substance synthesis in Bacillus licheniformis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:60. [PMID: 38711141 DOI: 10.1186/s13068-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The structural diversity of extracellular polymeric substances produced by microorganisms is attracting particular attention. Poly-gamma-glutamic acid (γ-PGA) is a widely studied extracellular polymeric substance from Bacillus species. The function of γ-PGA varies with its molecular weight (Mw). RESULTS Herein, different endogenous promoters in Bacillus licheniformis were selected to regulate the expression levels of pgdS, resulting in the formation of γ-PGA with Mw values ranging from 1.61 × 103 to 2.03 × 104 kDa. The yields of γ-PGA and exopolysaccharides (EPS) both increased in the pgdS engineered strain with the lowest Mw and viscosity, in which the EPS content was almost tenfold higher than that of the wild-type strain. Subsequently, the compositions of EPS from the pgdS engineered strain also changed. Metabolomics and RT-qPCR further revealed that improving the transportation efficiency of EPS and the regulation of carbon flow of monosaccharide synthesis could affect the EPS yield. CONCLUSIONS Here, we present a novel insight that increased pgdS expression led to the degradation of γ-PGA Mw and changes in EPS composition, thereby stimulating EPS and γ-PGA production. The results indicated a close relationship between γ-PGA and EPS in B. licheniformis and provided an effective strategy for the controlled synthesis of extracellular polymeric substances.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
5
|
Zhu J, Wang X, Zhao J, Ji F, Zeng J, Wei Y, Xu L, Dong G, Ma X, Wang C. Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis. BMC Microbiol 2024; 24:125. [PMID: 38622505 PMCID: PMC11017564 DOI: 10.1186/s12866-024-03262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024] Open
Abstract
γ- poly glutamic acid (γ-PGA), a high molecular weight polymer, is synthesized by microorganisms and secreted into the extracellular space. Due to its excellent performance, γ-PGA has been widely used in various fields, including food, biomedical and environmental fields. In this study, we screened natto samples for two strains of Bacillus subtilis N3378-2at and N3378-3At that produce γ-PGA. We then identified the γ-PGA synthetase gene cluster (PgsB, PgsC, PgsA, YwtC and PgdS), glutamate racemase RacE, phage-derived γ-PGA hydrolase (PghB and PghC) and exo-γ-glutamyl peptidase (GGT) from the genome of these strains. Based on these γ-PGA-related protein sequences from isolated Bacillus subtilis and 181 B. subtilis obtained from GenBank, we carried out genotyping analysis and classified them into types 1-5. Since we found B. amyloliquefaciens LL3 can produce γ-PGA, we obtained the B. velezensis and B. amyloliquefaciens strains from GenBank and classified them into types 6 and 7 based on LL3. Finally, we constructed evolutionary trees for these protein sequences. This study analyzed the distribution of γ-PGA-related protein sequences in the genomes of B. subtilis, B. velezensis and B. amyloliquefaciens strains, then the evolutionary diversity of these protein sequences was analyzed, which provided novel information for the development and utilization of γ-PGA-producing strains.
Collapse
Affiliation(s)
- Jiayue Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wang
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Jianan Zhao
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Fang Ji
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Jun Zeng
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Yanwen Wei
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - LiLi Xu
- Union Biology (Shanghai) Co., Ltd, Shanghai, 201100, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chengmin Wang
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China.
| |
Collapse
|
6
|
Zeng W, Liu Y, Shu L, Guo Y, Wang L, Liang Z. Production of ultra-high-molecular-weight poly-γ-glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses. Biotechnol J 2024; 19:e2300614. [PMID: 38581093 DOI: 10.1002/biot.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.
Collapse
Affiliation(s)
- Wei Zeng
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lin Shu
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
| | - Yin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Linye Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Qiu Y, Xu D, Lei P, Li S, Xu H. Engineering functional homopolymeric amino acids: from biosynthesis to design. Trends Biotechnol 2024; 42:310-325. [PMID: 37775417 DOI: 10.1016/j.tibtech.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
Homopolymeric amino acids (HPAs) are a class of microbial polymers that can be classified into two categories: anionic and cationic HPAs. Notable examples include γ-poly-glutamic acid (γ-PGA) and ε-poly-L-lysine (ε-PL) that have wide-ranging applications in medicine, food, and agriculture. The primary method of manufacture is through microbial synthesis. In recent decades significant efforts have been made to enhance the production of HPAs, specifically focusing on γ-PGA and ε-PL. We comprehensively review current advances in understanding the synthetic mechanisms as well as metabolic engineering and fermentation process techniques to improve the production of HPAs. In addition, we discuss the major challenges and solutions associated with desired structure regulation of HPAs and the development of novel structures.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Delei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, PR China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; Nanjing Shineking Biotech Co. Ltd., Nanjing 210061, PR China.
| |
Collapse
|
8
|
Chen S, Fu J, Yu B, Wang L. Development of a Conjugation-Based Genome Editing System in an Undomesticated Bacillus subtilis Strain for Poly-γ-glutamic Acid Production with Diverse Molecular Masses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7734-7743. [PMID: 37186794 DOI: 10.1021/acs.jafc.3c01505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biodegradable polymer produced by microorganisms. Biosynthesizing γ-PGA with diverse molecular masses (Mw) is an urgent industrial technical problem to be solved. Bacillus subtilis KH2, a high-Mw γ-PGA producer, is an ideal candidate for de novo production of γ-PGA with diverse Mw values. However, the inability to transfer DNA to this strain has limited its industrial use. In this study, a conjugation-based genetic operating system was developed in strain KH2. This system enabled us to modify the promoter of γ-PGA hydrolase PgdS in strain KH2 chromosome to de novo biosynthesize γ-PGA with diverse Mws. The conjugation efficiency was improved to 1.23 × 10-4 by establishing a plasmid replicon sharing strategy. A further increase to 3.15 × 10-3 was achieved after knocking out two restriction endonucleases. To demonstrate the potential of our newly established system, the pgdS promoter was replaced by different phase-dependent promoters. A series of strains producing γ-PGA with specific Mws of 411.73, 1356.80, 2233.30, and 2411.87 kDa, respectively, were obtained. The maximum yield of γ-PGA was 23.28 g/L. Therefore, we have successfully constructed ideal candidate strains for efficient γ-PGA production with a specific Mw value, which provides an important research basis for sustainable production of desirable γ-PGA.
Collapse
Affiliation(s)
- Shengbao Chen
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaming Fu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Li J, Chen S, Fu J, Xie J, Ju J, Yu B, Wang L. Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis stain. Microb Cell Fact 2022; 21:140. [PMID: 35842664 PMCID: PMC9287850 DOI: 10.1186/s12934-022-01867-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background Poly-γ-glutamic acid (γ-PGA) is a biopolymer and has various applications based on its biocompatibility, non-toxicity, and edibility. Low-molecular-weight (Mw)-γ-PGA has promising applications in agriculture and pharmaceuticals. It is traditionally produced by enzymatic hydrolysis. Cost-effective bioproduction of low-Mw-γ-PGA is essential for commercial application of γ-PGA. Results Bacillus subtilis 242 is a newly isolated low-Mw-γ-PGA-producing strain. To develop cost-effective production of γ-PGA using this newly isolated strain, cane molasses and corn steep liquor were used to produce γ-PGA. The concentration of cane molasses was optimized and 100 g/L cane molasses resulted in high γ-PGA production. The effects of yeast extract and corn steep liquor on γ-PGA yield were investigated. High concentration of γ-PGA was obtained in the medium with corn steep liquor. A concentration of 32.14 g/L γ-PGA was achieved in fed-batch fermentation, with a productivity of 0.67 g/L/h and a percentage yield (gγ-PGA/gglutamate) of 106.39%. The Mw of γ-PGA was 27.99 kDa. Conclusion This study demonstrated the potential application of B. subtilis 242 for cost-effective production of low-Mw-γ-PGA from cane molasses.
Collapse
Affiliation(s)
- Jing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.,CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengbao Chen
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaming Fu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jianchun Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Limin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China. .,CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Wang L, Chen S, Yu B. Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Yang F, Liu N, Chen Y, Wang S, Liu J, Zhao L, Ma X, Cai D, Chen S. Rational engineering of cofactor specificity of glutamate dehydrogenase for poly-γ-glutamic acid synthesis in Bacillus licheniformis. Enzyme Microb Technol 2021; 155:109979. [PMID: 34973505 DOI: 10.1016/j.enzmictec.2021.109979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a multifunctional biopolymer mainly produced by Bacillus. The cofactor specificity of enzymes plays a critical role in regulating metabolic process and metabolite production. Here, we present a novel approach for switching cofactor specificity of glutamate dehydrogenase RocG from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) to improve γ-PGA production. Firstly, 3D structural modeling and molecular docking were performed to predict the binding modes of NADH and NADPH. Several site-specific mutants based on the conventional and Random Accelerated Molecular Dynamics simulations were obtained to alter cofactor specificity. Then, the effects of RocG variants overexpressions on γ-PGA production were evaluated. Compared to the wild-type, the mutant RocGD276E showed highest increase in γ-PGA yield, increased by 40.50%. Meanwhile, yields of main by-products acetoin and 2,3-butandieol were decreased by 21.70% and 16.53%, respectively. Finally, the results of enzymatic properties confirmed that glutamate dehydrogenase mutant RocGD276E exhibited the higher affinity for NADH, caused a shift in coenzyme preference from NADPH to NADH, with a catalytic efficiency comparable with NADPH-dependent RocG. Taken together, this research demonstrated that switching the cofactor preference of glutamate dehydrogenase via rational design was an effective strategy for high-level production of γ-PGA in Bacillus licheniformis.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Na Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Si Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jun Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ling Zhao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China; Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, PR China.
| |
Collapse
|
12
|
Bacterial Biopolymer: Its Role in Pathogenesis to Effective Biomaterials. Polymers (Basel) 2021; 13:polym13081242. [PMID: 33921239 PMCID: PMC8069653 DOI: 10.3390/polym13081242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
Collapse
|