1
|
Garrigós V, Matallana E, Picazo C, Aranda A. Peroxiredoxin Tsa1 Regulates the Activity of Trehalose Metabolism-Related Enzymes During Wine Yeast Biomass Propagation. Microb Biotechnol 2025; 18:e70154. [PMID: 40346935 PMCID: PMC12064951 DOI: 10.1111/1751-7915.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/12/2025] Open
Abstract
Trehalose metabolism plays a crucial role in yeast stress tolerance during biomass propagation and dehydration, but its regulatory mechanisms under these industrial conditions remain incompletely understood. This study analyses the role of an antioxidant enzyme, the cytosolic peroxiredoxin Tsa1, in modulating trehalose metabolism in Saccharomyces cerevisiae wine strains during biomass production in molasses. Through comparative analyses in three commercial genetic backgrounds (L2056, T73, EC1118), we demonstrate that TSA1 deletion generally leads to increased intracellular trehalose accumulation despite phenotypic variability among strains. Enzymatic assays revealed that Tsa1 does not regulate trehalose synthesis by altering glycolytic/gluconeogenic flux through pyruvate kinase. However, the deletion of TSA1 resulted in increased oxidation of trehalose synthesis enzymes, as well as enhanced activity of trehalose-6-phosphate synthase and the trehalases Nth1 and Ath1, suggesting the involvement of peroxiredoxin in the futile cycle of trehalose synthesis and degradation. Scaling up the yeast biomass propagation process to semi-industrial conditions confirmed these findings, with increased trehalose levels in the tsa1∆ mutant correlating with enhanced desiccation resistance of the resulting biomass. These results highlight a novel Tsa1-dependent regulatory mechanism governing trehalose metabolism beyond its canonical antioxidant role. Understanding this pathway provides new insights into optimising yeast biomass propagation for industrial applications.
Collapse
Affiliation(s)
- Víctor Garrigós
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Cecilia Picazo
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| |
Collapse
|
2
|
Hurieva B, Kumar DK, Morag R, Lupo O, Carmi M, Barkai N, Jonas F. Disordered sequences of transcription factors regulate genomic binding by integrating diverse sequence grammars and interaction types. Nucleic Acids Res 2024; 52:8763-8777. [PMID: 38908024 PMCID: PMC11347154 DOI: 10.1093/nar/gkae521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024] Open
Abstract
Intrinsically disordered regions (IDRs) guide transcription factors (TFs) to their genomic binding sites, raising the question of how structure-lacking regions encode for complex binding patterns. We investigated this using the TF Gln3, revealing sets of IDR-embedded determinants that direct Gln3 binding to respective groups of functionally related promoters, and enable tuning binding preferences between environmental conditions, phospho-mimicking mutations, and orthologs. Through targeted mutations, we defined the role of short linear motifs (SLiMs) and co-binding TFs (Hap2) in stabilizing Gln3 at respiration-chain promoters, while providing evidence that Gln3 binding at nitrogen-associated promoters is encoded by the IDR amino-acid composition, independent of SLiMs or co-binding TFs. Therefore, despite their apparent simplicity, TF IDRs can direct and regulate complex genomic binding patterns through a combination of SLiM-mediated and composition-encoded interactions.
Collapse
Affiliation(s)
- Bohdana Hurieva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Divya Krishna Kumar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Morag
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offir Lupo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
3
|
Garrigós V, Picazo C, Matallana E, Aranda A. Activation of the yeast Retrograde Response pathway by adaptive laboratory evolution with S-(2-aminoethyl)-L-cysteine reduces ethanol and increases glycerol during winemaking. Microb Cell Fact 2024; 23:231. [PMID: 39164751 PMCID: PMC11337681 DOI: 10.1186/s12934-024-02504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Global warming causes an increase in the levels of sugars in grapes and hence in ethanol after wine fermentation. Therefore, alcohol reduction is a major target in modern oenology. Deletion of the MKS1 gene, a negative regulator of the Retrograde Response pathway, in Saccharomyces cerevisiae was reported to increase glycerol and reduce ethanol and acetic acid in wine. This study aimed to obtain mutants with a phenotype similar to that of the MKS1 deletion strain by subjecting commercial S. cerevisiae wine strains to an adaptive laboratory evolution (ALE) experiment with the lysine toxic analogue S-(2-aminoethyl)-L-cysteine (AEC). RESULTS In laboratory-scale wine fermentation, isolated AEC-resistant mutants overproduced glycerol and reduced acetic acid. In some cases, ethanol was also reduced. Whole-genome sequencing revealed point mutations in the Retrograde Response activator Rtg2 and in the homocitrate synthases Lys20 and Lys21. However, only mutations in Rtg2 were responsible for the overactivation of the Retrograde Response pathway and ethanol reduction during vinification. Finally, wine fermentation was scaled up in an experimental cellar for one evolved mutant to confirm laboratory-scale results, and any potential negative sensory impact was ruled out. CONCLUSIONS Overall, we have shown that hyperactivation of the Retrograde Response pathway by ALE with AEC is a valid approach for generating ready-to-use mutants with a desirable phenotype in winemaking.
Collapse
Affiliation(s)
- Víctor Garrigós
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain.
| | - Cecilia Picazo
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Garrigós V, Vallejo B, Mollà-Martí E, Picazo C, Peltier E, Marullo P, Matallana E, Aranda A. Up-regulation of Retrograde Response in yeast increases glycerol and reduces ethanol during wine fermentation. J Biotechnol 2024; 390:28-38. [PMID: 38768686 DOI: 10.1016/j.jbiotec.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutrient signaling pathways play a pivotal role in regulating the balance among metabolism, growth and stress response depending on the available food supply. They are key factors for the biotechnological success of the yeast Saccharomyces cerevisiae during food-producing fermentations. One such pathway is Retrograde Response, which controls the alpha-ketoglutarate supply required for the synthesis of amino acids like glutamate and lysine. Repressor MKS1 is linked with the TORC1 complex and negatively regulates this pathway. Deleting MKS1 from a variety of industrial strains causes glycerol to increase during winemaking, brewing and baking. This increase is accompanied by a reduction in ethanol production during grape juice fermentation in four commercial wine strains. Interestingly, this does not lead volatile acidity to increase because acetic acid levels actually lower. Aeration during winemaking usually increases acetic acid levels, but this effect reduces in the MKS1 mutant. Despite the improvement in the metabolites of oenological interest, it comes at a cost given that the mutant shows slower fermentation kinetics when grown in grape juice, malt and laboratory media and using glucose, sucrose and maltose as carbon sources. The deletion of RTG2, an activator of Retrograde Response that acts as an antagonist of MKS1, also results in a defect in wine fermentation speed. These findings suggest that the deregulation of this pathway causes a fitness defect. Therefore, manipulating repressor MKS1 is a promising approach to modulate yeast metabolism and to produce low-ethanol drinks.
Collapse
Affiliation(s)
- Víctor Garrigós
- Institute for Integrative Systems Biology, Universitat de València-CSIC, Spain
| | - Beatriz Vallejo
- Institute for Integrative Systems Biology, Universitat de València-CSIC, Spain
| | | | - Cecilia Picazo
- Institute for Integrative Systems Biology, Universitat de València-CSIC, Spain
| | - Emilien Peltier
- Université de Bordeaux, Unité de Recherche Œnologie INRAE, Bordeaux INP, ISVV, France
| | - Philippe Marullo
- Université de Bordeaux, Unité de Recherche Œnologie INRAE, Bordeaux INP, ISVV, France; Biolaffort, France
| | - Emilia Matallana
- Institute for Integrative Systems Biology, Universitat de València-CSIC, Spain
| | - Agustín Aranda
- Institute for Integrative Systems Biology, Universitat de València-CSIC, Spain.
| |
Collapse
|
5
|
Gardner JM, Alperstein L, Walker ME, Zhang J, Jiranek V. Modern yeast development: finding the balance between tradition and innovation in contemporary winemaking. FEMS Yeast Res 2023; 23:foac049. [PMID: 36255399 PMCID: PMC9990983 DOI: 10.1093/femsyr/foac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 02/01/2023] [Indexed: 11/13/2022] Open
Abstract
A key driver of quality in wines is the microbial population that undertakes fermentation of grape must. Winemakers can utilise both indigenous and purposefully inoculated yeasts to undertake alcoholic fermentation, imparting wines with aromas, flavours and palate structure and in many cases contributing to complexity and uniqueness. Importantly, having a toolbox of microbes helps winemakers make best use of the grapes they are presented with, and tackle fermentation difficulties with flexibility and efficiency. Each year the number of strains available commercially expands and more recently, includes strains of non-Saccharomyces, strains that have been improved using both classical and modern yeast technology and mixed cultures. Here we review what is available commercially, and what may be in the future, by exploring recent advances in fermentation relevant strain improvement technologies. We also report on the current use of microbes in the Australian wine industry, as reported by winemakers, as well as regulations around, and sentiment about the potential use of genetically modified organisms in the future.
Collapse
Affiliation(s)
- Jennifer M Gardner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Lucien Alperstein
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Michelle E Walker
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Jin Zhang
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae 5064, South Australia, Australia
| |
Collapse
|
6
|
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules 2022; 12:biom12020175. [PMID: 35204676 PMCID: PMC8961648 DOI: 10.3390/biom12020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.
Collapse
|
7
|
Mechanisms of Metabolic Adaptation in Wine Yeasts: Role of Gln3 Transcription Factor. FERMENTATION 2021. [DOI: 10.3390/fermentation7030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wine strains of Saccharomyces cerevisiae have to adapt their metabolism to the changing conditions during their biotechnological use, from the aerobic growth in sucrose-rich molasses for biomass propagation to the anaerobic fermentation of monosaccharides of grape juice during winemaking. Yeast have molecular mechanisms that favor the use of preferred carbon and nitrogen sources to achieve such adaptation. By using specific inhibitors, it was determined that commercial strains offer a wide variety of glucose repression profiles. Transcription factor Gln3 has been involved in glucose and nitrogen repression. Deletion of GLN3 in two commercial wine strains produced different mutant phenotypes and only one of them displayed higher glucose repression and was unable to grow using a respiratory carbon source. Therefore, the role of this transcription factor contributes to the variety of phenotypic behaviors seen in wine strains. This variability is also reflected in the impact of GLN3 deletion in fermentation, although the mutants are always more tolerant to inhibition of the nutrient signaling complex TORC1 by rapamycin, both in laboratory medium and in grape juice fermentation. Therefore, most aspects of nitrogen catabolite repression controlled by TORC1 are conserved in winemaking conditions.
Collapse
|
8
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|
9
|
Heinz D, Krotova E, Hamann A, Osiewacz HD. Simultaneous Ablation of the Catalytic AMPK α-Subunit SNF1 and Mitochondrial Matrix Protease CLPP Results in Pronounced Lifespan Extension. Front Cell Dev Biol 2021; 9:616520. [PMID: 33748105 PMCID: PMC7969656 DOI: 10.3389/fcell.2021.616520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Organismic aging is known to be controlled by genetic and environmental traits. Pathways involved in the control of cellular metabolism play a crucial role. Previously, we identified a role of PaCLPP, a mitochondrial matrix protease, in the control of the mitochondrial energy metabolism, aging, and lifespan of the fungal aging model Podospora anserina. Most surprisingly, we made the counterintuitive observation that the ablation of this component of the mitochondrial quality control network leads to lifespan extension. In the current study, we investigated the role of energy metabolism of P. anserina. An age-dependent metabolome analysis of the wild type and a PaClpP deletion strain verified differences and changes of various metabolites in cultures of the PaClpP mutant and the wild type. Based on these data, we generated and analyzed a PaSnf1 deletion mutant and a ΔPaSnf1/ΔPaClpP double mutant. In both mutants PaSNF1, the catalytic α-subunit of AMP-activated protein kinase (AMPK) is ablated. PaSNF1 was found to be required for the development of fruiting bodies and ascospores and the progeny of sexual reproduction of this ascomycete and impact mitochondrial dynamics and autophagy. Most interestingly, while the single PaSnf1 deletion mutant is characterized by a slight lifespan increase, simultaneous deletion of PaSnf1 and PaClpP leads to a pronounced lifespan extension. This synergistic effect is strongly reinforced in the presence of the mating-type "minus"-linked allele of the rmp1 gene. Compared to the wild type, culture temperature of 35°C instead of the standard laboratory temperature of 27°C leads to a short-lived phenotype of the ΔPaSnf1/ΔPaClpP double mutant. Overall, our study provides novel evidence for complex interactions of different molecular pathways involved in mitochondrial quality control, gene expression, and energy metabolism in the control of organismic aging.
Collapse
Affiliation(s)
| | | | | | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering (Basel) 2020; 7:bioengineering7040128. [PMID: 33066502 PMCID: PMC7712467 DOI: 10.3390/bioengineering7040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The most famous yeast of all, Saccharomyces cerevisiae, has been used by humankind for at least 8000 years, to produce bread, beer and wine, even without knowing about its existence. Only in the last century we have been fully aware of the amazing power of this yeast not only for ancient uses but also for biotechnology purposes. In the last decades, wine culture has become and more demanding all over the world. By applying as powerful a biotechnological tool as genetic engineering in S. cerevisiae, new horizons appear to develop fresh, improved, or modified wine characteristics, properties, flavors, fragrances or production processes, to fulfill an increasingly sophisticated market that moves around 31.4 billion € per year.
Collapse
|