1
|
Shrivastav SR, DeVol CR, Landrum VM, Bjornson KF, Roge D, Steele KM, Moritz CT. Transcutaneous Spinal Stimulation and Short-Burst Interval Treadmill Training in Children With Cerebral Palsy: A Pilot Study. IEEE Trans Biomed Eng 2025; 72:1775-1784. [PMID: 40030608 DOI: 10.1109/tbme.2024.3522317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE The purpose of this pilot study was to evaluate the effects of transcutaneous spinal cord stimulation (tSCS) and short-burst interval locomotor treadmill training (SBLTT) on spasticity and mobility in children with cerebral palsy (CP). METHODS We employed a single-arm design with two interventions: SBLTT only, and tSCS + SBLTT, in four children with CP. Children received 24-sessions each of SBLTT only and tSCS + SBLTT. Spasticity, neuromuscular coordination, and walking function were evaluated before, immediately after, and 8-weeks following each intervention. RESULTS Spasticity, measured via the Modified Ashworth Scale (MAS), reduced in four lower-extremity muscles after tSCS + SBLTT (1.40 ± 0.22), more than following SBLTT only (0.43 ± 0.39). One-minute walk test (1-MWT) distance was maintained during both interventions. tSCS + SBLTT led to improvements in peak hip and knee extension (4.9 ± 7.3° and 6.5 ± 7.7°), that drove increases in joint dynamic range of 4.3 ± 2.4° and 3.8 ± 8.7° at the hip and knee, respectively. Children and parents reported reduction in fatigue and improved gait outcomes after tSCS + SBLTT. Improvements in spasticity and walking function were sustained for 8-weeks after tSCS + SBLTT. CONCLUSION These preliminary results suggest that tSCS + SBLTT may improve spasticity while simultaneously maintaining neuromuscular coordination and walking function in ambulatory children with CP. SIGNIFICANCE This work provides preliminary evidence on the effects of tSCS and the combination of tSCS + SBLTT in children with CP.
Collapse
|
2
|
Disselhorst-Klug C. What are my muscles up to? The contribution of surface electromyography to clinical decision-making. J Electromyogr Kinesiol 2025; 81:102988. [PMID: 39923431 DOI: 10.1016/j.jelekin.2025.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Muscles move the body. The varying levels of movement precision needed daily results from a complex interplay within the central nervous system, muscles and sensory feedback, referred to as neuromechanics. This neuromechanical interplay is often impaired in pathology. Although, diagnosis and therapy would benefit from information about the patient's specific neuromechanical control, no procedures have yet been established in clinical practice that allow this information to be fully recorded. Surface electromyography (sEMG) links neuronal input and muscle function and helps to understand how the CNS orchestrates the multitude of possibilities the neuromusculoskeletal system has at its disposal to solve a movement task. This 2024 Basmajian-Lecture-Paper will highlight sEMG applications in physiological and pathological conditions, to illustrate the potential contribution of sEMG to clinical decision-making. Focussing first on infants' motor development, it will contribute to the discussion on how neuromechanics and motor skills develop. Continuing with considerations on motor unit activation in health and disease and describing the difference between physiological and pathological muscle coordination in dynamic conditions, it aims to address the possibilities but also the limitations of sEMG in clinical applications. Finally, the influence of robotic support on neuromechanical control and thus on re-learning of motor skills are discussed.
Collapse
Affiliation(s)
- Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Pauwelsstr. 20 52074 Aachen, Germany.
| |
Collapse
|
3
|
Zhang T, Xu G, Chang Y, Nie Z, Sun A, Li Z, Xie P. Study of the brain function characteristics in children with cerebral palsy during walking using functional near-infrared spectroscopy. NEUROPHOTONICS 2025; 12:025004. [PMID: 40166420 PMCID: PMC11957398 DOI: 10.1117/1.nph.12.2.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Significance Abnormal gait of children with cerebral palsy (CP) is caused by brain damage or developmental defects, exploring the brain's functional characteristics and regulatory mechanisms is essential for rehabilitation. Aim We aim to study the brain function characteristics in children with CP during walking. Approach The cortical activation, functional connectivity, information flow, and dynamic state transitions of 17 children with CP and 13 healthy children (HC) were analyzed in the resting and walking states. Results The motor cortex (MC) of HC is significantly activated in the walking state, whereas both the prefrontal cortex (PFC) and MC of children with CP are significantly activated. The resting brain functional connectivity of children with CP decreased and showed higher global efficiency and modularity and lower clustering coefficients and local efficiency. During walking, the brain network of children with CP was difficult to maintain a stable global high-connectivity state so the local high-connectivity state became the main connectivity state. For children with CP, more brain resources were allocated to the non-dominant MC during walking, whereas more brain resources were allocated to the dominant MC in HC. Conclusions These indicators reflect the characteristics of brain activation, network connectivity, and information regulation in children with CP, which provide the theoretical basis for targeted rehabilitation treatment.
Collapse
Affiliation(s)
- Tengyu Zhang
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Gongcheng Xu
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
- The Hong Kong Polytechnic University, Faculty of Engineering, Department of Biomedical Engineering, Hong Kong, China
| | - Yajie Chang
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
- Yanshan University, Institute of Electric Engineering, Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Zichao Nie
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
- Yanshan University, Institute of Electric Engineering, Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| | - Aiping Sun
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Zengyong Li
- National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Ping Xie
- Yanshan University, Institute of Electric Engineering, Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, China
| |
Collapse
|
4
|
Pirani A. The Implementation of Infant Anoesis and Adult Autonoesis in the Retrogenesis and Staging System of the Neurocognitive Disorders: A Proposal for a Multidimensional Person-Centered Model. Geriatrics (Basel) 2025; 10:20. [PMID: 39997519 PMCID: PMC11854936 DOI: 10.3390/geriatrics10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Retrogenesis is the process by which the degenerative and vascular mechanisms of dementia reverse the order of acquisition in the normal development. Objective: The development of memory/knowledge after birth may help to know the biopsychosocial and functional characteristics (biosphere) of the retrogenesis. Methods: A literature review was performed in the PubMed, Google Scholar, and Scopus databases using 43 keywords related to retrogenesis: 234 eligible records were selected. Results: The infantile amnesia, characterized from anoesis, was described along the infant/child's biosphere in which the limbic system progressively develops the acquisition of the body knowledge (Anoetic Body Consciousness, AnBC). Anoesis is the infant memory state characterized by the absence of long-term memories of the many stressful/painful experiences that accompany the acquisition under the long-life voluntary control of the long-term memories fundamental for the body growth and survival (mainly chewing/swallowing and walking). At the age of 3-4 years, usually, the AnBC evolves, as a continuum, into the adulthood autonoesis with the emergence, in the child/adolescent, of the consciousness of "self" trough the development of the Episodic Autobiographic Memory (EAM) and the Autonoetic Mind Consciousness (AuMC). The development of cognition and knowledge is due to the progressive maturation of the whole limbic system and not only of the hippocampus. In the biopsychosocial retrogenesis, the EAM/AuMC vanishes progressively along the mild, moderate, and severe stages of dementia when the infant AnBC resurfaces, losing progressively the basic activities of daily living in a retrogenetic order of acquisition where the last functions to disappear are chewing/swallowing. Conclusion: The transition from the adult EAM-AuMC to the infant AnBC, as a continuum in the individual biosphere, adds a contribution to the assessment of the retrogenesis in dementia from a multidimensional person-centered model.
Collapse
Affiliation(s)
- Alessandro Pirani
- Alzheimer's Association "Francesco Mazzuca", Via Reno Vecchio, 33, 44042 Cento, Italy
| |
Collapse
|
5
|
El-Sheikh AF, Hassan AB, Mohamed NE. Effect of leg pedaling exercise from an inclined position on functional ability and strength in children with diplegia. J Taibah Univ Med Sci 2025; 20:73-80. [PMID: 40026412 PMCID: PMC11872073 DOI: 10.1016/j.jtumed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Objectives Children with spastic diplegic cerebral palsy (SDCP) can develop various complications that affect their daily activities and quality of life, such as impaired functional ability, trunk control, and muscle weakness. This study evaluated the effects of lower extremity pedaling exercise from an inclined position on functional ability, trunk control, and muscle strength in these children. Methods Thirty children diagnosed with SDCP, aged 6-9 years, were randomly assigned to two groups: a study group (Group A) and a control group (Group B). Both groups followed a designated physical therapy program for 45 min three times weekly for two consecutive months. Group A performed leg pedaling exercises for 30 min per session from an inclined position. Functional ability, trunk control, and muscle strength were assessed before and after the study using the Gross Motor Function Measure, Trunk Control Measurement Scale, and a handheld dynamometer, respectively. Results Both groups demonstrated statistically significant improvements in the assessed variables post-treatment (P < 0.05). Group A exhibited substantial improvements in functional ability, trunk control, and muscle strength following treatment (P < 0.05). Conclusions For children with SDCP, integrating leg pedaling exercises from an inclined position into their therapeutic program can improve their functional ability, trunk control, and muscle strength.
Collapse
Affiliation(s)
- Amira F. El-Sheikh
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
- Department Physical Therapy for Pediatrics, Faculty of Physical Therapy, Alsalam University in Egypt, Egypt
| | - Alaa B. Hassan
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Nanees E. Mohamed
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Alghadier M, Almasoud N, Alharthi D, Alrashdi O, Albesher R. Association between hand grip strength and quality of life in children with cerebral palsy: a cross-sectional study. PeerJ 2024; 12:e18679. [PMID: 39703915 PMCID: PMC11657191 DOI: 10.7717/peerj.18679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Background Cerebral palsy (CP) covers a wide range of causes and symptoms. It is characterized by persistent motor and postural dysfunction caused by a non-progressing pathological lesion of the immature brain. Development of fine motor skills, such as the ability to manipulate objects with smaller muscles, is crucial for a child's development. It is evident that there is a lack of hand grip strength (HGS) and quality of life (QoL) data in children with CP compared to typically developed (TD) children. Understanding the relationship between these factors might help facilitate healthcare provision and provide insight into rehabilitation programs. The aim of this study is to investigate the relationship between HGS and health-related quality of life (HRQoL) in children with CP compared to TD children. Methods An experimental cross-sectional study was conducted and 60 children (30 CP and 30 TD) were chosen; age, gender, height, weight, body mass index, preferred hand, number of siblings, school attendance, and housing type data were collected. HGS was measured using a standard hand dynamometer, and HRQoL was measured using the KIDSCREEN-10 item questionnaire. Results There was a statistically significant main effect of gender on the average HGS, F (1, 56) = 24.09, p < 0.001, and the KIDSCREEN-10 sum score, F (1, 56) = 8.66, p < 0.001, and the main effect of group on the KIDSCREEN-10 sum score, F (1, 56) = 17.64, p < 0.001. A significant correlation between HGS and the KIDSCREEN-10 sum score in the CP group (r = 0.35, p = 0.03), and the TD group (r = 0.56, p = 0.001). Conclusion HGS was lower in children with CP, and girls had significantly lower HGS compared to boys in both groups, CP and TD children. HRQoL was significantly lower in children with CP, with boys reporting higher HRQoL on the KIDSCREEN-10 questionnaire compared to girls. Our data showed that the higher the KIDSCREEN-10 sum score is, the stronger the HGS of children in both groups. The results of this study indicate that hand grip strength may significantly impact the QoL of children with CP. A correlation between HGS and HRQoL points to the importance of improving strength in children with CP through interventions and directed rehabilitation programs.
Collapse
Affiliation(s)
- Mshari Alghadier
- Department of Health and Rehabilitation Sciences, Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia
| | - Nada Almasoud
- Department of Physical Therapy, Maternity and Children’s Hospital in Alkharj, Kharj, Saudi Arabia
| | - Dalia Alharthi
- Department of Physical Therapy, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Omar Alrashdi
- Department of Physical Therapy, King Khalid Hospital, Hail, Saudi Arabia
| | - Reem Albesher
- Department of Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Avaltroni P, Ivanenko Y, Assenza C, Catania H, Coluccini M, Morone G, Morelli D, Cappellini G. The efficiency and use of a reciprocating system aid for standing and walking in children affected by severe cerebral palsy. Front Pediatr 2024; 12:1447512. [PMID: 39703950 PMCID: PMC11655227 DOI: 10.3389/fped.2024.1447512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Cerebral Palsy (CP) is a leading cause of childhood motor disability, making independent walking a crucial therapeutic goal. Robotic assistive devices offer potential to enhance mobility, promoting community engagement and quality of life. This is an observational report of 22 cases of children with CP in which we evaluated the Moonwalker exoskeleton (a dynamic moving aid system) usability, functional changes, and caregivers' perspectives based on the International Classification of Functioning (ICF). All children (aged 2-8 years, with a severe gait impairment and inability to use a conventional walker) underwent Moonwalker training for 20 sessions, followed by home use for five months. Post-treatment, majority of children showed improved endurance assessed by the 10-m walk test with a notable involvement of the upper trunk and arm movements for gait assistance. Many of them achieved rather remarkable results reaching a velocity of ≥0.5 m/s given the constraints of the walking exoskeleton and the children's size, while at admission all children walked at a speed of less than 0.5 m/s. Several positive environmental factors and family adherence were noted, as assessed by ICF in a subgroup of children. This study on a sample of children demonstrated that the Moonwalker exoskeleton allows walking and training at home in children with severe CP, enhancing development, social interaction, and endurance, while being well-received by families.
Collapse
Affiliation(s)
- Priscilla Avaltroni
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Carla Assenza
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Hilenia Catania
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Michele Coluccini
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris, Pisa, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Germana Cappellini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Silva-Araújo ERD, Toscano AE, Pontes PB, Campos FDACES, Souza LMF, Dos Santos Júnior JP, Ramírez VF, Torner L, Manhães-de-Castro R. Neonatal high-dose riboflavin treatment channels energy expenditure towards sensorimotor and somatic development and reduces rodent growth and weight gain by modulating NRF-1 in the hypothalamus. Physiol Behav 2024; 287:114693. [PMID: 39255868 DOI: 10.1016/j.physbeh.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Metabolic adaptations early in life can drive energy expenditure towards brain and physical development, with less emphasis on body mass gain and somatic growth. Dietary or pharmacological manipulations can influence these processes, but to date, the effects provided by riboflavin have not been studied. The study aimed to evaluate the effects of neonatal treatment with different doses of riboflavin on sensorimotor and somatic development in rodents. Based on this, the following experimental groups were formed: Control (C, 0 mg/kg), Riboflavin 1 (R1, 1 mg/kg), Riboflavin 2 (R2, 10 mg/kg) and Riboflavin 3 (R3, 100 mg/kg). Treatment with 100 mg/kg riboflavin anticipated the reflex ontogeny of righting, cliff aversion, negative geotaxis, and free-fall righting. Intervention with 10 and 100 mg/kg of riboflavin anticipated the reflex maturation of vibrissae placement. Eye-opening, upper incisor eruption, and lower incisor eruption reached maturational age more quickly for animals treated with 100 mg/kg, while caudal growth and body weight gain were reduced from the second week of treatment, for groups R2 and R3. Pearson's correlation analysis indicated a positive association between the administration of high doses of riboflavin and murine growth in the first week of treatment. There was, however, a negative association between treatment with a high dose of riboflavin and growth in the second week of administration, coinciding with a reduction in body weight gain in the R3 group. Treatment with 100 mg/kg of riboflavin also reduced energy expenditure parameters in the open field and catwalk. Although high-dose treatment stimulates the physiological plasticity of the CNS and reduces weight gain, hepatic parameters were preserved, highlighting the participation of the liver in the supply of fatty acids for neural maturation. Furthermore, hypothalamic NRF-1 expression was increased in the R3 group inversely to the reduction in weight gain. Our results suggest that high-dose riboflavin stimulates sensorimotor and somatic development and reduces the energy invested in growth, body weight gain, and locomotor activity, possibly involving NRF-1 gene modulation in the hypothalamus.
Collapse
Affiliation(s)
- Eulália Rebeca da Silva-Araújo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Ana Elisa Toscano
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| | - Paula Brielle Pontes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | | | - Laíza Maria Ferreira Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Joaci Pereira Dos Santos Júnior
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program of Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Valeria Fraga Ramírez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program of Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| |
Collapse
|
9
|
Villani M, Avaltroni P, Scordo G, Rubeca D, Kreynin P, Bereziy E, Berger D, Cappellini G, Sylos-Labini F, Lacquaniti F, Ivanenko Y. Evaluation of EMG patterns in children during assisted walking in the exoskeleton. Front Neurosci 2024; 18:1461323. [PMID: 39513047 PMCID: PMC11541598 DOI: 10.3389/fnins.2024.1461323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
While exoskeleton technology is becoming more and more common for gait rehabilitation in children with neurological disorders, evaluation of gait performance still faces challenges and concerns. The reasoning behind evaluating the spinal locomotor output is that, while exoskeleton's guidance forces create the desired walking kinematics, they also affect sensorimotor interactions, which may lead to an abnormal spatiotemporal integration of activity in particular spinal segments and the risk of abnormalities in gait recovery. Therefore, traditional indicators based on kinematic or kinetic characteristics for optimizing exoskeleton controllers for gait rehabilitation may be supplemented by performance measures associated with the neural control mechanisms. The purpose of this study on a sample of children was to determine the basic features of lower limb muscle activity and to implement a method for assessing the neuromechanics of spinal locomotor output during exoskeleton-assisted gait. To this end, we assessed the effects of a robotic exoskeleton (ExoAtlet Bambini) on gait performance, by recording electromyographic activity of leg muscles and analyzing the corresponding spinal motor pool output. A slower walking setting (about 0.2 m/s) was chosen on the exoskeleton. The results showed that, even with slower walking, the level of muscle activation was roughly comparable during exoskeleton-assisted gait and normal walking. This suggests that, despite full assistance for leg movements, the child's locomotor controllers can interpret step-related afferent information promoting essential activity in leg muscles. This is most likely explained by the active nature of stepping in the exoskeleton (the child was not fully relaxed, experienced full foot loading and needed to maintain the upper trunk posture). In terms of the general muscle activity patterns, we identified notable variations for the proximal leg muscles, coactivation of the lumbar and sacral motor pools, and weak propulsion from the distal extensors at push-off. These changes led to the lack of characteristic lumbosacral oscillations of the center of motoneuron activity, normally associated with the pendulum mechanism of bipedal walking. This work shows promise as a useful technique for analyzing exoskeleton performance to help children develop their natural gait pattern and to guide system optimization in the future for inclusion into clinical care.
Collapse
Affiliation(s)
- Margherita Villani
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Priscilla Avaltroni
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Scordo
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Damiana Rubeca
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Denise Berger
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Germana Cappellini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
10
|
Spedden ME, O’Neill GC, Tierney TM, West TO, Schmidt M, Mellor S, Farmer SF, Bestmann S, Barnes GR. Towards non-invasive imaging through spinal-cord generated magnetic fields. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1470970. [PMID: 39445170 PMCID: PMC11496111 DOI: 10.3389/fmedt.2024.1470970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Non-invasive imaging of the human spinal cord is a vital tool for understanding the mechanisms underlying its functions in both healthy and pathological conditions. However, non-invasive imaging presents a significant methodological challenge because the spinal cord is difficult to access with conventional neurophysiological approaches, due to its proximity to other organs and muscles, as well as the physiological movements caused by respiration, heartbeats, and cerebrospinal fluid (CSF) flow. Here, we discuss the present state and future directions of spinal cord imaging, with a focus on the estimation of current flow through magnetic field measurements. We discuss existing cryogenic (superconducting) and non-cryogenic (optically-pumped magnetometer-based, OPM) systems, and highlight their strengths and limitations for studying human spinal cord function. While significant challenges remain, particularly in source imaging and interference rejection, magnetic field-based neuroimaging offers a novel avenue for advancing research in various areas. These include sensorimotor processing, cortico-spinal interplay, brain and spinal cord plasticity during learning and recovery from injury, and pain perception. Additionally, this technology holds promise for diagnosing and optimizing the treatment of spinal cord disorders.
Collapse
Affiliation(s)
- Meaghan E. Spedden
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - George C. O’Neill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tim M. Tierney
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Timothy O. West
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Maike Schmidt
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Mellor
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Simon F. Farmer
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sven Bestmann
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gareth R. Barnes
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Sanches E, Ho D, van de Looij Y, Aebi Toulotte A, Baud L, Bouteldja F, Barraud Q, Araneda R, Bleyenheuft Y, Brochard S, Kathe C, Courtine G, Sizonenko S. Early intensive rehabilitation reverses locomotor disruption, decrease brain inflammation and induces neuroplasticity following experimental Cerebral Palsy. Brain Behav Immun 2024; 121:303-316. [PMID: 39098438 DOI: 10.1016/j.bbi.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Cerebral Palsy (CP) is a major cause of motor and cognitive disability in children due to injury to the developing brain. Early intensive sensorimotor rehabilitation has been shown to change brain structure and reduce CP symptoms severity. We combined environmental enrichment (EE) and treadmill training (TT) to observe the effects of a one-week program of sensorimotor stimulation (EETT) in animals exposed to a CP model and explored possible mechanisms involved in the functional recovery. METHODS Pregnant Wistar rats were injected with Lipopolysaccharide (LPS - 200 µg/kg) intraperitoneally at embryonic days 18 and 19. At P0, pups of both sexes were exposed to 20' anoxia at 37 °C. From P2 to P21, hindlimbs were restricted for 16 h/day during the dark cycle. EETT lasted from P21 to P27. TT - 15 min/day at 7 cm/s. EE - 7 days in enriched cages with sensorimotor stimulus. Functional 3D kinematic gait analysis and locomotion were analyzed. At P28, brains were collected for ex-vivo MRI and histological assessment. Neurotrophins and key proteins involved in CNS function were assessed by western blotting. RESULTS CP model caused gross and skilled locomotor disruption and altered CNS neurochemistry. EETT reversed locomotor dysfunction with minor effects over gait kinematics. EETT also decreased brain inflammation and glial activation, preserved myelination, upregulated BDNF signaling and modulated the expression of proteins involved in excitatory synaptic function in the brain and spinal cord. CONCLUSIONS Using this translational approach based on intensive sensorimotor rehabilitation, we highlight pathways engaged in the early developmental processes improving neurological recovery observed in CP.
Collapse
Affiliation(s)
- Eduardo Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dini Ho
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Animal Imaging Technology Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Audrey Aebi Toulotte
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Laetitia Baud
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland; NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Farha Bouteldja
- Department of Fundamental Neurosciences, University of Lausanne (Unil), Switzerland
| | - Quentin Barraud
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland; NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Rodrigo Araneda
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium; Exercise and Rehabilitation Science Institute, Faculty of Rehabilitation Science, Universidad Andres Bello, Santiago, Chile
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Sylvain Brochard
- Physical and Medical Rehabilitation Department, CHRU Brest, Brest, France; Paediatric Physical and Medical Rehabilitation Department, Fondation ILDYS, Brest, France; University of Western Brittany, Laboratory of Medical Information Processing, Inserm U1101, Brest, France
| | - Claudia Kathe
- Department of Fundamental Neurosciences, University of Lausanne (Unil), Switzerland
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland; NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Silva-Araújo ERD, Manhães-de-Castro R, Pontes PB, Visco DB, Lacerda DC, José Cavalcanti Bezerra Gouveia H, Toscano AE. Effects of riboflavin in the treatment of brain damage caused by oxygen deprivation: an integrative systematic review. Nutr Neurosci 2024; 27:989-1007. [PMID: 38095869 DOI: 10.1080/1028415x.2023.2288387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Brain oxygen deprivation causes morphological damage involved in the formation of serious pathological conditions such as stroke and cerebral palsy. Therapeutic methods for post-hypoxia/anoxia injuries are limited and still have deficiencies in terms of safety and efficacy. Recently, clinical studies of stroke have reported the use of drugs containing riboflavin for post-injury clinical rehabilitation, however, the effects of vitamin B2 on exposure to cerebral oxygen deprivation are not completely elucidated. This review aimed to investigate the potential antioxidant, anti-inflammatory and neuroprotective effects of riboflavin in cerebral hypoxia/anoxia. After a systematic search, 21 articles were selected, 8 preclinical and 12 clinical studies, and 1 translational study. Most preclinical studies used B2 alone in models of hypoxia in rodents, with doses of 1-20 mg/kg (in vivo) and 0.5-5 µM (in vitro). Together, these works suggested greater regulation of lipid peroxidation and apoptosis and an increase in neurotrophins, locomotion, and cognition after treatment. In contrast, several human studies have administered riboflavin (5 mg) in combination with other Krebs cycle metabolites, except one study, which used only B2 (20 mg). A reduction in lactic acidosis and recovery of sensorimotor functions was observed in children after treatment with B2, while adults and the elderly showed a reduction in infarct volume and cognitive rehabilitation. Based on findings from preclinical and clinical studies, we conclude that the use of riboflavin alone or in combination acts beneficially in correcting the underlying brain damage caused by hypoxia/anoxia and its inflammatory, oxidative, and behavioral impairments.
Collapse
Affiliation(s)
- Eulália Rebeca da Silva-Araújo
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paula Brielle Pontes
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Laboratory of Neurofunctional, Center for Biological Sciences and Health, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
13
|
Sudati IP, Damiano D, Rovai G, de Campos AC. Neural Correlates of Mobility in Children with Cerebral Palsy: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1039. [PMID: 39200649 PMCID: PMC11354175 DOI: 10.3390/ijerph21081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
Recent advances in brain mapping tools have enabled the study of brain activity during functional tasks, revealing neuroplasticity after early brain injuries and resulting from rehabilitation. Understanding the neural correlates of mobility limitations is crucial for treating individuals with cerebral palsy (CP). The aim is to summarize the neural correlates of mobility in children with CP and to describe the brain mapping methods that have been utilized in the existing literature. This systematic review was conducted based on PRISMA guidelines and was registered on PROSPERO (n° CRD42021240296). The literature search was conducted in the PubMed and Embase databases. Observational studies involving participants with CP, with a mean age of up to 18 years, that utilized brain mapping techniques and correlated these with mobility outcomes were included. The results were analyzed in terms of sample characteristics, brain mapping methods, mobility measures, and main results. The risk of bias was evaluated using a checklist previously created by our research group, based on STROBE guidelines, the Cochrane Handbook, and the Critical Appraisal Skills Programme (CASP). A total of 15 studies comprising 313 children with CP and 229 with typical development using both static and mobile techniques met the inclusion criteria. The studies indicate that children"with'CP have increased cerebral activity and higher variability in brain reorganization during mobility activities, such as gait, quiet standing, cycling, and gross motor tasks when compared with children with typical development. Altered brain activity and reorganization underline the importance of conducting more studies to investigate the neural correlates during mobility activities in children with CP. Such information could guide neurorehabilitation strategies targeting brain neuroplasticity for functional gains.
Collapse
Affiliation(s)
- Isabella Pessóta Sudati
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Diane Damiano
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Gabriela Rovai
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Ana Carolina de Campos
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
14
|
Xiong Q, Wan J, Liu Y, Wu X, Jiang S, Xiao N, Hou W. Reduced corticospinal drive to antagonist muscles of upper and lower limbs during hands-and-knees crawling in infants with cerebral palsy: Evidence from intermuscular EMG-EMG coherence. Behav Brain Res 2024; 457:114718. [PMID: 37858871 DOI: 10.1016/j.bbr.2023.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND There is growing interest in understanding the central control of hands-and-knees crawling, especially as a significant motor developmental milestone for early assessment of motor dysfunction in infants with cerebral palsy (CP) who have not yet acquired walking ability. In particular, CP is known to be associated with walking dysfunctions caused by early damage and incomplete maturation of the corticospinal tract. However, the extent of damage to the corticospinal connections during crawling in infants with CP has not been fully clarified. Therefore, this study aimed to investigate the disparities in intermuscular EMG-EMG coherence, which serve as indicators of corticospinal drives to antagonist muscles in the upper and lower limbs during crawling, between infants with and without CP. METHODS This study involved 15 infants diagnosed with CP and 20 typically developing (TD) infants. Surface EMG recordings were obtained from two pairs of antagonist muscles in the upper limbs (triceps brachii (TB) and biceps brachii (BB)) and lower limbs (quadriceps femoris (QF) and hamstrings (HS)), while the infants performed hands-and-knees crawling at their self-selected velocity. Intermuscular EMG-EMG coherence was computed in two frequency bands, the beta band (15-30 Hz) and gamma band (30-60 Hz), which indicate corticospinal drive. Additionally, spatiotemporal parameters, including crawling velocity, cadence, duration, and the percentage of stance phase time, were calculated for comparison. Spearman rank correlations were conducted to assess the relationship between EMG-EMG coherence and crawling spatiotemporal parameters. RESULTS Infants with CP exhibited significantly reduced crawling velocity, decreased cadence, longer cycle duration, and a higher percentage of stance phase time compared to TD infants. Furthermore, CP infants demonstrated decreased coherence in the beta and gamma frequency bands (indicators of corticospinal drive) in both upper and lower limb muscles. Regarding limb-related differences in the beta and gamma coherence, significant disparities were found between upper and lower limb muscles in TD infants (p < 0.05), but not in infants with CP (p > 0.05). Additionally, significant correlations between coherence metrics and crawling spatiotemporal parameters were identified in the TD group (p < 0.05), while such correlations were not evident in the CP group. CONCLUSIONS Our findings suggest that the corticospinal drive may functionally influence the central control of antagonist muscles in the limbs during typical infant crawling. This functional role could be impaired by neurological conditions such as cerebral palsy. The neurophysiological markers of corticospinal drive, specifically intermuscular EMG-EMG coherence during crawling in infants with cerebral palsy, could potentially serve as a tool to assess developmental response to therapy.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China; Department of Bioengineering, Chongqing University, Chongqing, China.
| | - Jinliang Wan
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Sorek G, Goudriaan M, Schurr I, Schless SH. A longitudinal analysis of selective motor control during gait in individuals with cerebral palsy and the relation to gait deviations. PLoS One 2023; 18:e0289124. [PMID: 37523363 PMCID: PMC10389713 DOI: 10.1371/journal.pone.0289124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE To investigate longitudinal changes in selective motor control during gait (SMCg) in individuals with cerebral palsy (CP), and to assess if they are related to changes in gait deviations. METHOD Twenty-three children/adolescents with spastic CP (mean ± SD age = 9.0±2.5 years) and two 3D gait assessments (separated by 590±202 days) with no interim surgical intervention, were included. SMCg was assessed using muscle synergy analysis to determine the dynamic motor control index (walk-DMC). Gait deviation was assessed using the Gait profile score (GPS) and Gait variable scores (GVS). RESULTS There were no mean changes in walk-DMC score, GPS or GVS between assessments. However, changes in walk-DMC scores in the more involved leg related to changes in hip flexion-extension and hip internal-external GVS (rp = -0.56; p = 0.017 and rp = 0.65; p = 0.004, respectively). CONCLUSIONS On average, there were no significant longitudinal changes in SMCg. However, there was considerable variability between individuals, which may relate to changes in hip joint kinematics. This suggests that a combination of neural capacity and biomechanical factors influence lower limb muscle co-activation in individuals with CP, with a potential important role for the hip muscles. These findings highlight the importance of taking an individualized approach when evaluating SMCg in individuals with CP.
Collapse
Affiliation(s)
- Gilad Sorek
- Laboratory for Paediatric Motion Analysis and Biofeedback Rehabilitation, ALYN Helmsley Paediatric and Adolescent Rehabilitation Research Centre, Jerusalem, Israel
| | - Marije Goudriaan
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Itai Schurr
- Clinical Motion Analysis Laboratory, ALYN Paediatric and Adolescent Rehabilitation Centre, Jerusalem, Israel
| | - Simon-Henri Schless
- Laboratory for Paediatric Motion Analysis and Biofeedback Rehabilitation, ALYN Helmsley Paediatric and Adolescent Rehabilitation Research Centre, Jerusalem, Israel
- Clinical Motion Analysis Laboratory, ALYN Paediatric and Adolescent Rehabilitation Centre, Jerusalem, Israel
| |
Collapse
|
16
|
Dumuids-Vernet MV, Forma V, Provasi J, Anderson DI, Hinnekens E, Soyez E, Strassel M, Guéret L, Hym C, Huet V, Granjon L, Calamy L, Dassieu G, Boujenah L, Dollat C, Biran V, Barbu-Roth M. Stimulating the motor development of very premature infants: effects of early crawling training on a mini-skateboard. Front Pediatr 2023; 11:1198016. [PMID: 37346892 PMCID: PMC10281647 DOI: 10.3389/fped.2023.1198016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Aim To examine the effects of an early home-based 8-week crawling intervention performed by trained therapists on the motor and general development of very premature infants during the first year of life. Methods At term-equivalent age, immediately following discharge from the Neonatal Intensive Care Unit (NICU), we randomly allocated 44 premature infants born before 32 weeks' gestation without major brain damage to one of three conditions in our intervention study: crawling on a mini-skateboard, the Crawliskate (Crawli), prone positioning control (Mattress), or standard care (Control). The Crawli and Mattress groups received 5 min daily at-home training administered by trained therapists for 8 consecutive weeks upon discharge from the NICU. The outcomes of greatest interest included gross motor development (Bayley-III) at 2, 6, 9, and 12 months (primary outcome) corrected age (CA), mature crawling at 9 months CA and general development at 9 and 12 months CA [Ages and Stages Questionnaires-3 (ASQ-3)]. The study was registered at www.clinicaltrials.gov; registration number: NCT05278286. Results A 3 (Condition) × 4 (Age) repeated measures ANOVA revealed that Crawli group infants had significantly higher Bayley-III gross motor development scores than Mattress and Control group infants. Crawli group infants also scored significantly higher on groups of Bayley-III items related to specific motor skills than infants in the other groups, including crawling at 9 months CA. We found significant differences in favor of the Crawli group in separate one-way ANOVAs at each of the ages we examined. A 3 (Condition) × 2 (Age) repeated measures ANOVA revealed that the Crawli group scored significantly higher than the Control group for the ASQ-3 total score and communication score and significantly higher for the fine motor score than the Control and Mattress groups. We found additional significant differences in favor of the Crawli group for other dimensions of the ASQ-3 in separate one-way ANOVAs at 9 and 12 months CA. Interpretation Early crawling training on a Crawliskate provides an effective way to promote motor and general development in very premature infants. The findings also provide clear evidence for a link between newborn crawling and more mature crawling later in development.
Collapse
Affiliation(s)
| | - Vincent Forma
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Joëlle Provasi
- CHArt Laboratory (Human and Artificial Cognition), EPHE-PSL, Paris, France
| | - David Ian Anderson
- Marian Wright Edelman Institute, San Francisco State University, San Francisco, CA, United States
| | - Elodie Hinnekens
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Evelyne Soyez
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Mathilde Strassel
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Léa Guéret
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Charlotte Hym
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Viviane Huet
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Lionel Granjon
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Lucie Calamy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| | - Gilles Dassieu
- Service de Néonatologie, Centre Hospitalier Intercommunal, Créteil, France
| | - Laurence Boujenah
- Service de Néonatologie, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Camille Dollat
- Service de Néonatologie, AP-HP, Maternité Port Royal, Paris, France
| | - Valérie Biran
- Service de Néonatologie, AP-HP, Hôpital Robert Debré, Paris, France
| | - Marianne Barbu-Roth
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center (INCC), Paris, France
| |
Collapse
|
17
|
Ivanenko Y, Shapkova EY, Petrova DA, Kleeva DF, Lebedev MA. Exoskeleton gait training with spinal cord neuromodulation. Front Hum Neurosci 2023; 17:1194702. [PMID: 37250689 PMCID: PMC10213721 DOI: 10.3389/fnhum.2023.1194702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Neuromodulating the locomotor network through spinal cord electrical stimulation (SCES) is effective for restoring function in individuals with gait deficits. However, SCES alone has limited effectiveness without concurrent locomotor function training that enhances activity-dependent plasticity of spinal neuronal networks by sensory feedback. This mini review discusses recent developments in using combined interventions, such as SCES added to exoskeleton gait training (EGT). To develop personalized therapies, it is crucial to assess the state of spinal circuitry through a physiologically relevant approach that identifies individual characteristics of spinal cord function to develop person-specific SCES and EGT. The existing literature suggests that combining SCES and EGT to activate the locomotor network can have a synergistic rehabilitative effect on restoring walking abilities, somatic sensation, and cardiovascular and bladder function in paralyzed individuals.
Collapse
Affiliation(s)
| | - Elena Y. Shapkova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, Russia
| | - Daria A. Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria F. Kleeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail A. Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
18
|
Cappellini G, Sylos-Labini F, Avaltroni P, Dewolf AH, Assenza C, Morelli D, Lacquaniti F, Ivanenko Y. Comparison of the forward and sideways locomotor patterns in children with Cerebral Palsy. Sci Rep 2023; 13:7286. [PMID: 37142631 PMCID: PMC10160037 DOI: 10.1038/s41598-023-34369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Switching locomotion direction is a common task in daily life, and it has been studied extensively in healthy people. Little is known, however, about the locomotor adjustments involved in changing locomotion direction from forward (FW) to sideways (SW) in children with cerebral palsy (CP). The importance of testing the ability of children with CP in this task lies in the assessment of flexible, adaptable adjustments of locomotion as a function of the environmental context. On the one hand, the ability of a child to cope with novel task requirements may provide prognostic cues as to the chances of modifying the gait adaptively. On the other hand, challenging the child with the novel task may represent a useful rehabilitation tool to improve the locomotor performance. SW is an asymmetrical locomotor task and requires a differential control of right and left limb muscles. Here, we report the results of a cross-sectional study comparing FW and SW in 27 children with CP (17 diplegic, 10 hemiplegic, 2-10 years) and 18 age-matched typically developing (TD) children. We analyzed gait kinematics, joint moments, EMG activity of 12 pairs of bilateral muscles, and muscle modules evaluated by factorization of EMG signals. Task performance in several children with CP differed drastically from that of TD children. Only 2/3 of children with CP met the primary outcome, i.e. they succeeded to step sideways, and they often demonstrated attempts to step forward. They tended to rotate their trunk FW, cross one leg over the other, flex the knee and hip. Moreover, in contrast to TD children, children with CP often exhibited similar motor modules for FW and SW. Overall, the results reflect developmental deficits in the control of gait, bilateral coordination and adjustment of basic motor modules in children with CP. We suggest that the sideways (along with the backward) style of locomotion represents a novel rehabilitation protocol that challenges the child to cope with novel contextual requirements.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Priscilla Avaltroni
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
| | - Arthur H Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carla Assenza
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy.
| |
Collapse
|
19
|
Modification of the locomotor pattern when deviating from the characteristic heel-to-toe rolling pattern during walking. Eur J Appl Physiol 2023:10.1007/s00421-023-05169-5. [PMID: 36869884 DOI: 10.1007/s00421-023-05169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE Humans are amongst few animals that step first on the heel, and then roll on the ball of the foot and toes. While this heel-to-toe rolling pattern has been shown to render an energetic advantage during walking, the effect of different foot contact strategies, on the neuromuscular control of adult walking gaits has received less attention. We hypothesised that deviating from heel-to-toe rolling pattern affects the energy transduction and weight acceptance and re-propulsive phases in gait along with the modification of spinal motor activity. METHODS Ten subjects walked on a treadmill normally, then placed their feet flat on the ground at each step and finally walked on the balls of the feet. RESULTS Our results show that when participants deviate from heel-to-toe rolling pattern strategy, the mechanical work increases on average 85% higher (F = 15.5; p < 0.001), mainly linked to a lack of propulsion at late stance. This modification of the mechanical power is related to a differential involvement of lumbar and sacral segment activation. Particularly, the delay between the major bursts of activation is on average 65% smaller, as compared to normal walking (F = 43.2; p < 0.001). CONCLUSION Similar results are observable in walking plantigrade animals, but also at the onset of independent stepping in toddlers, where the heel-to-toe rolling pattern is not yet established. These indications seem to bring arguments to the fact that the rolling of the foot during human locomotion has evolved to optimise gait, following selective pressures from the evolution of bipedal posture.
Collapse
|
20
|
How does treadmill training contribute to botulinum toxin application plus routine physical therapy in ambulatory children with spastic bilateral cerebral palsy? A randomized controlled trial. Ir J Med Sci 2023; 192:209-217. [PMID: 35224682 DOI: 10.1007/s11845-022-02960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND In spite of treadmill training and multilevel botulinum toxin (BoNT-A) injection being the two most commonly used treatment methods in pediatric rehabilitation management, there was no study investigating the effect of treadmill training after BoNT-A injection in children with cerebral palsy (CP). AIM The aim of this study was to investigate the effect of treadmill training in addition to routine physical therapy after BoNT-A injection in ambulatory children with spastic bilateral CP on lower extremity muscle strength, selective motor control, and mobility. METHODS A total of 30 spastic bilateral children with CP classified level II-III by the Gross Motor Function Classification System were randomly assigned the study and control groups. Both groups continued routine physical therapy treatments after multilevel BoNT-A injection into lower extremities, while the study group additionally underwent 8 weeks of treadmill training (20 min, two sessions per week). Handheld dynamometer, selective control assessment of lower extremity, temporospatial evaluation of gait, and Pediatric Evaluation of Disability Inventory were assessed before and after 8 weeks. RESULTS In both groups, hip, knee, and ankle muscle strength increased at the end of 8 weeks (p < 0.05); however, in the study group, hip flexor/extensor muscle strength (p < 0.05, ES ≥ 0.50), selective motor control of ankle (p < 0.01, ES = 1.17), walking speed (p < 0.01, ES = 2.60), step lengths (p < 0.01, ES = 1.32), and mobility (p < 0.01, ES = 1.37) increased significantly compared to those of the control group. CONCLUSIONS Treadmill training in addition to routine physical therapy after BoNT-A injection is beneficial for hip muscle strength, ankle selective motor control, walking quality, and functional mobility in the short term. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03580174.
Collapse
|
21
|
Beltrame G, Scano A, Marino G, Peccati A, Molinari Tosatti L, Portinaro N. Recent developments in muscle synergy analysis in young people with neurodevelopmental diseases: A Systematic Review. Front Bioeng Biotechnol 2023; 11:1145937. [PMID: 37180039 PMCID: PMC10174248 DOI: 10.3389/fbioe.2023.1145937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The central nervous system simplifies motor control by sending motor commands activating groups of muscles, known as synergies. Physiological locomotion can be described as a coordinated recruitment of four to five muscle synergies. The first studies on muscle synergies in patients affected by neurological diseases were on stroke survivors. They showed that synergies can be used as biomarkers for motor impairment as they vary in patients with respect to healthy people. Likewise, muscle synergy analysis has been applied to developmental diseases (DD). The need for a comprehensive view of the present findings is crucial for comparing results achieved so far and promote future directions in the field. In the present review, we screened three scientific databases and selected thirty-six papers investigating muscle synergies extracted from locomotion in children affected by DD. Thirty-one articles investigate how cerebral palsy (CP) influences motor control, the currently exploited method in studying motor control in CP and finally the effects of treatments in these patients in terms of synergies and biomechanics; two articles investigate how muscle synergies vary in Duchenne muscular dystrophy (DMD), and three other articles assess other developmental pathologies, such as chronic and acute neuropathic pain. For CP, most of the studies demonstrate that the number of synergies is lower and that the synergy composition varies in the affected children with respect to normal controls. Still, the predictability of treatment's effects and the etiology of muscle synergy variation are open questions, as it has been reported that treatments minimally modify synergies, even if they improve biomechanics. The application of different algorithms in extracting synergies might bring about more subtle differences. Considering DMD, no correlation was found between non-neural muscle weakness and muscle modules' variation, while in chronic pain a decreased number of synergies was observed as a possible consequence of plastic adaptations. Even if the potential of the synergistic approach for clinical and rehabilitation practices is recognized, there is not full consensus on protocols nor widely accepted guidelines for the systematic clinical adoption of the method in DD. We critically commented on the current findings, on the methodological issues and the relative open points, and on the clinical impact of muscle synergies in neurodevelopmental diseases to fill the gap for applying the method in clinical practice.
Collapse
Affiliation(s)
- Giulia Beltrame
- Residency Program in Orthopedics and Traumatology, Universitá degli Studi di Milano, Milan, Italy
| | - Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Milan, Italy
- *Correspondence: Alessandro Scano,
| | - Giorgia Marino
- Physiotherapy Unit, Humanitas Clinical and Research Center—IRCCS, Milan, Italy
| | - Andrea Peccati
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Milan, Italy
| | - Nicola Portinaro
- Residency Program in Orthopedics and Traumatology, Universitá degli Studi di Milano, Milan, Italy
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Conner BC, Spomer AM, Bishe SSPA, Steele KM, Lerner ZF. Soleus H-reflex modulation in cerebral palsy and its relationship with neural control complexity: a pilot study. Exp Brain Res 2022; 240:2073-2084. [PMID: 35752662 PMCID: PMC10072969 DOI: 10.1007/s00221-022-06399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Individuals with cerebral palsy (CP) display motor control patterns that suggest decreased supraspinal input, but it remains unknown if they are able to modulate lower-limb reflexes in response to more complex tasks, or whether global motor control patterns relate to reflex modulation capacity in this population. Eight ambulatory individuals with CP (12-18 years old) were recruited to complete a task complexity protocol, where soleus H-reflex excitability was compared between bilateral (baseline) and unilateral (complex) standing. We also investigated the relationship between each participant's ability to modulate soleus H-reflex excitability and the complexity of their walking neural control pattern determined from muscle synergy analysis. Finally, six of the eight participants completed an exoskeleton walking protocol, where soleus H-reflexes were collected during the stance phase of walking with and without stance-phase plantar flexor resistance. Participants displayed a significant reduction in soleus H-reflex excitability (- 26 ± 25%, p = 0.04) with unilateral standing, and a strong positive relationship was observed between more refined neural control during walking and an increased ability to modulate reflex excitability (R = 0.79, p = 0.04). There was no difference in neuromuscular outcome measures with and without the ankle exoskeleton (p values all > 0.05), with variable reflex responses to walking with ankle exoskeleton resistance. These findings provide evidence that ambulatory individuals with CP retain some capacity to modulate lower-limb reflexes in response to increased task complexity, and that less refined neural control during walking appears to be related to deficits in reflex modulation.
Collapse
Affiliation(s)
- Benjamin C Conner
- College of Medicine, Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Alyssa M Spomer
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Safoura Sadegh Pour Aji Bishe
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGRBldg 69, Flagstaff, AZ, 86011, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Zachary F Lerner
- College of Medicine, Phoenix, University of Arizona, Phoenix, AZ, USA. .,Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGRBldg 69, Flagstaff, AZ, 86011, USA.
| |
Collapse
|
23
|
Solopova IA, Selionov VA, Blinov EO, Dolinskaya IY, Zhvansky DS, Lacquaniti F, Ivanenko Y. Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. BIOLOGY 2022; 11:biology11050707. [PMID: 35625435 PMCID: PMC9138260 DOI: 10.3390/biology11050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Individual differences in the sensorimotor circuitry play an important role for understanding the nature of behavioral variability and developing personalized therapies. While the spinal network likely requires relatively rigid organization, it becomes increasingly evident that adaptability and inter-individual variability in the functioning of the neuronal circuitry is present not only in the brain but also in the spinal cord. In this study we investigated the relationship between the excitability of pattern generation circuitry and segmental reflexes in healthy humans. We found that the high individual responsiveness of pattern generation circuitries to tonic sensory input in both the upper and lower limbs was related to larger H-reflexes. The results provide further evidence for the importance of physiologically relevant assessments of spinal cord neuromodulation and the individual physiological state of reflex pathways. Abstract The state and excitability of pattern generators are attracting the increasing interest of neurophysiologists and clinicians for understanding the mechanisms of the rhythmogenesis and neuromodulation of the human spinal cord. It has been previously shown that tonic sensory stimulation can elicit non-voluntary stepping-like movements in non-injured subjects when their limbs were placed in a gravity-neutral unloading apparatus. However, large individual differences in responsiveness to such stimuli were observed, so that the effects of sensory neuromodulation manifest only in some of the subjects. Given that spinal reflexes are an integral part of the neuronal circuitry, here we investigated the extent to which spinal pattern generation excitability in response to the vibrostimulation of muscle proprioceptors can be related to the H-reflex magnitude, in both the lower and upper limbs. For the H-reflex measurements, three conditions were used: stationary limbs, voluntary limb movement and passive limb movement. The results showed that the H-reflex was considerably higher in the group of participants who demonstrated non-voluntary rhythmic responses than it was in the participants who did not demonstrate them. Our findings are consistent with the idea that spinal reflex measurements play important roles in assessing the rhythmogenesis of the spinal cord.
Collapse
Affiliation(s)
- Irina A. Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Victor A. Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Egor O. Blinov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Irina Y. Dolinskaya
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Dmitry S. Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Sciences, 127951 Moscow, Russia; (I.A.S.); (V.A.S.); (I.Y.D.); (D.S.Z.)
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
- Correspondence:
| |
Collapse
|
24
|
Xiong QL, Wu XY, Liu Y, Zhang CX, Hou WS. Measurement and Analysis of Human Infant Crawling for Rehabilitation: A Narrative Review. Front Neurol 2021; 12:731374. [PMID: 34707557 PMCID: PMC8544808 DOI: 10.3389/fneur.2021.731374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
When a child shows signs of potential motor developmental disorders, early diagnosis of central nervous system (CNS) impairment is beneficial. Known as the first CNS-controlled mobility for most of infants, mobility during crawling usually has been used in clinical assessments to identify motor development disorders. The current clinical scales of motor development during crawling stage are relatively subjective. Objective and quantitative measures of infant crawling afford the possibilities to identify those infants who might benefit from early intervention, as well as the evaluation of intervention progress. Thus, increasing researchers have explored objective measurements of infant crawling in typical and atypical developing infants. However, there is a lack of comprehensive review on infant-crawling measurement and analysis toward bridging the gap between research crawling analysis and potential clinical applications. In this narrative review, we provide a practical overview of the most relevant measurements in human infant crawling, including acquisition techniques, data processing methods, features extraction, and the potential value in objective assessment of motor function in infancy; meanwhile, the possibilities to develop crawling training as early intervention to promote the locomotor function for infants with locomotor delays are also discussed.
Collapse
Affiliation(s)
- Qi L Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China.,Department of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao Y Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Cong X Zhang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Wen S Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Edgerton VR, Hastings S, Gad PN. Engaging Spinal Networks to Mitigate Supraspinal Dysfunction After CP. Front Neurosci 2021; 15:643463. [PMID: 33912005 PMCID: PMC8072045 DOI: 10.3389/fnins.2021.643463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Although children with cerebral palsy seem to have the neural networks necessary to generate most movements, they are markedly dysfunctional, largely attributable to abnormal patterns of muscle activation, often characterized as spasticity, largely reflecting a functionally abnormal spinal-supraspinal connectivity. While it is generally assumed that the etiologies of the disruptive functions associated with cerebral palsy can be attributed primarily to supraspinal networks, we propose that the more normal connectivity that persists between peripheral proprioception-cutaneous input to the spinal networks can be used to guide the reorganization of a more normal spinal-supraspinal connectivity. The level of plasticity necessary to achieve the required reorganization within and among different neural networks can be achieved with a combination of spinal neuromodulation and specific activity-dependent mechanisms. By engaging these two concepts, we hypothesize that bidirectional reorganization of proprioception-spinal cord-brain connectivity to higher levels of functionality can be achieved without invasive surgery.
Collapse
Affiliation(s)
- V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susan Hastings
- SH Pediatric Physical Therapy, San Jose, CA, United States
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States.,Rancho Research Institute, Downey, CA, United States.,SpineX, Inc., Los Angeles, CA, United States
| |
Collapse
|
26
|
Dewolf AH, Sylos Labini F, Ivanenko Y, Lacquaniti F. Development of Locomotor-Related Movements in Early Infancy. Front Cell Neurosci 2021; 14:623759. [PMID: 33551751 PMCID: PMC7858268 DOI: 10.3389/fncel.2020.623759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
This mini-review focuses on the emergence of locomotor-related movements in early infancy. In particular, we consider multiples precursor behaviors of locomotion as a manifestation of the development of the neuronal networks and their link in the establishment of precocious locomotor skills. Despite the large variability of motor behavior observed in human babies, as in animals, afferent information is already processed to shape the behavior to specific situations and environments. Specifically, we argue that the closed-loop interaction between the neural output and the physical dynamics of the mechanical system should be considered to explore the complexity and flexibility of pattern generation in human and animal neonates.
Collapse
Affiliation(s)
- Arthur H Dewolf
- Department of Systems Medicine, Center of Space Biomedicine, Faculty of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine, Center of Space Biomedicine, Faculty of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
27
|
Cappellini G, Sylos-Labini F, Assenza C, Libernini L, Morelli D, Lacquaniti F, Ivanenko Y. Clinical Relevance of State-of-the-Art Analysis of Surface Electromyography in Cerebral Palsy. Front Neurol 2020; 11:583296. [PMID: 33362693 PMCID: PMC7759523 DOI: 10.3389/fneur.2020.583296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Surface electromyography (sEMG) can be used to assess the integrity of the neuromuscular system and its impairment in neurological disorders. Here we will consider several issues related to the current clinical applications, difficulties and limited usage of sEMG for the assessment and rehabilitation of children with cerebral palsy. The uniqueness of this methodology is that it can determine hyperactivity or inactivity of selected muscles, which cannot be assessed by other methods. In addition, it can assist for intervention or muscle/tendon surgery acts, and it can evaluate integrated functioning of the nervous system based on multi-muscle sEMG recordings and assess motor pool activation. The latter aspect is especially important for understanding impairments of the mechanisms of neural controllers rather than malfunction of individual muscles. Although sEMG study is an important tool in both clinical research and neurorehabilitation, the results of a survey on the clinical relevance of sEMG in a typical department of pediatric rehabilitation highlighted its limited clinical usage. We believe that this is due to limited knowledge of the sEMG and its neuromuscular underpinnings by many physiotherapists, as a result of lack of emphasis on this important methodology in the courses taught in physical therapy schools. The lack of reference databases or benchmarking software for sEMG analysis may also contribute to the limited clinical usage. Despite the existence of educational and technical barriers to a widespread use of, sEMG does provide important tools for planning and assessment of rehabilitation treatments for children with cerebral palsy.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Carla Assenza
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laura Libernini
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|