1
|
Al-Agooz A, Ata F, Saleh W, Elmeadawy S. Clinical and radiographic evaluation of melatonin and chitosan loaded nanoparticles in the treatment of periodontal intra-bony defects: A Randomized controlled clinical trial. Clin Oral Investig 2025; 29:280. [PMID: 40312586 PMCID: PMC12045813 DOI: 10.1007/s00784-025-06323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES The current literature lacks the effect of melatonin loaded nanoparticles (LNPs) as local drug delivery (LDD) in the treatment of periodontitis. Hence, the aim of the current study is to investigate the clinical and radiographic effects of melatonin LNPs in patients with periodontal intrabony defects. METHODS The current study was performed on healthy patients with periodontal intrabony defects. The participants were randomly allocated into 3 groups. Group 1 received scaling and root planing (SRP) with melatonin LNPs, group 2 received placebo gel with SRP, and group 3 received SRP and chitosan LNPs. The primary outcomes included the radiographic measurements of the bone defects to evaluate the bone fill after 6 months. The secondary outcomes included the following clinical parameters; clinical attachment level (CAL), periodontal probing depth (PPD), plaque index (PI), and gingival index (GI). The clinical parameters were evaluated at baseline, 3 months, and 6 months. RESULTS The current study included 67 patients with periodontal intrabony defects. All the study groups demonstrated significant improvements in all the clinical outcomes (CAL, PPD, PI, and GI) (P < 0.05). Melatonin LNPs group revealed the most significant improvement of the radiographic outcomes after 6 months including bone defect height and depth, alveolar crest level, and the buccolingual and mesiodistal width of bone defects) (P < 0.05), followed by chitosan group while insignificant changes were detected in the placebo group (P > 0.05). CONCLUSION Melatonin LNPs as a LDD can act as a promising therapeutic modality in treating periodontal intrabony defects through significant improvement of the clinical and radiographic outcomes.
Collapse
Affiliation(s)
- Amira Al-Agooz
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt
| | - Fatma Ata
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt
| | - Wafaa Saleh
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt
| | - Samah Elmeadawy
- Oral Medicine, Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 33516, Egypt.
| |
Collapse
|
2
|
Daghrery A, Dal-Fabbro R, Dos Reis-Prado AH, de Souza Araújo IJ, Fischer NG, Rosa V, Silikas N, Aparicio C, Watts DC, Bottino MC. Guidance on the assessment of the functionality of biomaterials for periodontal tissue regeneration: Methodologies and testing procedures. Dent Mater 2025; 41:306-318. [PMID: 39824690 DOI: 10.1016/j.dental.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Innovative biomaterials and tissue engineering strategies show great promise in regenerating periodontal tissues. This guidance provides an overview and detailed recommendations for evaluating the biological functionality of these new biomaterials in vitro, focusing on mineralization, immunomodulatory effects, cellular differentiation, and angiogenesis. Additionally, it discusses the use of in vivo experimental models that mimic periodontitis and scrutinizes methods such as osteogenic differentiation, immunomodulation, and anti-inflammatory responses to assess the effectiveness of these biomaterials in promoting periodontal tissue reconstruction. The guidance also addresses translating these findings to clinical applications, including using large animal models. This article aims to provide general recommendations for assessing the biological performance of novel materials and scaffold-based strategies using in vitro and in vivo (animal models), examining their advantages, disadvantages, and methodologies to guide effective research and clinical translation of regenerative treatments in periodontology.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, Saudi Arabia; Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom
| | - Conrado Aparicio
- BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politènica de Catalunya, Barcelona 08010, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; SCOI, Study and Control of Oral Infections, Faculty of Odontology, UIC Barcelona-Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; IBEC, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Rodríguez LH, Vázquez MS, Ramírez González LF, Ayala GM, Letayf SL, Narayanan AS, Arzate H. Cementum attachment protein-derived peptide induces cementum formation. FASEB Bioadv 2025; 7:e1483. [PMID: 39917396 PMCID: PMC11795276 DOI: 10.1096/fba.2024-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 02/09/2025] Open
Abstract
A pentapeptide AVIFM (CAP-p5) derived from the carboxy-terminus end of cementum attachment protein was examined for its role on proliferation, differentiation, and mineralization of human periodontal ligament cells (HPLC), and for its potential to induce cementum deposition in vivo. CAP-p5 capability to induce hydroxyapatite crystal formation on demineralized dentin blocks was characterized by scanning electron microscopy, μRAMAN, and high-resolution transmission electron microscopy. The results revealed that CAP-p5 promoted cell proliferation and cell differentiation and increases alkaline phosphatase activity of HPLC and mineralization at an optimal concentration of 10 μg/mL. It induced the expression of cementum molecular markers BSP, CAP, CEMP1, and ALP at the protein level. In a cell-free system, human demineralized dentin blocks coated with CAP-p5 induced the deposition of a homogeneous and continuous mineralized layer, intimately integrated with the underlying dentin indicating new cementum formation. Physicochemical characterization of this mineral layer showed that it is composed of hydroxyapatite crystals. Demineralized dentin blocks coated with CAP-p5 implanted subcutaneously in BALB/cAnNCrl were analyzed histologically; the results disclosed that CAP-p5 could induce the deposition of a cementum layer intimately integrated with the subjacent dentin with cementocytes embedded into the cementum matrix. Immunostaining showed the expression of cementum molecular markers; v.gr. BSP, CAP, CEMP1 and ALP, validating the molecular identity of the newly deposited cementum. We conclude that CAP-p5 is a new biomolecule with the potential of therapeutic application to contribute to the regeneration of cementum and periodontal structures lost in periodontal disease.
Collapse
Affiliation(s)
- Lía Hoz Rodríguez
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Maricela Santana Vázquez
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Gonzalo Montoya Ayala
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Sonia López Letayf
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
4
|
Song C, Liu R, Fang Y, Gu H, Wang Y. Developing functional hydrogels for treatment of oral diseases. SMART MEDICINE 2024; 3:e20240020. [PMID: 39420948 PMCID: PMC11425053 DOI: 10.1002/smmd.20240020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 10/19/2024]
Abstract
Oral disease is a severe healthcare challenge that diminishes people's quality of life. Functional hydrogels with suitable biodegradability, biocompatibility, and tunable mechanical properties have attracted remarkable interest and have been developed for treating oral diseases. In this review, we present up-to-date research on hydrogels for the management of dental caries, endodontics, periapical periodontitis, and periodontitis, depending on the progression of dental diseases. The strategies of hydrogels for treating oral mucosal diseases and salivary gland diseases are then classified. After that, we focus on the application of hydrogels related to tumor therapy and tissue defects. Finally, the review prospects the restrictions and the perspectives on the utilization of hydrogels in oral disease treatment. We believe this review will promote the advancement of more amicable, functional and personalized approaches for oral diseases.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yile Fang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
5
|
Zhang S, Liu J, Feng F, Jia Y, Xu F, Wei Z, Zhang M. Rational design of viscoelastic hydrogels for periodontal ligament remodeling and repair. Acta Biomater 2024; 174:69-90. [PMID: 38101557 DOI: 10.1016/j.actbio.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The periodontal ligament (PDL) is a distinctive yet critical connective tissue vital for maintaining the integrity and functionality of tooth-supporting structures. However, PDL repair poses significant challenges due to the complexity of its mechanical microenvironment encompassing hard-soft-hard tissues, with the viscoelastic properties of the PDL being of particular interest. This review delves into the significant role of viscoelastic hydrogels in PDL regeneration, underscoring their utility in simulating biomimetic three-dimensional microenvironments. We review the intricate relationship between PDL and viscoelastic mechanical properties, emphasizing the role of tissue viscoelasticity in maintaining mechanical functionality. Moreover, we summarize the techniques for characterizing PDL's viscoelastic behavior. From a chemical bonding perspective, we explore various crosslinking methods and characteristics of viscoelastic hydrogels, along with engineering strategies to construct viscoelastic cell microenvironments. We present a detailed analysis of the influence of the viscoelastic microenvironment on cellular mechanobiological behavior and fate. Furthermore, we review the applications of diverse viscoelastic hydrogels in PDL repair and address current challenges in the field of viscoelastic tissue repair. Lastly, we propose future directions for the development of innovative hydrogels that will facilitate not only PDL but also systemic ligament tissue repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Songbai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Min Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
6
|
Santos MS, dos Santos AB, Carvalho MS. New Insights in Hydrogels for Periodontal Regeneration. J Funct Biomater 2023; 14:545. [PMID: 37998114 PMCID: PMC10672517 DOI: 10.3390/jfb14110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Alexandra B. dos Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Sun Q, Li Y, Luo P, He H. Animal models for testing biomaterials in periodontal regeneration. BIOMATERIALS TRANSLATIONAL 2023; 4:142-150. [PMID: 38283090 PMCID: PMC10817781 DOI: 10.12336/biomatertransl.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 01/30/2024]
Abstract
Periodontitis is a prevalent oral disease. It can cause tooth loss and has a significant impact on patients' quality of life. While existing treatments can only slow the progression of periodontitis, they are unable to achieve complete regeneration and functional reconstruction of periodontal tissues. As a result, regenerative therapies based on biomaterials have become a focal point of research in the field of periodontology. Despite numerous studies reporting the superiority of new materials in periodontal regeneration, limited progress has been made in translating these findings into clinical practice. This may be due to the lack of appropriate animal models to simulate the tissue defects caused by human periodontitis. This review aims to provide an overview of established animal models for periodontal regeneration, examine their advantages and limitations, and outline the steps for model construction. The objective is to determine the most relevant animal models for periodontal regeneration based on the hypothesis and expected outcomes.
Collapse
Affiliation(s)
- Qiao Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yicun Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Guangdong Province, China
| | - Ping Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J Funct Biomater 2023; 14:290. [PMID: 37367254 DOI: 10.3390/jfb14060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated. This article aims to review the recent advancements in nanomaterials applied for periodontal tissue regeneration and to discuss future research directions in this field, especially focusing on research using nanomaterials to improve oral health. The biomimetic and physiochemical properties of nanomaterials such as metals and polymer composites are described in detail, including their effects on the regeneration of alveolar bone, periodontal ligament, cementum and gingiva. Finally, the biomedical safety issues of their application as regenerative materials are updated, with a discussion about their complications and future perspectives. Although the applications of bioactive nanomaterials in the oral cavity are still at an initial stage, and pose numerous challenges, recent research suggests that they are a promising alternative in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute, Faculty of Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Center for Dentofacial Development and Sleep Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
de Souza Araújo IJ, Ferreira JA, Daghrery A, Ribeiro JS, Castilho M, Puppin-Rontani RM, Bottino MC. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration. Dent Mater 2022; 38:1749-1762. [PMID: 36180310 PMCID: PMC9881689 DOI: 10.1016/j.dental.2022.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Electrospun scaffolds are a versatile biomaterial platform to mimic fibrillar structure of native tissues extracellular matrix, and facilitate the incorporation of biomolecules for regenerative therapies. Self-assembling peptide P11-4 has emerged as a promising strategy to induce mineralization; however, P11-4 application has been mostly addressed for early caries lesions repair on dental enamel. Here, to investigate P11-4's efficacy on bone regeneration, polymeric electrospun scaffolds were developed, and then distinct concentrations of P11-4 were physically adsorbed on the scaffolds. METHODS P11-4-laden and pristine (P11-4-free) electrospun scaffolds were immersed in simulated body fluid and mineral precipitation identified by SEM. Functional groups and crystalline phases were analyzed by FTIR and XRD, respectively. Cytocompatibility, mineralization, and gene expression assays were conducted using stem cells from human exfoliated deciduous teeth. To investigate P11-4-laden scaffolds potential to induce in vivo mineralization, an established rat calvaria critical-size defect model was used. RESULTS We successfully synthesized nanofibrous (∼ 500 nm fiber diameter) scaffolds and observed that functionalization with P11-4 did not affect the fibers' diameter. SEM images indicated mineral precipitation, while FTIR and XRD confirmed apatite-like formation and crystallization for P11-4-laden scaffolds. In addition, P11-4-laden scaffolds were cytocompatible, highly stimulated cell-mediated mineral deposition, and upregulated the expression of mineralization-related genes compared to pristine scaffolds. P11-4-laden scaffolds led to enhanced in vivo bone regeneration after 8 weeks compared to pristine PCL. SIGNIFICANCE Electrospun scaffolds functionalized with P11-4 are a promising strategy for inducing mineralized tissues regeneration in the craniomaxillofacial complex.
Collapse
Affiliation(s)
- Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Dental Materials Graduate Program, Department of Operative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Regina M Puppin-Rontani
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
10
|
Abstract
As a widespread chronical disease, periodontitis progressively destroys tooth-supporting structures (periodontium) and eventually leads to tooth loss. Therefore, regeneration of damaged/lost periodontal tissues has been a major subject in periodontal research. During periodontal tissue regeneration, biomaterials play pivotal roles in improving the outcome of the periodontal therapy. With the advancement of biomaterial science and engineering in recent years, new biomimetic materials and scaffolding fabrication technologies have been proposed for periodontal tissue regeneration. This article summarizes recent progress in periodontal tissue regeneration from a biomaterial perspective. First, various guide tissue regeneration/guide bone regeneration membranes and grafting biomaterials for periodontal tissue regeneration are overviewed. Next, the recent development of multifunctional scaffolding biomaterials for alveolar bone/periodontal ligament/cementum regeneration is summarized. Finally, clinical care points and perspectives on the use of biomimetic scaffolding materials to reconstruct the hierarchical periodontal tissues are provided.
Collapse
Affiliation(s)
- Yuejia Deng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA.
| |
Collapse
|
11
|
Araújo IJDS, Guimarães GN, Machado RA, Bertassoni LE, Davies RPW, Puppin-Rontani RM. Self-assembly peptide P 11-4 induces mineralization and cell-migration of odontoblast-like cells. J Dent 2022; 121:104111. [PMID: 35460865 PMCID: PMC10171720 DOI: 10.1016/j.jdent.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Self-assembling peptide P11-4 is amphiphilic and pH-triggered, effective on repairing early enamel carious lesions and dentin remineralization. However, P11-4 effects on dentin biomineralization and repair ability remain unexplored. Thus, cytocompatibility and effectiveness of P11-4 on inducing mineralization and migration of odontoblast-like cells (MDPC-23) were investigated. METHODS MDPC-23 were seeded in contact with P11-4 (0.5 and 1 µg/ml), Dentin Matrix Protein 1 (DMP1 0.5 and 1 µg/ml) or Calcium hydroxide (Ca(OH)2 100 µg/ml) solutions. Cell viability was verified using MTT (n = 6/group). Mineral deposition was tested using Alizarin Red (n = 4/group). Cell migration was assessed by light microscopy (n = 2/group). MTT and Alizarin Red data were compared using Kruskal-Wallis and Mann-Whitney (α=0.01). RESULTS P11-4 (0.5 and 1 µg/ml) and DMP1 (0.5 and 1 µg/ml) resulted the highest cell viability; Ca(OH)2 presented the lowest. 1 µg/ml DMP1 and 1 µg/ml P11-4 promoted the highest mineral deposition. Ca(OH)2 presented lower values of mineral deposits than DMP1 1 µg/ml (p < 0.01), but similar to P11-4 1 µg/ml. P11-4 and DMP1 at 0.5 µg/ml induced lesser mineral precipitation than P11-4 and DMP1 at 1 µg/ml (p < 0.01), with no difference to Ca(OH)2. All materials stimulated cell migration, however, lower concentrations of DMP1 and P11-4 demonstrated a higher migration potential. CONCLUSION P11-4 did not affect cell viability, induces mineral deposition and MDPC-23 migration like DMP1. CLINICAL SIGNIFICANCE Self-assembling peptide P11-4 does not affect the cell viability and induces mineral deposition comparable to native protein involved in biomineralization. Combined with its ability to bind type I collagen, P11-4 is a promising bioinspired molecule that provides native-tissue conditions and foster further studies on its ability to form dentin bridges in pulp-capping strategies.
Collapse
Affiliation(s)
- Isaac Jordão de Souza Araújo
- Dental Materials Graduate Program; Piracicaba Dental School, Unicamp; Department of Dentistry, Faculdade Nova Esperança - FACENE/RN, Mossoró, Rio Grande do Norte, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Biosciences, Histology area, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, São Paulo, Brazil; Department of Oral Diagnosis, School of Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luiz Eduardo Bertassoni
- Department of Biomaterials and Biomechanics, School of Dentistry Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | | | - Regina Maria Puppin-Rontani
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Limeira Ave. 901, Areão, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
12
|
Bommer C, Waller T, Hilbe M, Wiedemeier D, Meyer N, Mathes S, Jung R. Efficacy and safety of P 11-4 for the treatment of periodontal defects in dogs. Clin Oral Investig 2022; 26:3151-3166. [PMID: 35006293 PMCID: PMC8898238 DOI: 10.1007/s00784-021-04297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Objectives This study’s aim was to investigate the safety and performance of a self-assembling peptide matrix (SAPM) P11-4 for the treatment of periodontal disease in a controlled pre-clinical study. Materials and methods Acute buccal bony dehiscence defects (LxW: 5 × 3 mm) were surgically created on the distal root of four teeth on one mandible side of 7 beagle dogs followed by another identical surgery 8 weeks later on the contralateral side. SAPM P11-4 (with and without root conditioning with 24% EDTA (T1, T2)), Emdogain® (C) and a sham intervention (S) were randomly applied on the four defects at each time point. Four weeks after the second surgery and treatment, the animals were sacrificed, the mandibles measured by micro-computed tomography (µ-CT) and sections of the tissue were stained and evaluated histologically. Results Clinically and histologically, no safety concerns or pathological issues due to the treatments were observed in any of the study groups at any time point. All groups showed overall similar results after 4 and 12 weeks of healing regarding new cementum, functionality of newly formed periodontal ligament and recovery of height and volume of the new alveolar bone and mineral density. Conclusion A controlled clinical study in humans should be performed in a next step as no adverse effects or safety issues, which might affect clinical usage of the product, were observed. Clinical relevance The synthetic SAPM P11-4 may offer an alternative to the animal-derived product Emdogain® in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04297-6.
Collapse
Affiliation(s)
| | - Tobias Waller
- Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Monika Hilbe
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Daniel Wiedemeier
- Center of Dental Medicine, Statistical Services, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Nina Meyer
- Department for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Stephanie Mathes
- Department for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Ronald Jung
- Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
13
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|