1
|
Murphy G, Brayden DJ, Cheung DL, Liew A, Fitzgerald M, Pandit A. Albumin-based delivery systems: Recent advances, challenges, and opportunities. J Control Release 2025; 380:375-395. [PMID: 39842723 DOI: 10.1016/j.jconrel.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Albumin and albumin-based biomaterials have been explored for various applications, including therapeutic delivery, as therapeutic agents, as components of tissue adhesives, and in tissue engineering applications. Albumin has been approved as a nanoparticle containing paclitaxel (Abraxane®), as an albumin-binding peptide (Victoza®), and as a glutaraldehyde-crosslinked tissue adhesive (BioGlue®). Albumin is also approved as a supportive therapy for various conditions, including hypoalbuminemia, sepsis, and acute respiratory distress syndrome (ARDS). However, no other new albumin-based systems in a hydrogel format have been used in the clinic. A review of publicly available clinical trials indicates that no new albumin drug delivery formats are currently in the clinical development pipeline. Although albumin has shown promise as a carrier of therapeutics for various diseases, including diabetes, cancers, and infectious diseases, its potential for treating blood-borne diseases such as HIV and leukemia has not been translated. This review offers a perspective on the use of albumin-based drug delivery systems for a broader range of disease applications, considering the protein properties and a review of the currently approved albumin-based technologies. This review supports ongoing efforts to advance biomedical research and clinical interventions through albumin-based delivery systems.
Collapse
Affiliation(s)
- Gillian Murphy
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland.
| | - David J Brayden
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland; School of Veterinary Medicine and Conway Institute, University College Dublin, Ireland
| | - David L Cheung
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland; School of Biological and Chemical Science, University of Galway, Ireland
| | - Aaron Liew
- Diabetes, Endocrinology and General Internal Medicine, Galway University Hospital, Galway, Ireland
| | | | - Abhay Pandit
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
2
|
Farzan M, Soleimannejad M, Shariat S, Heidari Sureshjani M, Gholipour A, Ashrafi Dehkordi K, Alerasoul Dehkordi SMR, Farzan M. A biomimetic injectable chitosan/alginate hydrogel biocopmosites encapsulating selenium- folic acid nanoparticles for regeneration of spinal cord injury: An in vitro study. Int J Biol Macromol 2025; 288:138682. [PMID: 39672404 DOI: 10.1016/j.ijbiomac.2024.138682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Spinal cord injury (SCI) poses significant challenges to regenerative medicine due to its limited self-repair capabilities. In this study, we engineered a biomimetic injectable hydrogel using modified chitosan and alginate biopolymers encapsulating selenium-folic acid nanoparticles (Se-FA NPs) to facilitate SCI regeneration. The hydrogel exhibited a unique porous structure attributed to the incorporation of nanofiber fragments, enhancing its biocompatibility and bioactivity. Through a series of in vitro evaluations, including cell viability assays, proliferation studies, gene expression analysis, we assessed the hydrogel's cytocompatibility and its potential for supporting neural cell growth. Our results demonstrate the promising efficacy of the hydrogel in providing a conducive microenvironment for neural tissue regeneration. Moreover, the sustained release of Se-FA NPs from the hydrogel system offers neuroprotective, antioxidative, and anti-inflammatory benefits crucial for SCI therapy. Overall, our biomimetic hydrogel biocomposites hold great potential as a therapeutic strategy for promoting spinal cord regeneration, highlighting their significance in advancing the field of regenerative medicine.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mostafa Soleimannejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Saeedeh Shariat
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Heidari Sureshjani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abolfazl Gholipour
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
3
|
Cometta S, Donose BC, Juárez-Saldivar A, Ravichandran A, Xu Y, Bock N, Dargaville TR, Rakić AD, Hutmacher DW. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact Mater 2024; 42:68-84. [PMID: 39280579 PMCID: PMC11399811 DOI: 10.1016/j.bioactmat.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside. This study provides an in-depth analysis of the stability, antibacterial mechanism, and biocompatibility of medical grade polycaprolactone (mPCL), coated with human serum albumin (HSA), the most abundant protein in blood plasma, and tannic acid (TA), a natural polyphenol with antibacterial properties. Molecular docking studies demonstrated that HSA and TA interact mainly through hydrogen-bonding, ionic and hydrophobic interactions, leading to smooth and regular assemblies. In vitro bacteria adhesion testing showed that coated scaffolds maintained their antimicrobial properties over 3 days by significantly reducing S. aureus colonization and biofilm formation. Notably, amplitude modulation-frequency modulation (AMFM) based viscoelasticity mapping and transmission electron microscopy (TEM) data suggested that HSA/TA-coatings cause morphological and mechanical changes on the outer cell membrane of S. aureus leading to membrane disruption and cell death while proving non-toxic to human primary cells. These results support this antibiotic-free approach as an effective and biocompatible strategy to prevent biofilm-related biomaterial infections.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bogdan C Donose
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, 88740, Mexico
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Aleksandar D Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
4
|
Schoberleitner I, Baier L, Lackner M, Zenz LM, Coraça-Huber DC, Ullmer W, Damerum A, Faserl K, Sigl S, Steinkellner T, Winkelmann S, Sarg B, Egle D, Brunner C, Wolfram D. Surface Topography, Microbial Adhesion, and Immune Responses in Silicone Mammary Implant-Associated Capsular Fibrosis. Int J Mol Sci 2024; 25:3163. [PMID: 38542137 PMCID: PMC10969816 DOI: 10.3390/ijms25063163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Breast cancer is the most common cancer in women globally, often necessitating mastectomy and subsequent breast reconstruction. Silicone mammary implants (SMIs) play a pivotal role in breast reconstruction, yet their interaction with the host immune system and microbiome remains poorly understood. This study investigates the impact of SMI surface topography on host antimicrobial responses, wound proteome dynamics, and microbial colonization. Biological samples were collected from ten human patients undergoing breast reconstruction with SMIs. Mass spectrometry profiles were analyzed for acute and chronic wound proteomes, revealing a nuanced interplay between topography and antimicrobial response proteins. 16S rRNA sequencing assessed microbiome dynamics, unveiling topography-specific variations in microbial composition. Surface topography alterations influenced wound proteome composition. Microbiome analysis revealed heightened diversity around rougher SMIs, emphasizing topography-dependent microbial invasion. In vitro experiments confirmed staphylococcal adhesion, growth, and biofilm formation on SMI surfaces, with increased texture correlating positively with bacterial colonization. This comprehensive investigation highlights the intricate interplay between SMI topography, wound proteome dynamics, and microbial transmission. The findings contribute to understanding host-microbe interactions on SMI surfaces, essential for optimizing clinical applications and minimizing complications in breast reconstruction.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Leoni Baier
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa-Maria Zenz
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Wendy Ullmer
- Zymo Research Corp., Irvine, CA 92614, USA
- Pangea Laboratory, Tustin, CA 92614, USA
| | | | - Klaus Faserl
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Theresia Steinkellner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Selina Winkelmann
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Egle
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christine Brunner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Xu X, Hu J, Xue H, Hu Y, Liu YN, Lin G, Liu L, Xu RA. Applications of human and bovine serum albumins in biomedical engineering: A review. Int J Biol Macromol 2023; 253:126914. [PMID: 37716666 DOI: 10.1016/j.ijbiomac.2023.126914] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Serum albumin, commonly recognized as a predominant major plasma protein, is ubiquitously distributed among vertebrates, demonstrating versatility and widespread accessibility. Numerous studies have discussed the composition and attributes of human and bovine serum albumin; nonetheless, few systematic and comprehensive summaries on human and bovine serum albumin exist. This paper reviews the applications of human and bovine serum albumin in biomedical engineering. First, we introduce the differences in the structure of human and bovine serum albumin. Next, we describe the extraction methods for human and bovine serum albumin (fractionation process separation, magnetic adsorption, reverse micellar (RM) extraction, and genetic engineering) and the advantages and disadvantages of recently developed extraction methods. The characteristics of different processing forms of human and bovine serum albumin are also discussed, concomitantly elucidating their intrinsic properties, functions, and applications in biomedicine. Notably, their pivotal functions as carriers for drugs and tissue-engineered scaffolds, as well as their contributions to cell reproduction and bioimaging, are critically examined. Finally, to provide guidance for researchers in their future work, this review summarizes the current state of human and bovine serum albumin research and outlines potential future research topics.
Collapse
Affiliation(s)
- Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
Kilian D, Poddar A, Desrochers V, Heinemann C, Halfter N, Liu S, Rother S, Gelinsky M, Hintze V, Lode A. Cellular adhesion and chondrogenic differentiation inside an alginate-based bioink in response to tailorable artificial matrices and tannic acid treatment. BIOMATERIALS ADVANCES 2023; 147:213319. [PMID: 36758282 DOI: 10.1016/j.bioadv.2023.213319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Many established bioinks fulfill important requirements regarding fabrication standards and cytocompatibility. Current research focuses on development of functionalized bioinks with an improved support of tissue-specific cell differentiation. Many approaches primarily depend on decellularized extracellular matrices or blood components. In this study, we investigated the combination of a highly viscous alginate-methylcellulose (algMC) bioink with collagen-based artificial extracellular matrix (aECM) as a finely controllable and tailorable system composed of collagen type I (col) with and without chondroitin sulfate (CS) or sulfated hyaluronan (sHA). As an additional stabilizer, the polyphenol tannic acid (TA) was integrated into the inks. The assessment of rheological properties and printability as well as hydrogel microstructure revealed no adverse effect of the integrated components on the inks. Viability, adhesion, and proliferation of bioprinted immortalized human mesenchymal stem cells (hTERT-MSC) was improved indicating enhanced interaction with the designed microenvironment. Furthermore, chondrogenic matrix production (collagen type II and sulfated glycosaminoglycans) by primary human chondrocytes (hChon) was enhanced by aECM. Supplementing the inks with TA was required for these positive effects but caused cytotoxicity as soon as TA concentrations exceeded a certain amount. Thus, combining tailorable aECM with algMC and balanced TA addition proved to be a promising approach for promoting adhesion of immortalized stem cells and differentiation of chondrocytes in bioprinted scaffolds.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Aayush Poddar
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vanessa Desrochers
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany; Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Saar, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023; 229:105-122. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The development of multifunctional wearable electronic devices has received considerable attention because of their attractive applications. However, integrating multifunctional abilities into one component remains a challenge. To address this, we have developed a tannic acid-functionalized spherical nanocellulose/polyvinyl alcohol composite hydrogel using borax as a crosslinking agent for strain-sensing applications. The hydrogel demonstrates improved mechanical and recovery strengths and maintains its mechanical strength under freezing conditions. The hydrogels show ultra-stretching, adhesive, self-healing, and conductive properties, making them ideal candidates for developing strain-based wearable devices. The hydrogel exhibits good sensitivity with a 4.75 gauge factor. The cytotoxicity of the developed hydrogels was monitored with human dermal fibroblast cells by WST-8 assay in vitro. The antibacterial potential of the hydrogels was evaluated using Escherichia coli. The hydrogels demonstrate enhanced antibacterial ability than the control. Therefore, the developed multifunctional hydrogels with desirable properties are promising platforms for strain sensor devices.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Mahdipour E, Mequanint K. Films, Gels and Electrospun Fibers from Serum Albumin Globular Protein for Medical Device Coating, Biomolecule Delivery and Regenerative Engineering. Pharmaceutics 2022; 14:2306. [PMID: 36365125 PMCID: PMC9698923 DOI: 10.3390/pharmaceutics14112306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 09/18/2023] Open
Abstract
Albumin is a natural biomaterial that is abundantly available in blood and body fluids. It is clinically used as a plasma expander, thereby increasing the plasma thiol concentration due to its cysteine residues. Albumin is a regulator of intervascular oncotic pressure, serves as an anti-inflammatory modulator, and it has a buffering role due to its histidine imidazole residues. Because of its unique biological and physical properties, albumin has also emerged as a suitable biomaterial for coating implantable devices, for cell and drug delivery, and as a scaffold for tissue engineering and regenerative medicine. As a biomaterial, albumin can be used as surface-modifying film or processed either as cross-linked protein gels or as electrospun fibers. Herein we have discussed how albumin protein can be utilized in regenerative medicine as a hydrogel and as a fibrous mat for a diverse role in successfully delivering drugs, genes, and cells to targeted tissues and organs. The review of prior studies indicated that albumin is a tunable biomaterial from which different types of scaffolds with mechanical properties adjustable for various biomedical applications can be fabricated. Based on the progress made to date, we concluded that albumin-based device coatings, delivery of drugs, genes, and cells are promising strategies in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Elahe Mahdipour
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, University Ave., Mashhad 9177948564, Iran
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
9
|
Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int J Mol Sci 2022; 23:10557. [PMID: 36142472 PMCID: PMC9502107 DOI: 10.3390/ijms231810557] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel compositions that take advantage of the excellent regenerative potential of this protein. Albumin coating can be used for enhancing the biocompatibility of various types of implants, such as bone grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the biological reaction to implantable tissue-engineering constructs. Another potential use is combining albumin with natural or synthetic materials that results in novel composites suitable for cardiac, neural, hard and soft tissue engineering. Recent advances in materials have made it possible to electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for cell therapy. Several described technologies have already entered the clinical phase, making good use of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.
Collapse
Affiliation(s)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Dénes Horváthy
- Department of Interventional Radiology, Semmelweis University, 1122 Budapest, Hungary
| | - Eszter Fodor
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems an der Donau, Austria
| | - Zsombor Lacza
- Orthosera GmbH, 3500 Krems an der Donau, Austria
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
10
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
11
|
Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, Abedi A, Izadifar Z, Mohammadinejad R, Varma RS, Shavandi A. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B 2022; 10:5873-5912. [PMID: 35880440 DOI: 10.1039/d2tb01056a] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides via hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities. In this review, we focus on TA-based hydrogels for biomaterials engineering to help biomaterials scientists and engineers better realize TA's potential in the design and fabrication of novel hydrogel biomaterials. The interactions of TA with various natural or synthetic compounds are deliberated, discussing parameters that affect TA-material interactions thus providing a fundamental set of criteria for utilizing TA in hydrogels for tissue healing and regeneration. The review also discusses the merits and demerits of using TA in developing hydrogels either through direct incorporation in the hydrogel formulation or indirectly via immersing the final product in a TA solution. In general, TA is a natural bioactive molecule with diverse potential for engineering biomedical hydrogels.
Collapse
Affiliation(s)
- Hafez Jafari
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Pejman Ghaffari-Bohlouli
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|