1
|
Sánchez-Molina D, García-Vilana S. Acoustic emission applied to stochastic modeling of microdamage in compact bone. Biomech Model Mechanobiol 2024; 23:1277-1287. [PMID: 38553591 PMCID: PMC11584445 DOI: 10.1007/s10237-024-01838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/02/2024] [Indexed: 08/24/2024]
Abstract
Exploring the stochastic intricacies of bone microstructure is a promising way to make progress on the practical issue of bone fracture. This study investigates the fracture of human complete ribs subjected to bending and using acoustic emission (AE) for microfailure detection. As the strain increases, the number of AE signals per unit of time rises until, beyond a certain threshold, an avalanche of signals occurs, indicating the aggregation of numerous microfailures into a macroscopic fracture. Since microfailures appear randomly throughout the bending test, and given the lack of a deterministic law and the random nature of microfailures during the bending test, we opted to develop a stochastic model to account for their occurrence within the irregular and random microstructure of the cortical bone. Notable discoveries encompass the significant correlation between adjusted parameters of the stochastic model and the total number of microfailures with anthropometric variables such as age and body mass index (BMI). The progression of microfailures with strain is significantly more pronounced with age and BMI, as measured by the rate of bone deterioration. In addition, the rate of microfailures is significantly impacted by BMI alone. It is also observed that the average energy of the identified AE events adheres to a precisely defined Pareto distribution for every specimen, with the principal exponent exhibiting a significant correlation with anthropometric variables. From a mathematical standpoint, the model can be described as a double Cox stochastic and explosive (coxplosive process) model. This further provides insight into the reason why the ribs of older individuals are considerably less resilient than those of younger individuals, breaking under a considerably lower maximum strain ( ε max ).
Collapse
Affiliation(s)
| | - S García-Vilana
- UPC-EEBE, GiES, Av. Víctor Balaguer, 11, 08800, Barcelona, Spain
| |
Collapse
|
2
|
Jeon JH, Sul JH, Ko DH, Seo MJ, Kim SM, Lim HS. Finite Element Analysis of a Rib Cage Model: Influence of Four Variables on Fatigue Life during Simulated Manual CPR. Bioengineering (Basel) 2024; 11:491. [PMID: 38790358 PMCID: PMC11118186 DOI: 10.3390/bioengineering11050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiopulmonary resuscitation (CPR) is a life-saving technique used in emergencies when the heart stops beating, typically involving chest compressions and ventilation. Current adult CPR guidelines do not differentiate based on age beyond infancy and childhood. This oversight increases the risk of fatigue fractures in the elderly due to decreased bone density and changes in thoracic structure. Therefore, this study aimed to investigate the correlation and impact of factors influencing rib fatigue fractures for safer out-of-hospital manual cardiopulmonary resuscitation (OHMCPR) application. Using the finite element analysis (FEA) method, we performed fatigue analysis on rib cage models incorporating chest compression conditions and age-specific trabecular bone properties. Fatigue life analyses were conducted on three age-specific rib cage models, each differentiated by trabecular bone properties, to determine the influence of four explanatory variables (the properties of the trabecular bone (a surrogate for the age of the subject), the site of application of the compression force on the breastbone, the magnitude of applied compression force, and the rate of application of the compression force) on the fatigue life of the model. Additionally, considering the complex interaction of chest compression conditions during actual CPR, we aimed to predict rib fatigue fractures under conditions simulating real-life scenarios by analyzing the sensitivity and interrelation of chest compression conditions on the model's fatigue life. Time constraints led to the selection of optimal analysis conditions through the use of design of experiments (DOE), specifically orthogonal array testing, followed by the construction of a deep learning-based metamodel. The predicted fatigue life values of the rib cage model, obtained from the metamodel, showed the influence of the four explanatory variables on fatigue life. These results may be used to devise safer CPR guidelines, particularly for the elderly at a high risk of acute cardiac arrest, safeguarding against potential complications like fatigue fractures.
Collapse
Affiliation(s)
- Jong Hyeok Jeon
- Department of Regulatory Science for Medical Device, Dongguk University, Goyang 10326, Republic of Korea; (J.H.J.); (J.H.S.); (D.H.K.); (M.J.S.)
| | - Jae Ho Sul
- Department of Regulatory Science for Medical Device, Dongguk University, Goyang 10326, Republic of Korea; (J.H.J.); (J.H.S.); (D.H.K.); (M.J.S.)
| | - Dae Hwan Ko
- Department of Regulatory Science for Medical Device, Dongguk University, Goyang 10326, Republic of Korea; (J.H.J.); (J.H.S.); (D.H.K.); (M.J.S.)
| | - Myoung Jae Seo
- Department of Regulatory Science for Medical Device, Dongguk University, Goyang 10326, Republic of Korea; (J.H.J.); (J.H.S.); (D.H.K.); (M.J.S.)
| | - Sung Min Kim
- Department of Biomedical Engineering, Dongguk University, Goyang 10326, Republic of Korea
| | - Hong Seok Lim
- Research Institute for Commercialization of Biomedical Convergence Technology, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Ranmal A, Shaikh J, Lubbe N. Rib and sternum fracture risks for restrained occupants in frontal car crashes. TRAFFIC INJURY PREVENTION 2024; 25:616-622. [PMID: 38546451 DOI: 10.1080/15389588.2024.2329637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Most car occupant fatalities occur in frontal crashes and the thorax is the most frequently injured body region. The objectives of the study were, firstly, to quantify the relation between risk factors (such as speed and occupant age) and rib and sternum fracture injury probability in frontal car crashes, and, secondly, to evaluate whether rib fracture occurrence can predict sternum fractures. METHODS Weighted German data from 1999-2021 were used to create the injury risk curves to predict both, at least moderate and at least serious, rib and sternum fracture risks. A contingency table for rib and sternum fractures allowed the calculation of sensitivity, specificity, and precision, as well as testing for the association. RESULTS Elderly occupants (≥65 years old) had increased rib and sternum fracture risk compared to mid aged occupants (18-64 years old). Besides occupant age, delta-V was always and sex sometimes a significant predictor for skeletal thoracic injury. Sternum fractures were more common than rib fractures and more likely to occur at any given delta-V. Sternum fractures occurred often in isolation. Female occupants were at higher risk than males to sustain at least moderate rib and sternum fractures together and sternum fractures in isolation. Rib and sternum fractures were associated, but low sensitivity and precision show that rib fractures do not predict sternum fractures well. CONCLUSIONS Elderly and female occupants were at the highest risk and should be targeted by thoracic injury criteria and thresholds for frontal crash occupant protection. Rib and sternum fractures were not associated. Therefore, sternum fractures need to be predicted and evaluated separately from rib fractures.
Collapse
Affiliation(s)
| | | | - Nils Lubbe
- Autoliv Research, Vårgårda, Sweden
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Mishra E, Lubbe N. Assessing injury risks of reclined occupants in a frontal crash preceded by braking with varied seatbelt designs using the SAFER Human Body Model. TRAFFIC INJURY PREVENTION 2024; 25:445-453. [PMID: 38441948 DOI: 10.1080/15389588.2024.2318414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE This study investigated the effects of different seatbelt geometries and load-limiting levels on the kinematics and injury risks of a reclined occupant during a whole-sequence frontal crash scenario, using simulations with the Active SAFER Human Body Model (Active SHBM). METHODS The Active SHBM was positioned in a reclined position (50°) on a semi-rigid seat model. A whole-sequence frontal crash scenario, an 11 m/s2 Automated Emergency Braking (AEB) phase followed by a frontal crash at 50 km/h, was simulated. The seatbelt geometry was varied using either a B-pillar-integrated (BPI) or Belt-in-seat (BIS) design. The shoulder belt load-limiting level of the BPI seatbelt was also varied to achieve either similar shoulder belt forces (BPI_Lower_LL) or comparable upper body displacements (BPI_Higher_LL) to the BIS seatbelt. Kinematics of different body regions and seatbelt forces were compared. The risks of sustaining a mild traumatic brain injury (mTBI), two or more fractured ribs (NFR2+), and lumbar spine vertebral fractures were also compared. RESULTS During the pre-crash phase, head, first thoracic vertebra, and first lumbar vertebra displacements were greater with the BPI seatbelt than with the BIS, mainly due to the lack of initial contact between the torso and the seatbelt. Pelvis pre-crash displacements, however, remained consistent across seatbelt types. In the in-crash phase, variations in shoulder belt forces were directly influenced by the different load-limiting levels of the shoulder belt. The mTBI (around 20%) and NFR2+ (around 70-100%) risks were amplified with BPI seatbelts, especially at higher load-limiting force. However, the BPI design demonstrated reduced lumbar spine fracture risks (from 30% to 1%). CONCLUSIONS The BIS seatbelt appears promising, as seen with the reduced mTBI and NFR2+ risks, for ensuring the protection of reclined occupants in frontal crashes. However, additional solutions, such as lap belt load limiting, should be considered to reduce lumbar spine loading.
Collapse
Affiliation(s)
- Ekant Mishra
- Autoliv Research, Vårgårda, Sweden
- SAFER Vehicle and Traffic Safety Centre at Chalmers, Gothenburg, Sweden
| | - Nils Lubbe
- Autoliv Research, Vårgårda, Sweden
- SAFER Vehicle and Traffic Safety Centre at Chalmers, Gothenburg, Sweden
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Larsson KJ, Östh J, Iraeus J, Pipkorn B. A First Step Toward a Family of Morphed Human Body Models Enabling Prediction of Population Injury Outcomes. J Biomech Eng 2024; 146:031008. [PMID: 37943113 DOI: 10.1115/1.4064033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
The injury risk in a vehicle crash can depend on occupant specific factors. Virtual crash testing using finite element human body models (HBMs) to represent occupant variability can enable the development of vehicles with improved safety for all occupants. In this study, it was investigated how many HBMs of different sizes that are needed to represent a population crash outcome through a metamodel. Rib fracture risk was used as an example occupant injury outcome. Morphed HBMs representing variability in sex, height, and weight within defined population ranges were used to calculate population variability in rib fracture risk in a frontal and a side crash. Two regression methods, regularized linear regression with second-order terms and Gaussian process regression (GPR), were used to metamodel rib fracture risk due to occupant variability. By studying metamodel predictive performance as a function of training data, it was found that constructing GPR metamodels using 25 individuals of each sex appears sufficient to model the population rib fracture risk outcome in a general crash scenario. Further, by utilizing the known outcomes in the two crashes, an optimization method selected individuals representative for population outcomes across both crash scenarios. The optimization results showed that 5-7 individuals of each sex were sufficient to create predictive GPR metamodels. The optimization method can be extended for more crashes and vehicles, which can be used to identify a family of HBMs that are generally representative of population injury outcomes in future work.
Collapse
Affiliation(s)
- Karl-Johan Larsson
- Autoliv Research, Vårgårda 447 83, Sweden; Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Jonas Östh
- Volvo Cars, Gothenburg 405 31, Sweden; Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Johan Iraeus
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Bengt Pipkorn
- Autoliv Research, Vårgårda SE-44783, Sweden; Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
6
|
Leo C, Fredriksson A, Grumert E, Linder A, Schachner M, Tidborg F, Klug C. Holistic pedestrian safety assessment for average males and females. Front Public Health 2023; 11:1199949. [PMID: 37670838 PMCID: PMC10476492 DOI: 10.3389/fpubh.2023.1199949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Objective An integrated assessment framework that enables holistic safety evaluations addressing vulnerable road users (VRU) is introduced and applied in the current study. The developed method enables consideration of both active and passive safety measures and distributions of real-world crash scenario parameters. Methods The likelihood of a specific virtual testing scenario occurring in real life has been derived from accident databases scaled to European level. Based on pre-crash simulations, it is determined how likely it is that scenarios could be avoided by a specific Autonomous Emergency Braking (AEB) system. For the unavoidable cases, probabilities for specific collision scenarios are determined, and the injury risk for these is determined, subsequently, from in-crash simulations with the VIVA+ Human Body Models combined with the created metamodel for an average male and female model. The integrated assessment framework was applied for the holistic assessment of car-related pedestrian protection using a generic car model to assess the safety benefits of a generic AEB system combined with current passive safety structures. Results In total, 61,914 virtual testing scenarios have been derived from the different car-pedestrian cases based on real-world crash scenario parameters. Considering the occurrence probability of the virtual testing scenarios, by implementing an AEB, a total crash risk reduction of 81.70% was achieved based on pre-crash simulations. It was shown that 50 in-crash simulations per load case are sufficient to create a metamodel for injury prediction. For the in-crash simulations with the generic vehicle, it was also shown that the injury risk can be reduced by implementing an AEB, as compared to the baseline scenarios. Moreover, as seen in the unavoidable cases, the injury risk for the average male and female is the same for brain injuries and femoral shaft fractures. The average male has a higher risk of skull fractures and fractures of more than three ribs compared to the average female. The average female has a higher risk of proximal femoral fractures than the average male. Conclusions A novel methodology was developed which allows for movement away from the exclusive use of standard-load case assessments, thus helping to bridge the gap between active and passive safety evaluations.
Collapse
Affiliation(s)
- Christoph Leo
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| | | | - Ellen Grumert
- Swedish National Road and Transport Research Institute, VTI, Gothenburg, Sweden
| | - Astrid Linder
- Swedish National Road and Transport Research Institute, VTI, Gothenburg, Sweden
- Mechanics and Maritime Science, Chalmers University, Gothenburg, Sweden
| | - Martin Schachner
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| | - Fredrik Tidborg
- Volvo Car Corporation, Torslanda HABVS-VAK, Gothenburg, Sweden
| | - Corina Klug
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| |
Collapse
|
7
|
Larsson KJ, Iraeus J, Holcombe S, Pipkorn B. Influences of human thorax variability on population rib fracture risk prediction using human body models. Front Bioeng Biotechnol 2023; 11:1154272. [PMID: 37034266 PMCID: PMC10078960 DOI: 10.3389/fbioe.2023.1154272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Rib fractures remain a common injury for vehicle occupants in crashes. The risk of a human sustaining rib fractures from thorax loading is highly variable, potentially due to a variability in individual factors such as material properties and geometry of the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be used as occupant substitutes to aid in the prediction of rib injury risk at the tissue level in crash analysis. To improve this capability, model parametrization can be used to represent human variability in simulation studies. The aim of this study was to identify the variations in the physical properties of the human thorax that have the most influence on rib fracture risk for the population of vehicle occupants. A total of 15 different geometrical and material factors, sourced from published literature, were varied in a parametrized SAFER HBM. Parametric sensitivity analyses were conducted for two crash configurations, frontal and near-side impacts. The results show that variability in rib cortical bone thickness, rib cortical bone material properties, and rib cross-sectional width had the greatest influence on the risk for an occupant to sustain two or more fractured ribs in both impacts. Therefore, it is recommended that these three parameters be included in rib fracture risk analysis with HBMs for the population of vehicle occupants.
Collapse
Affiliation(s)
- Karl-Johan Larsson
- Autoliv Research, Vårgårda, Sweden
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
- *Correspondence: Karl-Johan Larsson,
| | - Johan Iraeus
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sven Holcombe
- International Center for Automotive Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Bengt Pipkorn
- Autoliv Research, Vårgårda, Sweden
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Umale S, Khandelwal P, Humm JR, Yoganandan N. An investigation of elderly occupant injury risks based on anthropometric changes compared to young counterparts. TRAFFIC INJURY PREVENTION 2022; 23:S92-S98. [PMID: 36409229 DOI: 10.1080/15389588.2022.2135373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The objective of the study was to investigate the difference between elderly and young occupant injury risks using human body finite element modeling in frontal impacts. METHODS Two elderly male occupant models (representative age 70-80 years) were developed using the Global Human Body Consortium (GHBMC) 50th percentile as the baseline model. In the first elderly model (EM-1), material property changes were incorporated, and in the second elderly model (EM-2), material and anthropometric changes were incorporated. Material properties were based on literature. The baseline model was morphed to elderly anthropometry for EM-2. The three models were simulated in a frontal crash vehicle environment at 56 km/h. Responses from the two elderly and baseline models were compared with cadaver experimental data in thoracic, abdominal, and frontal impacts. Correlation and analysis scores were used for correlation with experimental data. The probabilities of head, neck, and thoracic injuries were assessed. RESULTS The elderly models showed a good correlation with experimental responses. The elderly EM-1 had higher risk of head and brain injuries compared to the elderly EM-2 and baseline GHBMC models. The elderly EM-2 demonstrated higher risk of neck, chest, and abdominal injuries than the elderly EM-1 and baseline models. CONCLUSIONS The study investigated injury risks of two elderly occupants and compared to a young occupant in frontal crashes. The change in the material properties alone (EM-1) suggested that elderly occupants may be vulnerable to a greater risk of head and thoracic injuries, whereas change in both anthropometric and material properties (EM-2) suggested that elderly occupants may be vulnerable to a greater risk of thoracic and neck injuries. The second elderly model results were in better agreement with field injury data from the literature; thus, both anthropometric and material properties should be considered when assessing the injury risks of elderly occupants. The elderly models developed in this study can be used to simulate different impact conditions and determine injury risks for this group of our population.
Collapse
Affiliation(s)
| | - Prashant Khandelwal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John R Humm
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Kumar A, Ghosh R. A review on experimental and numerical investigations of cortical bone fracture. Proc Inst Mech Eng H 2022; 236:297-319. [DOI: 10.1177/09544119211070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper comprehensively reviews the various experimental and numerical techniques, which were considered to determine the fracture characteristics of the cortical bone. This study also provides some recommendations along with the critical review, which would be beneficial for future research of fracture analysis of cortical bone. Cortical bone fractures due to sports activities, climbing, running, and engagement in transport or industrial accidents. Individuals having different diseases are also at high risk of cortical bone fracture. It has been observed that osteon orientation influences cortical bone fracture toughness and fracture mechanisms. Apart from this, recent studies indicate that fracture parameters of cortical bone also depend on many factors such as age, sex, temperature, osteoporosis, orientation, location, loading condition, strain rate, and storage facility, etc. The cortical bone regains its fracture toughness due to various toughening mechanisms. Owing to these factors, several experimental, clinical, and numerical investigations have been carried out to determine the fracture parameters of the cortical bone. Cortical bone is the dense outer surface of the bone and contributes to 80%–82% of the skeleton mass. Cortical bone experiences load far exceeding body weight due to muscle contraction and the dynamics of motion. It is very important to know the fracture pattern, direction of fracture, location of the fracture, and toughening mechanism of cortical bone. A basic understanding of the different factors that affect the fracture parameters and fracture mechanisms of the cortical bone is necessary to prevent the failure and fracture of cortical bone. This review has summarized the advancement considered in the various experimental techniques and numerical methods to get complete information about the fracture mechanisms of cortical bone.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Engineering, Indian Institute of Technology Mandi (IIT Mandi), Kamand, Mandi 175005, Himachal Pradesh, India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi (IIT Mandi), Kamand, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|