1
|
Zununi Vahed S, Hejazian SM, Bakari WN, Landon R, Gueguen V, Meddahi-Pellé A, Anagnostou F, Barzegari A, Pavon-Djavid G. Milking mesenchymal stem cells: Updated protocols for cell lysate, secretome, and exosome extraction, and comparative analysis of their therapeutic potential. Methods 2025; 238:40-60. [PMID: 40058715 DOI: 10.1016/j.ymeth.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025] Open
Abstract
The potential of the cell lysate, secretome, and extracellular vesicles (EVs) of mesenchymal stem cells (MSCs) to modulate the immune response and promote tissue regeneration has positioned them as a promising option for cell-free therapy. Currently, many clinical trials in stem cells-derived EVs and secretome are in progress various diseases and sometimes the results are failing. The major challenge on this roadmap is the lack of a standard extraction method for exosome, secretome, and lysate. The most optimal method for obtaining the secretome of MSCs for clinical utilization involves a comprehensive approach that includes non-destructive collection methods, time optimization, multiple collection rounds, optimization of culture conditions, and quality control measures. Further research and clinical studies are warranted to validate and refine these methods for safe and effective utilization of the MSC exosome, secretome, and lysate in various clinical applications. To address these challenges, it is imperative to establish a standardized and unified methodology to ensure reliable evaluation of these extractions in clinical trials. This review seeks to outline the pros and cons of methods for the preparation of MSCs-derived exosome, and secretome/lysate, and comparative analysis of their therapeutic potential.
Collapse
Affiliation(s)
| | | | - William Ndjidda Bakari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France; Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Rebecca Landon
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France
| | - Fani Anagnostou
- Université Paris Cité, CNRS UMR7052, INSERM U1271, ENVA, B3OA, F-75010 Paris, France
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Nanotechnologies for Vascular Medicine and Imaging Team, 99 Av. Jean-Baptiste Clément 93430 Villetaneuse, France.
| |
Collapse
|
2
|
Faghih M, Moshiri M, Mazrouei Arani N, Ahmadzadeh F, Jafari N, Ghasemi M, Abediankenari S. Evaluation of TNF-α and IFN-γ primed conditioned medium of mesenchymal stem cell in acetic acid-induced mouse model of acute colitis. Cell Immunol 2024; 405-406:104876. [PMID: 39342814 DOI: 10.1016/j.cellimm.2024.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
IBD, an autoimmune-inflammatory disorder that affects people who are genetically prone to inflammation. There is a lot of interest in MSC-CM therapy, especially when primed with TNF-α + IFN-γ. Throughout the study, data were collected on the percentage of apoptotic cells, gene expression of ZO-1, Foxp3, GATA3, IDO-1, Muc2, T-bet, Notch1, TNFR2, and ROR-γt, colon weight and length, histopathological analysis, and DAI. TNF-α and IL-10 levels were assessed in addition to the NO level. The results suggest that primed MSC-CM improved DAI, mucosal deterioration, intestinal inflammation and NO concentration. The amount of TNF-α was decreased, but IL-10 and the colon's percentage of apoptotic cells was increased. The mRNA expression of ZO-1, Foxp3, GATA3, IDO-1, and Muc2 genes increased greatly in the treatment groups, while the expression of T-bet, Notch1, TNFR2, and ROR-γt genes has decreased. These studies suggest that primed MSC-CM may combine with common treatments to improve responsiveness.
Collapse
MESH Headings
- Animals
- Mice
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Colitis/chemically induced
- Colitis/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Disease Models, Animal
- GATA3 Transcription Factor/metabolism
- GATA3 Transcription Factor/genetics
- Mesenchymal Stem Cells/metabolism
- Culture Media, Conditioned/pharmacology
- T-Box Domain Proteins/metabolism
- T-Box Domain Proteins/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interleukin-10/metabolism
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Mucin-2/metabolism
- Mucin-2/genetics
- Zonula Occludens-1 Protein/metabolism
- Zonula Occludens-1 Protein/genetics
- Apoptosis/drug effects
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Male
- Colon/pathology
- Colon/metabolism
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Acute Disease
Collapse
Affiliation(s)
- Manizhe Faghih
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mona Moshiri
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nader Mazrouei Arani
- Anatomical Research Center, Kashan University of Medical Sciences and Health Services, kashan, IRAN
| | - Fatemeh Ahmadzadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN.
| |
Collapse
|
3
|
Xing C, Zhang X, Wang D, Chen H, Gao X, Sun C, Guo W, Roshan S, Li Y, Hang Z, Cai S, Lei T, Bi W, Hou L, Li L, Wu Y, Li L, Zeng Z, Du H. Neuroprotective effects of mesenchymal stromal cells in mouse models of Alzheimer's Disease: The Mediating role of gut microbes and their metabolites via the Microbiome-Gut-Brain axis. Brain Behav Immun 2024; 122:510-526. [PMID: 39191350 DOI: 10.1016/j.bbi.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024] Open
Abstract
The intricacy and multifaceted nature of Alzheimer's disease (AD) necessitate therapies that target multiple aspects of the disease. Mesenchymal stromal cells (MSCs) emerge as potential agents to mitigate AD symptoms; however, whether their therapeutic efficacy involves modulation of gut microbiota and the microbiome-gut-brain axis (MGBA) remains unexplored. In this study, we evaluated the effects of three distinct MSCs types-derived from the umbilical cord (UCMSC), dental pulp (SHED), and adipose tissue (ADSC)-in an APP/PS1 mouse model of AD. In comparison to saline control, MSCs administration resulted in a significant reduction of behavioral disturbances, amyloid plaques, and phosphorylated tau in the hippocampus and frontal cortex, accompanied by an increase in neuronal count and Nissl body density across AD-afflicted brain regions. Through 16S rRNA gene sequencing, we identified partial restoration of gut microbial balance in AD mice post-MSCs treatment, evidenced by the elevation of neuroprotective Akkermansia and reduction of the AD-associated Sphingomonas. To examine whether gut microbiota involved in MSCs efficacy in treating AD, SHED with better anti-inflammatory and gut microbiota recovery effects among three MSCs, and another AD model 5 × FAD mice with earlier and more pathological proteins in brain than APP/PS1, were selected for further studies. Antibiotic-mediated gut microbial inactivation attenuated MSCs efficacy in 5 × FAD mice, implicating the involvement of gut microbiota in the therapeutic mechanism. Functional analysis of altered gut microbiota and targeted bile acid metabolism profiling revealed a significant enhancement in bile acid variety following MSCs therapy. A chief bile acid constituent, taurocholic acid (TCA), was orally administered to AD mice and similarly abated AD symptoms. Nonetheless, the disruption of intestinal neuronal integrity with enterotoxin abrogated the ameliorative impact of both MSCs and TCA treatments. Collectively, our findings substantiate that MSCs confer therapeutic benefits in AD within a paradigm that primarily involves regulation of gut microbiota and their metabolites through the MGBA.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoshuang Zhang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Donghui Wang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Hongyu Chen
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoyu Gao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Chunbin Sun
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wenhua Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Shah Roshan
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yingxian Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Shanglin Cai
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Tong Lei
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wangyu Bi
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liangxuan Hou
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Luping Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yawen Wu
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liang Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Liao HX, Mao X, Wang L, Wang N, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination. Front Immunol 2024; 15:1423069. [PMID: 39185411 PMCID: PMC11341407 DOI: 10.3389/fimmu.2024.1423069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammatory bowel disease (IBD), a condition of the digestive tract and one of the autoimmune diseases, is becoming a disease of significant global public health concern and substantial clinical burden. Various signaling pathways have been documented to modulate IBD, but the exact activation and regulatory mechanisms have not been fully clarified; thus, a need for constant exploration of the molecules and pathways that play key roles in the development of IBD. In recent years, several protein post-translational modification pathways, such as ubiquitination, phosphorylation, methylation, acetylation, and glycolysis, have been implicated in IBD. An aberrant ubiquitination in IBD is often associated with dysregulated immune responses and inflammation. Mesenchymal stem cells (MSCs) play a crucial role in regulating ubiquitination modifications through the ubiquitin-proteasome system, a cellular machinery responsible for protein degradation. Specifically, MSCs have been shown to influence the ubiquitination of key signaling molecules involved in inflammatory pathways. This paper reviews the recent research progress in MSC-regulated ubiquitination in IBD, highlighting their therapeutic potential in treating IBD and offering a promising avenue for developing targeted interventions to modulate the immune system and alleviate inflammatory conditions.
Collapse
Affiliation(s)
- Hong Xi Liao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Xiaojun Mao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Lan Wang
- Department of Laboratory Medicine, Danyang Blood Station, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Chenxing W, Jie S, Yajuan T, Ting L, Yuying Z, Suhong C, Guiyuan L. The rhizomes of Atractylodes macrocephala Koidz improve gastrointestinal health and pregnancy outcomes in pregnant mice via modulating intestinal barrier and water-fluid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117971. [PMID: 38403003 DOI: 10.1016/j.jep.2024.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin β (β-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (β-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Wang Chenxing
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Su Jie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Tian Yajuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Li Ting
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Zhong Yuying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Chen Suhong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | - Lv Guiyuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. Silkworm pupa protein peptide improved DSS-induced colitis in C57BL/6 mice through the MAPK/NF-κB signaling pathway. J Funct Foods 2023; 110:105852. [DOI: 10.1016/j.jff.2023.105852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
7
|
Serafini MA, Sirena DH, da Silveira ABT, Franco-da-Silva M, Aubin MR, Garcez TNA, Araújo A, dos Santos Pereira F, Hoogduijn MJ, da Costa Gonçalves F, Paz AH. Mesenchymal stromal cell-derived membrane particles: A novel cell-free therapy for inflammatory bowel diseases. Int Immunopharmacol 2023; 118:110076. [PMID: 37030123 DOI: 10.1016/j.intimp.2023.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis, are chronic and idiopathic inflammations of the gastrointestinal tract. A disruption of the epithelial barrier and an imbalance between Th1 and Th2 subsets are associated with the onset and progression of these diseases. Mesenchymal stromal cells (MSC) are a promising therapy for IBD. However, cell-tracking studies have shown that intravenously infused MSC localize to the lungs and present short-term survival. To reduce practical complexities arising from living cells, we generated membrane particles (MP) from MSC membranes, which possess some of the immunomodulatory properties of MSC. This study investigated the effect of MSC-derived MP and conditioned media (CM) as cell-free therapies in the dextran sulfate sodium (DSS)-induced colitis model. Acute colitis was induced in C57BL/6 mice by oral administration of 2% DSS in drinking water ad libitum from days 0 to 7. Mice were treated with MP, CM, or living MSC on days 2 and 5. Our findings revealed that MP, CM, and living MSC ameliorated DSS-induced colitis by reducing colonic inflammation, the loss of colonic goblet cells, and intestinal mucosa permeability, preventing apoptosis of damaged colonic cells and balancing Th1 and Th2 activity. Therefore, MSC-derived MP have high therapeutic potential for treating IBD, overcoming the deficiencies of living MSC therapy, and opening novel frontiers in inflammatory diseases medicine.
Collapse
|
8
|
Che Z, Ye Z, Zhang X, Lin B, Yang W, Liang Y, Zeng J. Mesenchymal stem/stromal cells in the pathogenesis and regenerative therapy of inflammatory bowel diseases. Front Immunol 2022; 13:952071. [PMID: 35990688 PMCID: PMC9386516 DOI: 10.3389/fimmu.2022.952071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is related to genetic susceptibility, environmental factors, and dysbiosis that can lead to the dysfunction of immune responses and dysregulated homeostasis of local mucosal tissues characterized by severe inflammatory responses and tissue damage in GI tract. To date, extensive studies have indicated that IBDs cannot be completely cured and easy to relapse, thus prompting researchers to find novel and more effective therapeutics for this disease. Due to their potent multipotent differentiation and immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) not only play an important role in regulating immune and tissue homeostasis but also display potent therapeutic effects on various inflammatory diseases, including IBDs, in both preclinical and clinical studies. In this review, we present a comprehensive overview on the pathological mechanisms, the currently available therapeutics, particularly, the potential application of MSCs-based regenerative therapy for IBDs.
Collapse
Affiliation(s)
- Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| |
Collapse
|
9
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|