1
|
Junker N, Sariyar Akbulut B, Wendisch VF. Utilization of orange peel waste for sustainable amino acid production by Corynebacterium glutamicum. Front Bioeng Biotechnol 2024; 12:1419444. [PMID: 39050686 PMCID: PMC11266056 DOI: 10.3389/fbioe.2024.1419444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Oranges are the most processed fruit in the world-it is therefore apparent that the industrial production of orange juice generates large quantities of orange peel as a by-product. Unfortunately, the management of the orange peel waste leads to economic and environmental problems. Meanwhile, the use of sustainable raw materials for the production of bulk chemicals, such as amino acids, is becoming increasingly attractive. To address both issues, this study focused on the use of orange peel waste as a raw material for media preparation for the production of amino acids by engineered Corynebacterium glutamicum. C. glutamicum grew on pure orange peel hydrolysate (OPH) and growth was enhanced by the addition of a nitrogen source and a pH buffer. Inhibitory effects by the combination of high concentrations of OPH, (NH4)2SO4, and MOPS buffer in the wild-type strain (WT), were overcome in the tyrosine-producing engineered C. glutamicum strain AROM3. Genetic modifications that we identified to allow for improved growth rates under these conditions included the deletions of the vanillin dehydrogenase gene vdh, the ʟ-lactate dehydrogenase gene ldhA and the 19 genes comprising cluster cg2663-cg2686. A growth inhibiting compound present in high concentrations in the OPH is 5-(hydroxymethyl)furfural (HMF). We identified vdh as being primarily responsible for the oxidation of HMF to its acid 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), as the formation of HMFCA was reduced by 97% upon deletion of vdh in C. glutamicum WT. In addition, we showed that growth limitations could be overcome by adjusting the media preparation, using a combination of cheap ammonia water and KOH for pH neutralization after acidic hydrolysis. Overall, we developed a sustainable medium based on orange peel waste for the cultivation of C. glutamicum and demonstrated the successful production of the exemplary amino acids ʟ-arginine, ʟ-lysine, ʟ-serine, ʟ-valine and ʟ-tyrosine.
Collapse
Affiliation(s)
- Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Zhou S, Zhao X, Wu L, Yan R, Sun L, Zhang Q, Gong C, Liu Y, Xiang L, Li S, Wang P, Yang Y, Ren W, Jiang J, Yang Y. Parishin treatment alleviates cardiac aging in naturally aged mice. Heliyon 2023; 9:e22970. [PMID: 38144278 PMCID: PMC10746429 DOI: 10.1016/j.heliyon.2023.e22970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cardiac aging progressively decreases physiological function and drives chronic/degenerative aging-related heart diseases. Therefore, it is crucial to postpone the aging process of heart and create products that combat aging. Aims & methods The objective of this study is to examine the effects of parishin, a phenolic glucoside isolated from traditional Chinese medicine Gastrodia elata, on anti-aging and its underlying mechanism. To assess the senescent biomarkers, cardiac function, cardiac weight/body weight ratio, cardiac transcriptomic changes, and cardiac histopathological features, heart tissue samples were obtained from young mice (12 weeks), aged mice (19 months) treated with parishin, and aged mice that were not treated. Results Parishin treatment improved cardiac function, ameliorated aging-induced cardiac injury, hypertrophy, and fibrosis, decreased cardiac senescence biomarkers p16Ink4a, p21Cip1, and IL-6, and increased the "longevity factor" SIRT1 expression in heart tissue. Furthermore, the transcriptomic analysis demonstrated that parishin treatment alleviated the cardiac aging-related Gja1 downregulation and Cyp2e1, Ccna2, Cdca3, and Fgf12 upregulation in the heart tissues. The correlation analysis suggested a strong connection between the anti-aging effect of parishin and its regulation of gut microbiota and metabolism in the aged intestine. Conclusion The present study demonstrates the protective role and underlying mechanism of parishin against cardiac aging in naturally aged mice.
Collapse
Affiliation(s)
- Shixian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Li Wu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Linlin Sun
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Caixia Gong
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Yang Liu
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, Zhejiang province, China
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Peixia Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Yichen Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Wen Ren
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - JingJin Jiang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| |
Collapse
|
3
|
Werner F, Schwardmann LS, Siebert D, Rückert-Reed C, Kalinowski J, Wirth MT, Hofer K, Takors R, Wendisch VF, Blombach B. Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:116. [PMID: 37464396 DOI: 10.1186/s13068-023-02367-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity. Thus, the microbial production of industrially relevant chemicals such as FAL from second-generation feedstock is desirable. RESULTS To engineer Corynebacterium glutamicum for FAL production, we deregulated fatty acid biosynthesis by deleting the transcriptional regulator gene fasR, overexpressing a fatty acyl-CoA reductase (FAR) gene of Marinobacter hydrocarbonoclasticus VT8 and attenuating the native thioesterase expression by exchange of the ATG to a weaker TTG start codon. C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) produced in shaking flasks 0.54 ± 0.02 gFAL L-1 from 20 g glucose L-1 with a product yield of 0.054 ± 0.001 Cmol Cmol-1. To enable xylose utilization, we integrated xylA encoding the xylose isomerase from Xanthomonas campestris and xylB encoding the native xylulose kinase into the locus of actA. This approach enabled growth on xylose. However, adaptive laboratory evolution (ALE) was required to improve the growth rate threefold to 0.11 ± 0.00 h-1. The genome of the evolved strain C. glutamicum gX was re-sequenced, and the evolved genetic module was introduced into C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) which allowed efficient growth and FAL production on wheat straw hydrolysate. FAL biosynthesis was further optimized by overexpression of the pntAB genes encoding the membrane-bound transhydrogenase of E. coli. The best-performing strain C. glutamicum ∆fasR cg2692TTG CgLP12::(Ptac-pntAB-TrrnB) gX (pEKEx2-maqu2220) produced 2.45 ± 0.09 gFAL L-1 with a product yield of 0.054 ± 0.005 Cmol Cmol-1 and a volumetric productivity of 0.109 ± 0.005 gFAL L-1 h-1 in a pulsed fed-batch cultivation using wheat straw hydrolysate. CONCLUSION The combination of targeted metabolic engineering and ALE enabled efficient FAL production in C. glutamicum from wheat straw hydrolysate for the first time. Therefore, this study provides useful metabolic engineering principles to tailor this bacterium for other products from this second-generation feedstock.
Collapse
Affiliation(s)
- Felix Werner
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
| | - Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marie-Theres Wirth
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
| | - Katharina Hofer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
4
|
Mindt M, Ferrer L, Bosch D, Cankar K, Wendisch VF. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2023; 107:1621-1634. [PMID: 36786915 PMCID: PMC10006044 DOI: 10.1007/s00253-023-12397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Indole has an increasing interest in the flavor and fragrance industry. It is used in dairy products, tea drinks, and fine fragrances due to its distinct floral odor typical of jasmine blossoms. The current production of indole based on isolation from coal tar is non-sustainable and its isolation from plants is often unprofitable due to low yields. To offer an alternative to the conventional production, biosynthesis of indole has been studied recently. A glucose-based indole production was achieved by employing the Corynebacterium glutamicum tryptophan synthase α-subunit (TrpA) or indole-3-glycerol phosphate lyase (IGL) from wheat Triticum aestivum in a genetically-engineered C. glutamicum strain. In addition, a highly efficient bioconversion process using C. glutamicum heterologously expressing tryptophanase gene (tnaA) from Providencia rettgeri as a biocatalyst was developed. In this work, de novo indole production from glucose was enabled by expressing the P. rettgeri tnaA in a tryptophan-producing C. glutamicum strain. By metabolic engineering of a C. glutamicum shikimate accumulating base strain, tryptophan production of 2.14 ± 0.02 g L-1 was achieved. Introduction of the tryptophanase form P. rettgeri enabled indole production, but to low titers, which could be improved by sequestering indole into the water-immiscible solvent tributyrin during fermentation and a titer of 1.38 ± 0.04 g L-1 was achieved. The process was accelerated by decoupling growth from production increasing the volumetric productivity about 4-fold to 0.08 g L-1 h-1. KEY POINTS: • Efficient de novo indole production via tryptophanases from glucose • Increased indole titers by product sequestration and improved precursor supply • Decoupling growth from production accelerated indole production.
Collapse
Affiliation(s)
- Melanie Mindt
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.,Translational Pharmacology, Faculty of Medicine OWL, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Katarina Cankar
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
5
|
Schmitt I, Meyer F, Krahn I, Henke NA, Peters-Wendisch P, Wendisch VF. From Aquaculture to Aquaculture: Production of the Fish Feed Additive Astaxanthin by Corynebacterium glutamicum Using Aquaculture Sidestream. Molecules 2023; 28:molecules28041996. [PMID: 36838984 PMCID: PMC9958746 DOI: 10.3390/molecules28041996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Circular economy holds great potential to minimize the use of finite resources, and reduce waste formation by the creation of closed-loop systems. This also pertains to the utilization of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been established for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquaculture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not inhibit growth, obviated the need for addition of several components of the mineral salt's medium, and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain. Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve astaxanthin production was shown to be transferable to production of several native and non-native carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the case of astaxanthin production it may be a potential component of a circular economy in aquaculture.
Collapse
|
6
|
Zhao X, Zhou S, Yan R, Gong C, Gui Q, Zhang Q, Xiang L, Chen L, Wang P, Li S, Yang Y. Parishin From Gastrodia Elata Ameliorates Aging Phenotype in Mice in a Gut Microbiota-Related Manner. Front Microbiol 2022; 13:877099. [PMID: 35547139 PMCID: PMC9083111 DOI: 10.3389/fmicb.2022.877099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
The physiological and pathological processes that accompany aging can seriously affect the quality of life of the elderly population. Therefore, delaying aging and developing antiaging products have become popular areas of inquiry. Gut microbiota plays an important role in age-related phenotypes. The present study aimed to investigate the antiaging effects and underlying mechanism of parishin, a phenolic glucoside isolated from traditional Chinese medicine Gastrodia elata. Samples from adult (12 weeks), low-dose (10 mg/kg/d) or high-dose (20 mg/kg/d) parishin-treated and untreated aged (19 months) mice were collected to determine blood indicators, gut microbiota and metabolome, and cardiopulmonary histopathological features. The results showed that parishin treatment ameliorates aging-induced cardiopulmonary fibrosis and increase in serum p16Ink4a, GDF15, and IL-6 levels. Furthermore, parishin treatment alleviated dysbiosis in gut microbiota, including altered microbial diversity and the aberrant abundance of opportunistic pathogenic bacteria such as Turicibacter and Erysipelatoclostridium. Gene function prediction and gut metabolome analysis results indicated that the parishin treatment-altered gut microbiota played important roles in sugar, lipid, amino acid and nucleic acid metabolism, and improved gut metabolic disorders in aged mice. In conclusion, the present study provides an experimental basis of potential applications of parishin against aging.
Collapse
Affiliation(s)
- Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shixian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caixia Gong
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qifeng Gui
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lufang Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peixia Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production. Metabolites 2022; 12:metabo12050428. [PMID: 35629932 PMCID: PMC9145305 DOI: 10.3390/metabo12050428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a lipid-soluble compound with important physiological functions and is sought after in the food and cosmetic industries owing to its antioxidant properties. In our previous proof of concept, we engineered for CoQ10 biosynthesis the industrially relevant Corynebacterium glutamicum, which does not naturally synthesize any CoQ. Here, liquid chromatography–mass spectrometry (LC–MS) analysis identified two metabolic bottlenecks in the CoQ10 production, i.e., low conversion of the intermediate 10-prenylphenol (10P-Ph) to CoQ10 and the accumulation of isoprenologs with prenyl chain lengths of not only 10, but also 8 to 11 isopentenyl units. To overcome these limitations, the strain was engineered for expression of the Ubi complex accessory factors UbiJ and UbiK from Escherichia coli to increase flux towards CoQ10, and by replacement of the native polyprenyl diphosphate synthase IspB with a decaprenyl diphosphate synthase (DdsA) to select for prenyl chains with 10 isopentenyl units. The best strain UBI6-Rs showed a seven-fold increased CoQ10 content and eight-fold increased CoQ10 titer compared to the initial strain UBI4-Pd, while the abundance of CoQ8, CoQ9, and CoQ11 was significantly reduced. This study demonstrates the application of the recent insight into CoQ biosynthesis to improve metabolic engineering of a heterologous CoQ10 production strain.
Collapse
|
8
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
9
|
Wendisch VF, Nampoothiri KM, Lee JH. Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Front Microbiol 2022; 13:835131. [PMID: 35211108 PMCID: PMC8861201 DOI: 10.3389/fmicb.2022.835131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of amino acids. Valorization of sidestreams from agri- and aqua-culture has focused on the production of biofuels and carboxylic acids. Nitrogen present in various amounts in sidestreams may be valuable for the production of amines, amino acids and other nitrogenous compounds. Metabolic engineering of C. glutamicum for valorization of agri- and aqua-culture sidestreams addresses to bridge this gap. The product portfolio accessible via C. glutamicum fermentation primarily features amino acids and diamines for large-volume markets in addition to various specialty amines. On the one hand, this review covers metabolic engineering of C. glutamicum to efficiently utilize components of various sidestreams. On the other hand, examples of the design and implementation of synthetic pathways not present in native metabolism to produce sought after nitrogenous compounds will be provided. Perspectives and challenges of this concept will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| |
Collapse
|
10
|
Pierrel F, Burgardt A, Lee JH, Pelosi L, Wendisch VF. Recent advances in the metabolic pathways and microbial production of coenzyme Q. World J Microbiol Biotechnol 2022; 38:58. [PMID: 35178585 PMCID: PMC8854274 DOI: 10.1007/s11274-022-03242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ10 or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.
Collapse
Affiliation(s)
- Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
11
|
Metabolic engineering of Corynebacterium glutamicum for de novo production of 3-hydroxycadaverine. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|