1
|
Xie X, Wu Y, Lv Y, Dai S, Li H, Xu L, Yang M, Yan J, Yan Y. Harnessing CO 2 for sustainable bioelectricity: An engineered two-stage microbial co-culture approach with enhanced acetate metabolism. BIORESOURCE TECHNOLOGY 2025; 431:132615. [PMID: 40324730 DOI: 10.1016/j.biortech.2025.132615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/19/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Climate change driven by rising atmospheric CO2 levels underscores the urgent need for sustainable energy solutions. This study investigates the dual potential of CO2 as a primary carbon source and acetate as an intermediate to simultaneously mitigate atmospheric CO2 levels and generate bioelectricity using microbial fuel cells (MFCs). A synthetic microbial co-culture was developed, combining Clostridium ljungdahlii for CO2 sequestration and Shewanella oneidensis MR-1 for bioelectricity production. To optimize MFC performance, S. oneidensis was modularly engineered to enhance acetate metabolism and electron transfer efficiency. Key modifications included upregulating ATP synthesis, introducing an ATP-independent acetate metabolic pathway, increasing NADH availability, and optimizing pili-based artificial conductive nanowires. These advancements achieved a maximum cell density (OD600 = 0.611), a record output voltage of 351.3 mV, and a record power density of 94.9 mW/m2 using acetate as the substrate. Furthermore, a two-stage biocatalytic system utilizing CO2 as the primary carbon source yielded an output voltage of 209.3 mV and a power density of 65.0 mW/m2. These results highlight the potential of engineered microbial co-culture for efficient CO2-based bioelectricity generation, offering a scalable and sustainable pathway toward carbon-neutral energy production.
Collapse
Affiliation(s)
- Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ying Wu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yiran Lv
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shuhan Dai
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Huanhuan Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
2
|
Ratheesh A, Sreelekshmy BR, T R AK, Sasidharan S, Basheer R, Nair KS, Nair AJ, Shibli SMA. Integrated Bioelectrochemical Conversion of Bacillus subtilis-Pretreated Sugar Cane Bagasse: Metabolic Profile Optimization for Enhanced Microbial Fuel Cell Efficiency and Sustainable Biorefinery Applications. ACS APPLIED BIO MATERIALS 2025. [PMID: 40393944 DOI: 10.1021/acsabm.5c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Lignocellulose recalcitrance remains a significant economic challenge in modern biomass conversion processes. Microbial strategies offer considerable promise for ecofriendly bioenergy generation. This study presents an advanced integrated approach that combines bacterial treatment with a bioelectrochemical system (BES) to enhance the conversion efficiency of lignocellulosic biomass. Unlike integrated or sequential approaches, a comparative evaluation of two distinct pretreatment strategies, alkaline delignification and biological treatment, was conducted independently to assess their individual effectiveness in sugar cane bagasse (SCB) degradation and their performance in a microbial fuel cell (MFC). Biological treatment with B. subtilis alone yielded superior outcomes in terms of saccharification efficiency, microbial growth, and bioelectricity generation, as evidenced by higher open-circuit potentials in MFC half-cell studies in comparison with alkali delignified SCB. Notably, B. subtilis treatment increased cellulose content by 72% and reduced hemicellulose and lignin by approximately 0.84-fold, indicating effective enzymatic action. Metabolomic profiling identified 2846 metabolites that significantly diverged between the experimental groups. Notably, lignin-derived compounds such as ferulic acid, syringic acid, and p-coumaric acid were detected at elevated levels, confirming enhanced ligninase activity in pretreated SCB. Additionally, the presence of organic acids (e.g., acetic acid), amino acids, and their derivatives, resulting from the breakdown of cellulose, hemicellulose, and lignin, provided essential bioenergy substrates for exoelectrogenic organisms in BESs. This integration led to a maximum power density of 353 ± 5 mW/m2 and a current density of 200 ± 3 mA/m2, demonstrating significant enhancement in performance of MFC. Furthermore, the biotransformation of SCB facilitated the channeling of metabolites into value-added products, increasing the overall efficiency of the biomass valorization. Thus, the rational utilization of SCB underscores its potential for scalable biorefinery applications and its broader implications for sustainable bioenergy production.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | | | - Anil Kumar T R
- Interuniversity Centre for Evolutionary and Integrative Biology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sarika Sasidharan
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Rubina Basheer
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Kanakangi Sukumaran Nair
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | | | - Sheik Muhammadhu Aboobakar Shibli
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
3
|
Liu YN, Liu Z, Liu J, Hu Y, Cao B. Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities. Metab Eng 2025; 89:1-11. [PMID: 39952391 DOI: 10.1016/j.ymben.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Shewanella species are facultative anaerobes with distinctive electrochemical properties, making them valuable for applications in energy conversion and environmental bioremediation. Due to their well-characterized electron transfer mechanisms and ease of genetic manipulation, Shewanella spp. have emerged as a promising chassis for metabolic engineering. In this review, we provide a comprehensive overview of the advancements in Shewanella-based metabolic engineering. We begin by discussing the physiological characteristics of Shewanella, with a particular focus on its extracellular electron transfer (EET) capability. Next, we outline the use of Shewanella as a metabolic engineering chassis, presenting a general framework for strain construction based on the Design-Build-Test-Learn (DBTL) cycle and summarizing key advancements in the engineering of Shewanella's metabolic modules. Finally, we offer a perspective on the future development of Shewanella chassis, highlighting the need for deeper mechanistic insights, rational strain design, and interdisciplinary collaboration to drive further progress.
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Zhourui Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Jian Liu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
4
|
Fan YY, Tang Q, Li Y, Sun H, Xu M, Yu HQ. Fabricating an advanced electrogenic chassis by activating microbial metabolism and fine-tuning extracellular electron transfer. Trends Biotechnol 2025; 43:383-407. [PMID: 39490224 DOI: 10.1016/j.tibtech.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Exploiting electrogenic microorganisms as unconventional chassis hosts offers potential solutions to global energy and environmental challenges. However, their limited electrogenic efficiency and metabolic versatility, due to genetic and metabolic constraints, hinder broader applications. Herein, we developed a multifaceted approach to fabricate an enhanced electrogenic chassis, starting with streamlining the genome by removing extrachromosomal genetic material. This reduction led to faster lactate consumption, higher intracellular NADH/NAD+ and ATP/ADP levels, and increased growth and biomass accumulation, as well as promoted electrogenic activity. Transcriptome profiling showed an overall activation of cellular metabolism. We further established a molecular toolkit with a vector vehicle incorporating native replication block and refined promoter components for precise gene expression control. This enabled engineered primary metabolism for greater environmental robustness and fine-tuned extracellular electron transfer (EET) for improved efficiency. The enhanced chassis demonstrated substantially improved pollutant biodegradation and radionuclide removal, establishing a new paradigm for utilizing electrogenic organisms as novel biotechnology chassis.
Collapse
Affiliation(s)
- Yang-Yang Fan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Yang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Yu Y, Li A, Fan SQ, Zhao HP. Biogenic amorphous FeOOH activated additional intracellular electron flow pathways for accelerating reductive dechlorination of tetrachloroethylene. WATER RESEARCH 2024; 267:122489. [PMID: 39326185 DOI: 10.1016/j.watres.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) with extracellular electron transfer (EET) capabilities have shown significant potential for bioremediating halogenated hydrocarbon contaminated sites rich in iron and humic substances. However, the role and microbial molecular mechanisms of iron-humic acid (Fe-HA) complexes in the reductive dehalogenation process of DIRB remains inadequately elucidated. In this study, we developed a sustainable carbon cycling approach using Fe-HA complexes to modulate the electron flux from sawdust (SD), enabling almost complete reductive dechlorination by most DIRB (e.g., Shewanella oneidensis MR-1) that lack complex iron-sulfur molybdo enzymes. The SD-Fe-HA/MR-1 system achieved a 96.52% removal efficiency of tetrachloroethylene (PCE) at concentrations up to 250 μmol/L within 60 days. Material characterization revealed that DIRB facilitated the hydrolysis of macromolecular carbon sources by inducing the formation of amorphous ferrihydrite (FeOOH) in Fe-HA complexes. More importantly, the bioavailable FeOOH activated additional intracellular electron flow pathways, increasing the activity of potential dehalogenases. Transcriptome further highlight the innovative role of biogenic amorphous FeOOH in integrating intracellular redox metabolism with extracellular charge exchange to facilitate reductive dechlorination in DIRB. These findings provide novel insights into accelerating reductive dechlorination in-situ contaminated sites lacking obligate dehalogenating bacteria.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310030, China.
| |
Collapse
|
6
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
7
|
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li W, Nealson KH, Liu Z, Song H. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403067. [PMID: 39234800 PMCID: PMC11538702 DOI: 10.1002/advs.202403067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Liang Shi
- Department of Biological Sciences and TechnologySchool of Environmental StudiesChina University of Geoscience in WuhanWuhanHubei430074China
| | - Wen‐Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science & Technology of ChinaHefei230026China
| | - Kenneth H. Nealson
- Departments of Earth Science & Biological SciencesUniversity of Southern California4953 Harriman Ave.South PasadenaCA91030USA
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industryand School of Chemical EngineeringInner Mongolia University of TechnologyInner MongoliaHohhot010051China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
8
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
9
|
Ding Q, Liu Q, Zhang Y, Li F, Song H. Modular Engineering Strategy to Redirect Electron Flux into the Electron-Transfer Chain for Enhancing Extracellular Electron Transfer in Shewanella oneidensis. ACS Synth Biol 2023; 12:471-481. [PMID: 36457250 DOI: 10.1021/acssynbio.2c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Efficient extracellular electron transfer (EET) of exoelectrogens is critical for practical applications of various bioelectrochemical systems. However, the low efficiency of electron transfer remains a major bottleneck. In this study, a modular engineering strategy, including broadening the sources of the intracellular electron pool, enhancing intracellular nicotinamide adenine dinucleotide (NADH) regeneration, and promoting electron release from electron pools, was developed to redirect electron flux into the electron transfer chain in Shewanella oneidensis MR-1. Among them, four genes include gene SO1522 encoding a lactate transporter for broadening the sources of the intracellular electron pool, gene gapA encoding a glyceraldehyde-3-phosphate dehydrogenase and gene mdh encoding a malate dehydrogenase in the central carbon metabolism for enhancing intracellular NADH regeneration, and gene ndh encoding NADH dehydrogenase on the inner membrane for releasing electrons from intracellular electron pools into the electron-transport chain. Upon assembly of the four genes, electron flux was directly redirected from the electron donor to the electron-transfer chain, achieving 62% increase in intracellular NADH levels, which resulted in a 3.5-fold enhancement in the power density from 59.5 ± 3.2 mW/m2 (wild type) to 270.0 ± 12.7 mW/m2 (recombinant strain). This study confirmed that redirecting electron flux from the electron donor to the electron-transfer chain is a viable approach to enhance the EET rate of S. oneidensis.
Collapse
Affiliation(s)
- Qinran Ding
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Qijing Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Yan Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| |
Collapse
|