1
|
Al-Shehaby N, Elshoky HA, Zidan M, Salaheldin TA, Gaber MH, Ali MA, El-Sayed NM. In vitro localization of modified zinc oxide nanoparticles showing selective anticancer effects against colorectal carcinoma using biophysical techniques. Sci Rep 2025; 15:16811. [PMID: 40369004 DOI: 10.1038/s41598-025-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
In recent decades, despite advancements in conventional cancer therapies, their serious side effects on both healthy and tumor cells remain a major concern. Aiming to address indiscriminate drug distribution, unwanted toxicity, and high chemotherapy doses, this study explores the targeted delivery of zinc oxide nanoparticles (ZnO NPs). ZnO NPs were synthesized and coated with bovine serum albumin (BSA) and tetraethoxysilane (TEOS) to control cellular uptake and enhance anticancer activity. Characterized by UV-visible spectroscopy, DLS, FTIR, XRD, and TEM, ZnO, ZnOB, and ZnOT particles displayed sizes of 140 ± 13.6 nm, 342 ± 8.4 nm, and 145 ± 23.8 nm, respectively, with ZnOT showing a positive charge of + 19.3 ± 4.16 mV, enhancing stability and cellular interaction. Cytotoxicity assays revealed ZnO's potent anticancer effect in Caco-2 cells with an IC50 of 219 µg/ml, while ZnOB and ZnOT showed moderate toxicity (IC50 values of 308 µg/ml and 235 µg/ml). HepG2 cells maintained viability close to 100%, highlighting ZnO NPs' selectivity for Caco-2 cells. Flow cytometry and confocal microscopy indicated differential uptake, with ZnOB showing the highest uptake in Caco-2 cells after 24 h at 37 °C, increasing fluorescence intensity by over 80% compared to ZnO. ZnOT notably increased late apoptotic cells by 65% in Caco-2 lines and caused a 40% rise in G2/M phase arrest. Mitochondrial function assays showed that ZnO reduced mitochondrial membrane potential by over 30%, indicating stress induction. These results support the potential of ZnO-based nanoparticles in colorectal cancer treatment, offering selective cytotoxicity, enhanced cellular uptake, and clear apoptotic activity, making them a promising alternative to conventional chemotherapy.
Collapse
Affiliation(s)
- Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
| | - Hisham A Elshoky
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt.
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, P.O. 588 Orman, 9 Elgamaa St., Giza, 12619, Egypt.
- Regional Center for Food and Feed, Agricultural Research Center, Giza, 12619, Egypt.
| | - Mona Zidan
- Immunology research program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
| | - Taher A Salaheldin
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- SUNY Schenectady Community College, New York, USA
| | - Mohamed H Gaber
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nayera M El-Sayed
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Parsaei S, Yaghoobi H, Beshkar P, Khonakdar Sangdehi HA, Khosravi Farsani MR, Safari O. Zingerone based green synthesized sodium doped zinc oxide nanoparticles eliminate U87 glioblastoma cells by inducing apoptosis. Sci Rep 2025; 15:13516. [PMID: 40251290 PMCID: PMC12008281 DOI: 10.1038/s41598-025-96962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
Grade IV astrocytoma, also referred to as glioblastoma (GBM), is the most common type of glioma, accounting for over 60% of all brain tumors. It is still a fatal illness in spite of years of investigation and does not currently have a treatment. Thus, scientists and medical professionals are constantly trying to understand the molecular processes and heterogeneity of GBM as well as looking for new ways to improve treatment results. Numerous studies have indicated that nanomaterials, and more especially nanoparticles, offer a great deal of potential for killing cancer cells; as a result, they are being considered as a potential alternative cancer treatment. Several studies have demonstrated that ZnO NPs have shown specific cytotoxicity against cancer cells while leaving normal cells unharmed. In this study we aim to synthesize sodium doped zinc oxide NPs using zingerone in an environmentally friendly manner to evaluate their cytotoxic effects on U87 GBM cell line and normal HEK cell line and investigate the occurrence of apoptosis via apoptosis assay by flowcytometry and gene expression study of TP53 and related genes to apoptosis and cell cycle regulation pathways. It was demonstrated that Na-doped ZnO NPs had a significant cytotoxic effect on U87 cells while having significantly less effect on normal HEK cells. Na-doped ZnO NPs eliminated cancerous cells through apoptosis induction and possibly cell cycle regulation via up-regulation of TP53, PTEN, BAX, P21 and down-regulation of Bcl2. The unique physicochemical properties of nanoparticles turn them into fascinating agents to treat GBM. Hence, the necessity of exploring the vast, yet unknown field of nanoparticles potentials cannot be over looked.
Collapse
Affiliation(s)
- Saman Parsaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Science institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Pezhman Beshkar
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Omid Safari
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
4
|
Sarkar A, Bhattacharjee S. Biofilm-mediated bioremediation of xenobiotics and heavy metals: a comprehensive review of microbial ecology, molecular mechanisms, and emerging biotechnological applications. 3 Biotech 2025; 15:78. [PMID: 40060289 PMCID: PMC11889332 DOI: 10.1007/s13205-025-04252-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/20/2025] [Indexed: 04/13/2025] Open
Abstract
Environmental pollution, driven by rapid industrialization and urbanization, has emerged as a critical global challenge in the twenty-first century. This comprehensive review explores the potential of bacterial biofilms in bioremediation, focusing on their ability to degrade and transform a wide array of pollutants, including heavy metals, persistent organic pollutants (POPs), oil spills, pesticides, and emerging contaminants, such as pharmaceuticals and microplastics. The unique structural and functional characteristics of biofilms, including their extracellular polymeric substance (EPS) matrix, enhanced genetic exchange, and metabolic cooperation, contribute to their superior pollutant degradation capabilities compared to planktonic bacteria. Recent advancements in biofilm-mediated bioremediation include the application of genetically engineered microorganisms, nanoparticle-biofilm interactions, and innovative biofilm reactor designs. The CRISPR-Cas9 system has shown promise in enhancing the degradative capabilities of biofilm-forming bacteria while integrating nanoparticles with bacterial biofilms demonstrates significant improvements in pollutant degradation efficiency. As global pollution rises, biofilm-based bioremediation emerges as a cost-effective and environmentally friendly approach to address diverse contaminants. This review signifies the need for further research to optimize these techniques and harness their full potential in addressing pressing environmental challenges.
Collapse
Affiliation(s)
- Argajit Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura 799022 India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura 799022 India
| |
Collapse
|
5
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
6
|
Zakaria N, Kandile NG, Mohamed MI, Zaky HT, Mohamed HM. Superior remedy colon cancer HCT-116 cells via new chitosan Schiff base nanocomposites: Synthesis and characterization. Int J Biol Macromol 2024; 281:135916. [PMID: 39362442 DOI: 10.1016/j.ijbiomac.2024.135916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a serious worldwide health problem and colon cancer is the major cancer public prevailing form. The innovative pharmaceuticals with great cancer efficacy are metal nanoparticles. Therefore, the present study relies on developing chitosan Schiff base nanocomposites and investigating their antitumor ability against human colon carcinoma (HCT-116 cell line) using the MTT method. Thus, chitosan (CS) is modified with 9-ethyl-3-carbazolecarboxaldehyde (ECCA) in the absence or presence of the biomedical crosslinker poly(ethylene glycol) diglycidyl ether (PEGDGE) under microwave irradiation to afford CS-Schiff bases CS-SB-I and CS-SB-II, respectively. The assembly method is applied to formulate CS-Schiff base (Ag, Au and ZnO) nanocomposites. These new CS-Schiff bases and their nanocomposites are characterized by utilizing elemental analysis, FTIR, TGA, XRD, SEM, TEM and EDX. Cytotoxicity test showed that CS-SB-I (IC50 112.10 ± 4.23 μg/mL) and CS-SB-II (IC50 98.54 ± 4.09 μg/mL) inhibit the growth of HCT-116 more effectively than chitosan (IC50 181.38 ± 6.54 μg/mL). Additionally, CS-Schiff base nanocomposites revealed superior anticancer efficiency which displayed the lowest IC50 values CS-SB-I-Ag (IC50 10.99 ± 0.37 μg/mL), CS-SB-II-Ag (IC50 12.79 ± 0.49 μg/mL), CS-SB-I-Au (IC50 14.96 ± 0.51 μg/mL), CS-SB-II-Au (IC50 26.72 ± 1.57 μg/mL), CS-SB-I-ZnO (IC50 22.79 ± 1.28 μg/mL) and CS-SB-II-ZnO (IC50 22.24 ± 1.34 μg/mL). The findings demonstrated that CS-Schiff base nanocomposites are promising agents for the HCT-116 cell therapeutic.
Collapse
Affiliation(s)
- Nada Zakaria
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| | - Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt.
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| | - Howida T Zaky
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| |
Collapse
|
7
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
da Silva VRP, Martins NO, dos Santos CR, Damas EBDO, Araujo PL, Silva GDO, Joanitti GA, Carneiro MLB. Annatto ( Bixa orellana)-Based Nanostructures for Biomedical Applications-A Systematic Review. Pharmaceutics 2024; 16:1275. [PMID: 39458606 PMCID: PMC11510392 DOI: 10.3390/pharmaceutics16101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/28/2024] Open
Abstract
Plants are a source of valuable organic chemical compounds with complex structures rich in therapeutic activities. The encapsulation of compounds in nanostructured systems is an alternative to avoid limitations, such as instability and low solubility, and to promote therapeutic use. The objective of the present review was to summarize the data in the literature on the physicochemical characteristics, biomedical efficacy, and toxicity of nanostructures containing extracts and oils obtained from annatto (Bixa orellana). For this, searches were conducted in the CINAHL, LILACS, Embase, FSTA, MEDLINE, ProQuest, PubMed, ScienceDirect, Scopus, and Web of Science databases. Studies that carried out the development, physical-chemical characterization, and evaluation of therapeutic efficacy and/or in vitro, in vivo, or clinical toxicity of nanostructures containing extracts and oils derived from annatto were included in the review. Of the 708 articles found, nine met the inclusion criteria. The included studies developed different nanostructures (nanofibers, nanocochleates, chitosan, lipid, polymeric, and metallic nanoparticles). These nanostructures showed leishmanicidal, photoprotective, antioxidant, antimicrobial, and immunomodulatory efficacy, and tissue regeneration potential with no or low toxic effects in the tested models. Thus, the present work supports the nanostructuring of annatto extracts and oils as a relevant approach to the development of new technologies for biomedical applications.
Collapse
Affiliation(s)
- Vitória Regina Pereira da Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Natália Ornelas Martins
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
| | - Carolina Ramos dos Santos
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Elysa Beatriz de Oliveira Damas
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Paula Lauane Araujo
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Gabriella de Oliveira Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcella Lemos Brettas Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (V.R.P.d.S.); (N.O.M.); (C.R.d.S.); (E.B.d.O.D.); (P.L.A.); (G.d.O.S.); (M.L.B.C.)
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
9
|
Li Y, Ma Y, Li J, Lu Y, Liu H, Gao M, Cao J. Enhanced glioma cell death with ZnO nanorod flowers and temozolomide combination therapy through autophagy and mitophagy pathways. Biomed Pharmacother 2024; 178:117149. [PMID: 39047423 DOI: 10.1016/j.biopha.2024.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the application of engineered NMts has significantly contributed to various biomedical fields. ZnO NMts (ZnO NMts) are widely utilized due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anti-cancer applications. This study aims to study the impact of ZnO Nanorod flowers (ZnO NRfs) and their combination with temozolomide (TMZ) on glioma cells. Normal mouse microglia (BV2) will be used as a control to assess the effects on mouse glioma cells (G422) and human glioma cells (LN229). The effects of these substances were evaluated on G422 and LN229 cells through various parameters such as IC50 value, Zn2+ accumulation, ROS production, apoptosis, mitochondrial membrane potential (MMP) depolarization, and examination of organelles like mitochondria and lysosomes. Additionally, hypoxia-inducible factor-1α (HIF-1α), endothelial cell PAS domain protein 1 (EPAS1), autophagy markers (LC3), mitophagy and phagocytosis marker (BNIP3) were assessed. The results demonstrated that the combination of ZnO NRfs and TMZ could influence the expression of HIF-1α, EPAS1, LC3, and BNIP3 proteins, leading to mitophagy in glioma cells. This combination treatment has the potential to effectively eliminate glioma cells by activating the mitophagy pathway, which provides a good prospect for the clinical treatment of glioma.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China.
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China.
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, 730000, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiying Liu
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| | - Min Gao
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| | - Junqin Cao
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| |
Collapse
|
10
|
Okaiyeto K, Gigliobianco MR, Di Martino P. Biogenic Zinc Oxide Nanoparticles as a Promising Antibacterial Agent: Synthesis and Characterization. Int J Mol Sci 2024; 25:9500. [PMID: 39273447 PMCID: PMC11395547 DOI: 10.3390/ijms25179500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing interest in biological methods. Interestingly, green synthesis using plants has gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles (ZnO NPs) produced using environmentally friendly methods are more biocompatible and have potential applications as antibacterial agents in the biomedical field. As a result, this review discusses the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques, and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights the challenges and prospects in this innovative research area.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| | - Maria Rosa Gigliobianco
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| | - Piera Di Martino
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| |
Collapse
|
11
|
Karnwal A, Sharma V, Kumar G, Jassim AY, Dohroo A, Sivanesan I. Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications. Pharmaceutics 2024; 16:1114. [PMID: 39339152 PMCID: PMC11435024 DOI: 10.3390/pharmaceutics16091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, tissue engineering, immunotherapy, and gene therapy. Despite the transformative potential, several challenges hinder their efficacy, such as limited drug capacity, suboptimal targeting, and poor solubility. This review delves into the latest advancements in nanocarrier technologies, examining their properties, associated limitations, and the innovative solutions developed to address these issues. It highlights promising nanocarrier systems like nanocomposites, micelles, hydrogels, microneedles, and artificial cells that employ advanced conjugation techniques, sustained and stimulus-responsive release mechanisms, and enhanced solubility. By exploring these novel structures and their contributions to overcoming existing barriers, the article emphasizes the vital role of interdisciplinary research in advancing nanobiotechnology. This field offers unparalleled opportunities for precise and effective therapeutic delivery, underscoring its potential to reshape healthcare through personalized, targeted treatments and improved drug performance.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Amar Yasser Jassim
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61004, Iraq;
| | - Aradhana Dohroo
- School of Agricultural Sciences, Baddi University of Emerging Sciences and Technologies, Baddi 173405, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Narayana S, Gowda BHJ, Hani U, Shimu SS, Paul K, Das A, Ashique S, Ahmed MG, Tarighat MA, Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: recent advancements and challenges. J Nanobiotechnology 2024; 22:427. [PMID: 39030546 PMCID: PMC11264527 DOI: 10.1186/s12951-024-02701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer, the third most prevalent cancer globally, contributes significantly to mortality rates, with over 1.9 million reported cases and nearly 935,000 fatalities annually. Surgical resection is a primary approach for localized colorectal tumors, with adjunct therapies like chemotherapy, radiotherapy, and targeted/immunotherapy considered depending on the tumor stage. However, despite preferences for targeted and immunotherapy post-surgery, chemotherapy remains commonly chosen due to its lower cost and high cancer-killing efficiency. Yet, chemotherapy faces issues such as tumor resistance and severe side effects. Nanotechnology has emerged in cancer therapy by alleviating the drawbacks of current treatment approaches. In the past few decades, inorganic nanoparticles have shown promise in combating colorectal cancer, offering advantages over conventional chemotherapy. Compared to organic nanoparticles, inorganic nanoparticles exhibit properties like photosensitivity, conductivity, magnetic allure, and thermal proficiency, allowing them to function as both drug carriers and therapeutic agents. Derived primarily from carbon, silica, metals, and metal oxides, they offer superior drug-loading capacity, heightened quantum yield, and participation in advanced photothermal and photodynamic therapies. This review provides a brief overview of the pathophysiology of colorectal cancer and the pivotal role of inorganic nanoparticles in photothermal therapy photodynamic therapy, and drug delivery. Additionally, it discusses numerous inorganic nanoparticles in colorectal cancer therapy based on recent literature.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India.
| | - Avinaba Das
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
- School of Pharmaceutical Sciences , Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
13
|
Padhye-Pendse A, Umrani R, Paknikar K, Jadhav S, Rajwade J. Zinc oxide nanoparticles prevent the onset of diabetic nephropathy by inhibiting multiple pathways associated with oxidative stress. Life Sci 2024; 347:122667. [PMID: 38670449 DOI: 10.1016/j.lfs.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and β-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-β/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.
Collapse
Affiliation(s)
- Aishwarya Padhye-Pendse
- Agharkar Research Institute, Pune, Maharashtra, India; Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rinku Umrani
- L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | | | - Sachin Jadhav
- Agharkar Research Institute, Pune, Maharashtra, India
| | - Jyutika Rajwade
- Agharkar Research Institute, Pune, Maharashtra, India; Savitribai Phule Pune University, Pune, Maharashtra, India.
| |
Collapse
|
14
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Berehu HM, Patnaik S. Biogenic Zinc Oxide Nanoparticles synthesized from Tinospora Cordifolia induce oxidative stress, mitochondrial damage and apoptosis in Colorectal Cancer. Nanotheranostics 2024; 8:312-329. [PMID: 38577319 PMCID: PMC10988208 DOI: 10.7150/ntno.84995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682μg/ml and 36.675 ± 0.916μg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.
Collapse
Affiliation(s)
- Hadgu Mendefro Berehu
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Srinivas Patnaik
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| |
Collapse
|
16
|
Raza A, Ali T, Naeem M, Asim M, Hussain F, Li Z, Nasir A. Biochemical characterization of bioinspired nanosuspensions from Swertia chirayita extract and their therapeutic effects through nanotechnology approach. PLoS One 2024; 19:e0293116. [PMID: 38330034 PMCID: PMC10852254 DOI: 10.1371/journal.pone.0293116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/26/2023] [Indexed: 02/10/2024] Open
Abstract
Swertia chirayita is used as a traditional medicinal plant due to its pharmacological activities, including antioxidant, antidiabetic, antimicrobial, and cytotoxic. This study was aimed to evaluate the therapeutic efficacy of newly synthesized nanosuspensions from Swertia chirayita through nanotechnology for enhanced bioactivities. Biochemical characterization was carried out through spectroscopic analyses of HPLC and FTIR. Results revealed that extract contained higher TPCs (569.6 ± 7.8 mg GAE/100 g)) and TFCs (368.5 ± 9.39 mg CE/100 g) than S. chirayita nanosuspension, TPCs (500.6 ± 7.8 500.6 ± 7.8 mg GAE/100 g) and TFCs (229.5± 3.85 mg CE/100 g). Antioxidant activity was evaluated through DPPH scavenging assay, and nanosuspension exhibited a lower DPPH free radical scavenging potential (06 ±3.61) than extract (28.9± 3.85). Anti-dabetic potential was assessed throughα-amylase inhibition and anti-glycation assays. Extract showed higher (41.4%) antiglycation potential than 35.85% nanosuspension and 19.5% α-amylase inhibitory potential than 5% nanosuspension. Biofilm inhibition activity against E. coli was higher in nanosuspension (69.12%) than extract (62.08%). The extract showed high cytotoxicity potential (51.86%) than nanosuspension (33.63%). These nanosuspensions possessed enhanced bioactivities for therapeutic applications could be explored further for the development of new drugs.
Collapse
Affiliation(s)
- Ayesha Raza
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Muhammad Asim
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhiye Li
- Department of Pharmacy, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Li Y, Li J, Lu Y, Ma Y. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells. Cell Biochem Funct 2024; 42:e3909. [PMID: 38269499 DOI: 10.1002/cbf.3909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
In recent years, the application of engineering nanomaterials has significantly contributed to the development of various biomedical fields. Zinc oxide nanomaterials (ZnO NMts) have gained wide popularity due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anticancer applications. This article provides a comprehensive review of the synthesis methods of ZnO NMts and highlights the advantages of combining ZnO NMts with anticancer drugs as a nano platform for cancer treatment. Additionally, the article briefly explains the mechanism of action of ZnO NMts in tumor cells, focusing on the mitochondrial pathways that target cell apoptosis and autophagy. It is observed that these pathways are primarily influenced by reactive oxygen species generated through oxidative stress. The article discusses the promising prospects of ZnO NMts combined with anticancer drugs in the field of cancer medicine and emphasizes the need for further in-depth research on the mitochondrial apoptosis and mitochondrial autophagy pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
18
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
19
|
Cagliani R, Fayed B, Jagal J, Shakartalla SB, Soliman SSM, Haider M. Peptide-functionalized zinc oxide nanoparticles for the selective targeting of breast cancer expressing placenta-specific protein 1. Colloids Surf B Biointerfaces 2023; 227:113357. [PMID: 37210795 DOI: 10.1016/j.colsurfb.2023.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Functionalized metal oxide nanoparticles (NPs) have demonstrated specific binding affinity to antigens or receptors presented on the cancer cell surface, favouring selective targeting and minimizing side effects during the chemotherapy. Placenta-specific protein 1 (PLAC-1) is a small cell surface protein overexpressed in certain types of breast cancer (BC); therefore, it can be used as a therapeutic target. The objective of this study is to develop NPs that can bind PLAC-1 and hence can inhibit the progression and metastatic potential of BC cells. Zinc oxide (ZnO) NPs were coated with a peptide (GILGFVFTL), which possesses a strong binding ability to PLAC-1. The physical attachment of the peptide to ZnO NPs was verified through various physicochemical and morphological characterization techniques. The selective cytotoxicity of the designed NPs was investigated using PLAC-1-bearing MDA-MB 231 human BC cell line and compared to LS-180 cells that do not express PLAC-1. The anti-metastatic and pro-apoptotic effects of the functionalized NPs on MDA-MB 231 cells were examined. Confocal microscopy was used to investigate the mechanism of NPs uptake by MDA-MB 231 cells. Compared to non-functionalized NPs, peptide functionalization significantly improved the targeting and uptake of the designed NPs by PLAC-1-expressing cancer cells with significant pro-apoptotic and anti-metastatic effects. The uptake of peptide functionalized ZnO NPs (ZnO-P NPs) occurred via peptide-PLAC1 interaction-assisted clathrin-mediated endocytosis. These findings highlight the potential targeted therapy of ZnO-P NPs against PLAC-1-expressing breast cancer cells.
Collapse
Affiliation(s)
- Roberta Cagliani
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo 12622, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Sarra B Shakartalla
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, University of Gezira, P.O. Box. 21111, Wadmedani, Sudan
| | - Sameh S M Soliman
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Mohamed Haider
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
20
|
Khan MS, Altwaijry N, Jabir NR, Alamri AM, Tarique M, Khan AU. Potential of green-synthesized ZnO NPs against human ovarian teratocarcinoma: an in vitro study. Mol Biol Rep 2023; 50:4447-4457. [PMID: 37014566 DOI: 10.1007/s11033-023-08367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Ovarian cancer leads to devastating outcomes, and its treatment is highly challenging. At present, there is a lack of clinical symptoms, well-known sensitivity biomarkers, and patients are diagnosed at an advanced stage. Currently, available therapeutics against ovarian cancer are inefficient, costly, and associated with severe side effects. The present study evaluated the anticancer potential of zinc oxide nanoparticles (ZnO NPs) that were successfully biosynthesized in an ecofriendly mode using pumpkin seed extracts. METHODS AND RESULTS The anticancer potential of the biosynthesized ZnO NPs was assessed using an in vitro human ovarian teratocarcinoma cell line (PA-1) by well-known assays such as MTT assay, morphological alterations, induction of apoptosis, measurement of reactive oxygen species (ROS) production, and inhibition of cell adhesion/migration. The biogenic ZnO NPs exerted a high level of cytotoxicity against PA-1 cells. Furthermore, the ZnO NPs inhibited cellular adhesion and migration but induced ROS production and cell death through programmed cell death. CONCLUSION The aforementioned anticancer properties highlight the therapeutic utility of ZnO NPs in ovarian cancer treatment. However, further research is recommended to envisage their mechanism of action in different cancer models and validation in a suitable in vivo system.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, TN, 613403, India
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, USA
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS CAMPUS, Jaipur National University, Jaipur, India
| |
Collapse
|
21
|
Aljohar AY, Muteeb G, Zia Q, Siddiqui S, Aatif M, Farhan M, Khan MF, Alsultan A, Jamal A, Alshoaibi A, Ahmad E, Alam MW, Arshad M, Ahamed MI. Anticancer effect of zinc oxide nanoparticles prepared by varying entry time of ion carriers against A431 skin cancer cells in vitro. Front Chem 2022; 10:1069450. [PMID: 36531331 PMCID: PMC9751667 DOI: 10.3389/fchem.2022.1069450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 09/19/2023] Open
Abstract
Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been the subject of numerous studies, none of the reports has investigated the impact of the reaction entry time of ion-carriers on the preparation of ZRTs. Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH (that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-proliferative action, morphological changes, reactive oxygen species (ROS) production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma cells were observed. The samples revealed crystallinity and purity by X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like morphology. On prolonging the entry time for ion carrier (NaOH) introduction in the reaction mixture, a relative ascent in the aspect ratio was seen. The typical ZnO band with a slight shift in the absorption maxima was evident with UV-visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer potential against A431 cells as seen by MTT assay, ROS generation and chromatin condensation analyses. At 25 μM of ZRT-2, 5.56% cells were viable in MTT test, ROS production was enhanced to 166.71%, while 33.0% of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 μM) than that for ZRT-1 (8 μM) against A431 cells. In conclusion, this paper presents a modest, economical procedure to generate ZRT nano-structures exhibiting strong cytotoxicity against the A431 cell line, indicating that ZRTs may have application in combating cancer.
Collapse
Affiliation(s)
- Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohd. Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, India
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Azfar Jamal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Department of Biology, College of Science, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Md Arshad
- Molecular Endocrinology Laboratory, Zoology Department, Lucknow University, Lucknow, India
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
22
|
Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep 2022; 12:20370. [PMID: 36437355 PMCID: PMC9701696 DOI: 10.1038/s41598-022-24805-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, a green, sustainable, simple and low-cost method was adopted for the synthesis of ZnO NPs, for the first time, using the aqueous extract of sea lavender, Limonium pruinosum (L.) Chaz., as a reducing, capping, and stabilizing agent. The obtained ZnO NPs were characterized using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The UV-Vis spectra of the green synthesized ZnO NPs showed a strong absorption peak at about 370 nm. Both electron microscopy and XRD confirmed the hexagonal/cubic crystalline structure of ZnO NPs with an average size ~ 41 nm. It is worth noting that the cytotoxic effect of the ZnO NPs on the investigated cancer cells is dose-dependent. The IC50 of skin cancer was obtained at 409.7 µg/ml ZnO NPs. Also, the phyto-synthesized nanoparticles exhibited potent antibacterial and antifungal activity particularly against Gram negative bacteria Escherichia coli (ATCC 8739) and the pathogenic fungus Candida albicans (ATCC 10221). Furthermore, they showed considerable antioxidant potential. Thus, making them a promising biocompatible candidate for pharmacological and therapeutic applications.
Collapse
|
23
|
Serov DA, Burmistrov DE, Simakin AV, Astashev ME, Uvarov OV, Tolordava ER, Semenova AA, Lisitsyn AB, Gudkov SV. Composite Coating for the Food Industry Based on Fluoroplast and ZnO-NPs: Physical and Chemical Properties, Antibacterial and Antibiofilm Activity, Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4158. [PMID: 36500781 PMCID: PMC9739285 DOI: 10.3390/nano12234158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Bacterial contamination of meat products during its preparation at the enterprise is an important problem for the global food industry. Cutting boards are one of the main sources of infection. In order to solve this problem, the creation of mechanically stable coatings with antibacterial activity is one of the most promising strategies. For such a coating, we developed a composite material based on "liquid" Teflon and zinc oxide nanoparticles (ZnO-NPs). The nanoparticles obtained with laser ablation had a rod-like morphology, an average size of ~60 nm, and a ζ-potential of +30 mV. The polymer composite material was obtained by adding the ZnO-NPs to the polymer matrix at a concentration of 0.001-0.1% using the low-temperature technology developed by the research team. When applying a composite material to a surface with damage, the elimination of defects on a micrometer scale was observed. The effect of the composite material on the generation of reactive oxygen species (H2O2, •OH), 8-oxoguanine in DNA in vitro, and long-lived reactive protein species (LRPS) was evaluated. The composite coating increased the generation of all of the studied compounds by 50-200%. The effect depended on the concentration of added ZnO-NPs. The antibacterial and antibiofilm effects of the Teflon/ZnO NP coating against L. monocytogenes, S. aureus, P. aeruginosa, and S. typhimurium, as well as cytotoxicity against the primary culture of mouse fibroblasts, were studied. The conducted microbiological study showed that the fluoroplast/ZnO-NPs coating has a strong bacteriostatic effect against both Gram-positive and Gram-negative bacteria. In addition, the fluoroplast/ZnO-NPs composite material only showed potential cytotoxicity against primary mammalian cell culture at a concentration of 0.1%. Thus, a composite material has been obtained, the use of which may be promising for the creation of antibacterial coatings in the meat processing industry.
Collapse
Affiliation(s)
- Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Alexander V. Simakin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Eteri R. Tolordava
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 26, Talalikhina St., 109316 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 26, Talalikhina St., 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 26, Talalikhina St., 109316 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
24
|
Solanum Procumbens-Derived Zinc Oxide Nanoparticles Suppress Lung Cancer In Vitro through Elevation of ROS. Bioinorg Chem Appl 2022; 2022:2724302. [PMID: 36147774 PMCID: PMC9489396 DOI: 10.1155/2022/2724302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is one of the cancers with high mortality rate. The current therapeutic regimens have only limited success rate. The current work highlights the potential of Solanum procumbens-derived zinc oxide nanoparticle (SP-ZnONP)-induced apoptosis in A549 lung cancer cells. Synthesized nanoparticles were confirmed by UV-Vis spectrophotometry, X-ray diffraction (XRD), dynamic light scattering analysis (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and photoluminescence analysis. Lactate dehydrogenase (LDH), cytotoxicity, and cell viability assays revealed that the SP-ZnONP caused the cell death and the inhibition concentration (IC50) was calculated to be 61.28 μg/mL. Treatment with SP-ZnONPs caused morphological alterations in cells, such as rounding, which may have been caused by the substance's impact on integrins. Acridine orange/ethidium bromide dual staining revealed that the cells undergo apoptosis in a dose-dependent manner, which indicates the cell death. Furthermore, reactive oxygen species (ROS) were examined and it was shown that the nanoparticles elevated ROS levels, which led to lipid peroxidation. In short, the SP-ZnONPs increase the level of ROS, which in turn causes lipid peroxidation results in apoptosis. On the other hand, the SP-ZnONPs decrease nitric oxide level in A549 cells in a dose-dependent manner, which also supports the apoptosis. In conclusion, SP-ZnONPs would become a promising treatment option for lung cancer.
Collapse
|
25
|
Heteronemin and Tetrac Induce Anti-Proliferation by Blocking EGFR-Mediated Signaling in Colorectal Cancer Cells. Mar Drugs 2022; 20:md20080482. [PMID: 36005485 PMCID: PMC9410344 DOI: 10.3390/md20080482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
Overexpressed EGFR and mutant K-Ras play vital roles in therapeutic resistance in colorectal cancer patients. To search for an effective therapeutic protocol is an urgent task. A secondary metabolite in the sponge Hippospongia sp., Heteronemin, has been shown to induce anti-proliferation in several types of cancers. A thyroxine-deaminated analogue, tetrac, binds to integrin αvβ3 to induce anti-proliferation in different cancers. Heteronemin- and in combination with tetrac-induced antiproliferative effects were evaluated. Tetrac enhanced heteronemin-induced anti-proliferation in HT-29 cells (KRAS WT CRC) and HCT-116 cells (KRAS MT CRC). Heteronemin and tetrac arrested cell cycle in different phases. Combined treatment increased the cell accumulation in sub-G1 and S phases. The combined treatment also induced the inactivation of EGFR signaling and downregulated the phosphorylated ERK1/2 protein in both cell lines. Heteronemin and the combination showed the downregulation of the phosphorylated and total PI3K protein in HT-29 cells (KRAS WT CRC). Results by NanoString technology and RT-qPCR revealed that heteronemin and combined treatment suppressed the expression of EGFR and downstream genes in HCT-116 cells (KRAS MT CRC). Heteronemin or combined treatment downregulated genes associated with cancer progression and decreased cell motility. Heteronemin or the combined treatment suppressed PD-L1 expression in both cancer cell lines. However, only tetrac and the combined treatment inhibited PD-L1 protein accumulation in HT-29 cells (KRAS WT CRC) and HCT-116 cells (KRAS MT CRC), respectively. In summary, heteronemin induced anti-proliferation in colorectal cancer cells by blocking the EGFR-dependent signal transduction pathway. The combined treatment further enhanced the anti-proliferative effect via PD-L1 suppression. It can be an alternative strategy to suppress mutant KRAS resistance for anti-EGFR therapy.
Collapse
|