1
|
Chen C, Wang X, Zhao Y, Duan X, Hu Y, Lv Z, He Q, Yangyang Z, Wu G, Luo H, Zuo Q, Hao X, Zhao Y, Ding X, Zhang F. Exosomes inhibit ferroptosis to alleviate intervertebral disc degeneration via the p62-KEAP1-NRF2 pathway. Free Radic Biol Med 2025; 232:171-184. [PMID: 39986487 DOI: 10.1016/j.freeradbiomed.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has been reported to affect the activity of nucleus pulposus (NP) cells in the intervertebral disc (IVD), thereby contributing to intervertebral disc degeneration (IVDD). Exosomes (EXOs), extracellular nanovesicles that participate in intercellular communication, are potential therapeutic options for IVDD. Interestingly, while EXOs play an important role in inhibiting ferroptosis, whether EXOs from mesenchymal stem cells (MSCs) modulate the progression of IVDD through regulating ferroptosis is unclear. To reveal the role of ferroptosis in IVDD, IVD tissues with varying degrees of degeneration were collected and abnormal expression of ferroptosis markers was detected. Ferroptotic death was observed in TBHP-induced NP cell death in vitro, which can be specifically inhibited by the ferroptosis inhibitors DFO and Fer-1. Interestingly, MSC-derived EXOs alleviated TBHP-induced or RSL3-induced ferroptosis and rescued NP cell degeneration. Mechanistically, either an NRF2 inhibitor or p62 knockdown dampened the inhibitory effects of EXOs on ferroptosis, suggesting that EXOs attenuated oxidative stress-induced ferroptosis in NP cells by regulating the p62/KEAP1/NRF2 axis. Moreover, EXOs effectively alleviated IVDD in an in vivo rat model. The current study revealed that ferroptosis is associated with the development of IVDD. MSC-derived EXOs slowed IVDD progression by inhibiting NP cell ferroptosis through the p62/KEAP1/NRF2 signaling pathway, suggesting that EXOs are a potential therapeutic option for IVDD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Xuenan Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xianle Duan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yaoquan Hu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Zhengpin Lv
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Qicong He
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Zijiu Yangyang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Guishuai Wu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Haoyan Luo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Qianlin Zuo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China.
| |
Collapse
|
2
|
Li ZP, Li H, Ruan YH, Wang P, Zhu MT, Fu WP, Wang RB, Tang XD, Zhang Q, Li SL, Yin H, Li CJ, Tian YG, Han RN, Wang YB, Zhang CJ. Stem cell therapy for intervertebral disc degeneration: Clinical progress with exosomes and gene vectors. World J Stem Cells 2025; 17:102945. [DOI: 10.4252/wjsc.v17.i4.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis, extracellular matrix imbalance, and annulus fibrosus rupture. These pathological changes result in disc height loss and functional decline, potentially leading to disc herniation. This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies, with a particular focus on emerging technologies such as exosomes and gene vector systems. Through mechanisms such as differentiation, paracrine effects, and immunomodulation, stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis. Despite recent advancements, clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection. By analyzing recent preclinical and clinical findings, this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.
Collapse
Affiliation(s)
- Zhi-Peng Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Han Li
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua 322100, Zhejiang Province, China
| | - Yu-Hua Ruan
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Peng Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Meng-Ting Zhu
- Department of Neurology, Union Medical College Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Wei-Ping Fu
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Bo Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Dong Tang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Sen-Li Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - He Yin
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Cheng-Jin Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Gong Tian
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Ning Han
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yao-Bin Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chang-Jiang Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
3
|
Xiang M, Zhang G, Liu Y, Liao C, Xiao L, Xiang M, Guan X, Liu J. Polydopamine-functionalized nanohydroxyapatite coated exosomes with enhanced cytocompatibility and osteogenesis for bone regeneration. Biomed Mater Eng 2025; 36:98-109. [PMID: 39973215 DOI: 10.1177/09592989241301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundMesenchymal stem cells-derived exosomes, crucial in regenerative medicine, have been explored for their potential for the functional modification of bone scaffolds.ObjectiveTo design a functionally modified biomimetic nanohydroxyapatite using exosomes and explore its effects on bone regeneration.MethodsA biomimetic nanohydroxyapatite (named as tHA) was fabricated as previous methods using a polydopamine (pDA) structure as a template, and exosomes (Exo) derived from periodontal ligament stem cells (PDLSCs) were used to functionally modify the tHA scaffold material through pDA. The effects of functional composite scaffold (tHA-Exo) on cells proliferation and osteogenic differentiation were investigated. Furthermore, their effect on bone regeneration was also evaluated in vivo.ResultsExosomes can be loaded onto the tHA via pDA and the tHA-Exo releases exosomes in a sustained and stable manner. tHA-Exo showed improved cytocompatibility compared to controls. Additionally, tHA-Exo significantly enhanced the proliferation and osteogenic differentiation of PDLSCs. More importantly, animal experiments have shown that tHA-Exo could dramatically promote bone regeneration.ConclusionThe tHA nanoparticles, functionally modified by the PDLSCs-Exo through pDA, significantly promoted bone regeneration by improving its cytocompatibility and osteogenic potential, which could serve as a promising material for promoting bone regeneration.
Collapse
Affiliation(s)
- Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- GuiZhou University Medical College, Guiyang, China
| | - Gengchao Zhang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yulin Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Meiling Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- GuiZhou University Medical College, Guiyang, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
van Maanen JC, Bach FC, Snuggs JW, Ito K, Wauben MHM, Le Maitre CL, Tryfonidou MA. Explorative Study of Modulatory Effects of Notochordal Cell-Derived Extracellular Vesicles on the IL-1β-Induced Catabolic Cascade in Nucleus Pulposus Cell Pellets and Explants. JOR Spine 2025; 8:e70043. [PMID: 39881783 PMCID: PMC11775941 DOI: 10.1002/jsp2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Background Cell-free regenerative strategies, such as notochordal cell (NC)-derived extracellular vesicles (EVs), are an attractive alternative in developing new therapies for intervertebral disc (IVD) degeneration. NC-EVs have been reported to elicit matrix anabolic effects on nucleus pulposus cells from degenerated IVDs cultured under basal conditions. However, the degenerative process is exacerbated by pro-inflammatory cytokines contributing to the vicious degenerative cycle. Therefore, this study explores whether NC-EVs modulate interleukin (IL)-1β-mediated pro-inflammatory responses in the degenerating disc. Methods This study utilized two IL-1β induced pro-catabolic culture models; a dog 3D nucleus pulposus (NP) cell pellet culture and a human patient-derived, ex vivo NP tissue culture system. Porcine NC-EVs were generated from NC-conditioned medium by differential centrifugation followed by size exclusion chromatography. Donor matched EV-depleted media were generated by overnight ultracentrifugation, whereafter the EV-depleted NCCM supernatant was subjected to size exclusion chromatography. To investigate whether observed effects were EV-associated, NC-EVs conditions were compared to EV-depleted controls in the absence and presence of IL-1β. Results The size and concentration of NC-EVs were quantified by nanoparticle tracking analysis, which showed minimal donor variation and confirmed depletion of EVs in the EV-depleted media. In the IL-1β-induced catabolic cascade, the NC-EVs did not elicit anabolic effects at the matrix level nor did they rescue the pro-catabolic phenotype within dog pellets. Modification of the CCL2 secretion seemed to be context dependent in the human explants: where EVs treatment stimulated CCL2 secretion but in the presence of IL-1β this effect was counteracted. Secretion of IL-6 and C-X-C motif chemokine ligand 1 was significantly decreased in NC-EV + IL-1β vs. control+IL-1β but not compared to EV-depleted human explant controls. Altogether, this data provides evidence for a protective modulatory role of NC-EVs. Considering the homeostatic function EVs exert, inherently encompassing subtle biologic modifications, the current study may have lacked sufficient power to demonstrate statistical significance in a sample set with evident donor variation. Conclusions NC-EVs may modulate the production of specific cytokines and chemokines in human degenerate explants when the key pro-inflammatory cytokine IL-1β is present. Implementation of the technical EV-depleted controls in further studies is essential to robustly demonstrate that these effects are EV-mediated and not associated with other secreted factors co-isolated during EV-isolation.
Collapse
Affiliation(s)
- J. C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - F. C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - J. W. Snuggs
- Division of Clinical Medicine, Faculty of HealthUniversity of SheffieldSheffieldUK
| | - K. Ito
- Orthopedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
- Department of OrthopedicsUniversity Medical Centre UtrechtUtrechtNetherlands
| | - M. H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - C. L. Le Maitre
- Division of Clinical Medicine, Faculty of HealthUniversity of SheffieldSheffieldUK
| | - M. A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| |
Collapse
|
5
|
Yang Q, Chen X, Liu J, He Y. Gelatin-based biomaterials as a delivery strategy for osteosarcoma treatment. Front Pharmacol 2025; 16:1537695. [PMID: 39936088 PMCID: PMC11811086 DOI: 10.3389/fphar.2025.1537695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Although surgery and chemoradiotherapy have made some progress in the treatment of osteosarcoma. However, the high recurrence and metastasis rate of osteosarcoma and bone defects caused by surgery are still the main problems faced by osteosarcoma. Gelatin has excellent biocompatibility and biodegradability, and has made phased progress in tumor treatment. In the treatment of osteosarcoma, gelatin-based biomaterials can be used in delivery strategies to enhance the anti-tumor activity of osteosarcoma and can improve the appropriate compressive strength to improve the bone defects faced after surgery. At present, gelatin-based hydrogels, gelatin scaffolds, and gelatin-based nanoparticles have been reported in preclinical studies. In this article, we introduce the application of gelatin-based biomaterials in the treatment of osteosarcoma, and summarize and look forward to them.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xingpeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yeteng He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
6
|
Chen S, Dou Y, Zhang Y, Sun X, Liu X, Yang Q. Innovating intervertebral disc degeneration therapy: Harnessing the power of extracellular vesicles. J Orthop Translat 2025; 50:44-55. [PMID: 39868351 PMCID: PMC11761297 DOI: 10.1016/j.jot.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Intervertebral disc degeneration is the leading cause of low back pain, imposing significant burdens on patients, societies, and economies. Advancements in regenerative medicine have spotlighted extracellular vesicles as promising nanoparticles for intervertebral disc degeneration treatment. Extracellular vesicles retain the potential of cell therapy and serve as carriers to deliver their cargo to target cells, thereby regulating cell activity. This review summarizes the biogenesis and molecular composition of extracellular vesicles and explores their therapeutic roles in intervertebral disc degeneration treatment through various mechanisms. These mechanisms include mitigating cell loss and senescence, delaying extracellular matrix degeneration, and modulating the inflammatory microenvironment. Additionally, it highlights recent efforts in engineering extracellular vesicles to enhance their targeting and therapeutic efficacy. The integration of extracellular vesicle-based acellular therapy is anticipated to drive significant advancements in disc regenerative medicine. The translational potential of this article Existing clinical treatment strategies often fail to effectively address the challenges associated with regenerating degenerated intervertebral discs. As a new regenerative medicine strategy, the extracellular vesicle strategy avoids the risks associated with cell transplantation and shows great promise in treating intervertebral disc degeneration by carrying therapeutic cargo. This review comprehensively examines the latest research, underlying mechanisms, and therapeutic potential of extracellular vesicles, offering a promising new strategy for intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Shanfeng Chen
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int J Mol Sci 2024; 26:231. [PMID: 39796085 PMCID: PMC11720039 DOI: 10.3390/ijms26010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium. Currently, stem cells commonly used in medicine, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), can differentiate into various human cell types without ethical concerns. When combined with ncRNAs, these stem cells can more effectively induce directed differentiation, promote angiogenesis in the infarcted heart, and replenish normal cardiac cells. Additionally, stem cell-derived exosomes, which contain various ncRNAs, can improve myocardial damage in the infarcted region through paracrine mechanisms. However, our understanding of the specific roles and mechanisms of ncRNAs, stem cells, and exosomes secreted by stem cells during different stages of MI remains limited. Therefore, this review systematically categorizes the different stages of MI, aiming to summarize the direct regulatory effects of ncRNAs on an infarcted myocardium at different points of disease progression. Moreover, it explores the specific roles and mechanisms of stem cell therapy and exosome therapy in this complex pathological evolution process. The objective of this review was to provide novel insights into therapeutic strategies for different stages of MI and open new research directions for the application of stem cells and ncRNAs in the field of MI repair.
Collapse
Affiliation(s)
- Bingqi Zhuang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Chongning Zhong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Yuting Ma
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Ao Wang
- Experimental Teaching Center, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Hailian Quan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| |
Collapse
|
8
|
Tang A, Shu Q, Jia S, Lai Z, Tian J. Adipose Mesenchymal Stem Cell-Derived Exosomes as Nanocarriers for Treating Musculoskeletal Disorders. Int J Nanomedicine 2024; 19:13547-13562. [PMID: 39720215 PMCID: PMC11668248 DOI: 10.2147/ijn.s486622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Musculoskeletal disorders are a series of diseases involving bone, muscle, cartilage, and tendon, mainly caused by chronic strain, degenerative changes, and structural damage due to trauma. The disorders limit the function of patients due to pain and significantly reduce their quality of life. In recent years, adipose-derived mesenchymal stem cells have been extensively applied in regeneration medicine research due to their particular abilities of self-renewal, differentiation, and targeted homing and are more easily accessed compared with other sources. The paracrine effect of ADSCs plays a crucial role in intercellular communication by releasing mass mediators, including cytokines and growth factors, particularly the exosomes they secrete. Not only do these exosomes possess low immunogenicity, low toxicity, and an enhanced ability to penetrate a bio-barrier, but they also inherit their parent cells' characteristics and carry various bioactive molecules to release to targeted cells, modulating their biological process. Meanwhile, these characteristics also make exosomes a natural nanocarrier capable of targeted drug delivery to specific sites, enhancing the bioavailability of drugs within the body and achieving precision therapy with fewer toxic side effects. Furthermore, the integration of exosomes with tissue engineering and chemical modification strategies can also significantly enhance their efficacy in facilitating tissue repair. However, the current research on ADSC-Exos for improving MSDs remains at an early stage and needs further exploration. Therefore, this review summarized the ADSC-Exo as a nanodrug carrier characteristics and mechanism in the treatment of fracture, osteoporosis, osteoarthritis, intervertebral disc degeneration, and tendon injury, which push forward the research progress of ADSC-Exo therapy for MSDs.
Collapse
Affiliation(s)
- Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Shaohui Jia
- College of Sports Medicine, Wuhan Sports University, Wuhan, People’s Republic of China
| | - Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Kalantari L, Hajjafari A, Goleij P, Rezaee A, Amirlou P, Farsad S, Foroozand H, Arefnezhad R, Rezaei-Tazangi F, Jahani S, Yazdani T, Nazari A. Umbilical cord mesenchymal stem cells: A powerful fighter against colon cancer? Tissue Cell 2024; 90:102523. [PMID: 39154502 DOI: 10.1016/j.tice.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Colon cancer (CC) stands as one of the most common malignancies related to the gastrointestinal system, whose increasing incidence and death rates have been reported all over the world. Standard treatments for fighting cancers like CC comprise surgical approaches, chemotherapy, and radiotherapy, which are suggested by clinicians according to patients' conditions and disease stages. However, patients who utilize these modalities may suffer from serious side effects and adverse outcomes, for example, toxicity and tumor recurrence, as well as a low 5-year survival rate. The present shreds of evidence showed that mesenchymal stem cells (MSCs) can have a suitable capacity for treating different health problems, especially neoplasms. These multipotent stem cells can be isolated from several sources, such as the umbilical cord, bone marrow, adipose tissue, and placenta. Among these mesenchymal sources, umbilical cord-MSCs have gathered much attention in scientific societies due to their advantages (e.g., low immunogenicity, lack of ethical problems, and easy collection). These days, the efficacy of umbilical cord-MSCs and umbilical cord-MSCs-based strategies, such as conditioned medium, extracellular vesicles, and exosomes, on CC have been explored, and promising findings have been stated. Therefore, in this review, we aimed to summarize and debate evidence regarding the effects of UC-MSCs and their related products on CC with a focus on molecular and cellular mechanisms involved in its treatment and pathogenesis of this malignant tumor.
Collapse
Affiliation(s)
- Leila Kalantari
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Farsad
- Faculty of Basic Science, Islamic Azad University, Qom, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saleheh Jahani
- Pathology department, University of California, SanDiego, United States
| | - Taha Yazdani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Yang Y, Li J, Xia Z, Tang B, Li Y. Mesenchymal stem cells-derived exosomes alleviate temporomandibular joint disc degeneration in temporomandibular joint disorder. Biochem Biophys Res Commun 2024; 726:150278. [PMID: 38936248 DOI: 10.1016/j.bbrc.2024.150278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Temporomandibular joint (TMJ) disorder (TMD) is a chronic progressive disease that is commonly seen in clinical settings. TMJ disc degeneration is an important manifestation of TMD, and further aggravates the progression of TMD. However, treatments on TMJ disc degeneration are very limited till now. In this study, we first observed the effects of bone marrow stem cells (BMSC) conditioned medium on functions of TMJ disc fibroblasts. Then BMSC-derived small extracellular vesicles (BMSC-EVs) were isolated and exposed to TMJ disc fibroblasts. RNA-sequencing was used to further investigate the mechanisms. BMSC-EVs were finally injected into a rat model with TMD. Results showed that in the transwell co-culture system, the medium derived from BMSC reduced inflammation and enhanced chondrogenesis in TMJ disc fibroblasts. BMSC-EVs promoted proliferation, migration, and chondrogenic differentiation of TMJ disc fibroblasts, and inhibited apoptosis and inflammatory responses. Local injection of BMSC-EVs into the TMD model alleviated TMJ disc degeneration. Therefore, BMSC-EVs were a potentially effective, sustainable and clinically translational-promising option for TMJ disc degeneration, and further reduce the progression of TMD.
Collapse
Affiliation(s)
- Yutao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyi Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Boyu Tang
- Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Tripathi G, Guha L, Kumar H. Seeing the unseen: The role of bioimaging techniques for the diagnostic interventions in intervertebral disc degeneration. Bone Rep 2024; 22:101784. [PMID: 39040156 PMCID: PMC11261287 DOI: 10.1016/j.bonr.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Intervertebral Disc Degeneration is a pathophysiological condition that primarily affects the spinal discs, causing back pain and neurological deficits. It is caused by the contribution of several factors such as genetic predisposition, age-related degeneration, and lifestyle choices like obesity and physical activity. Even though there are medications to treat pain, there is a lack of medicines for a complete cure. The main difficulty lies in poor diagnosis of the morphological and functional changes in the disc. With the ever-increasing research on bioimaging techniques, new techniques are being developed and repurposed to evaluate disc shape and composition, and their defects like thinning or deformities on the disc, leading to the proper diagnostic intervention in intervertebral disc degeneration. In this review, we aim to present a comprehensive overview of the imaging techniques used in the pre-clinical and clinical stages for the diagnosis of intervertebral disc degeneration. First, we will discuss about patho-anatomy and the pathophysiology of degenerative disc disease with the significance and a brief description of various dyes and tracers utilized for bioimaging. Then we will shed light on the latest advancements in diagnostic modalities in intervertebral disc degeneration; concluded by an analysis of the repercussions of the methodologies and experimental systems employed in identifying mechanisms and developing therapeutic strategies in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Gyanoday Tripathi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education And Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education And Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education And Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
13
|
Wu S, Yang T, Ma M, Fan L, Ren L, Liu G, Wang Y, Cheng B, Xia J, Hao Z. Extracellular vesicles meet mitochondria: Potential roles in regenerative medicine. Pharmacol Res 2024; 206:107307. [PMID: 39004243 DOI: 10.1016/j.phrs.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Extracellular vesicles (EVs), secreted by most cells, act as natural cell-derived carriers for delivering proteins, nucleic acids, and organelles between cells. Mitochondria are highly dynamic organelles responsible for energy production and cellular physiological processes. Recent evidence has highlighted the pivotal role of EVs in intercellular mitochondrial content transfer, including mitochondrial DNA (mtDNA), proteins, and intact mitochondria. Intriguingly, mitochondria are crucial mediators of EVs release, suggesting an interplay between EVs and mitochondria and their potential implications in physiology and pathology. However, in this expanding field, much remains unknown regarding the function and mechanism of crosstalk between EVs and mitochondria and the transport of mitochondrial EVs. Herein, we shed light on the physiological and pathological functions of EVs and mitochondria, potential mechanisms underlying their interactions, delivery of mitochondria-rich EVs, and their clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meirui Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Le Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yiqiao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
14
|
Li C, Li B, Han M, Tian H, Gao J, Han D, Ling Z, Jing Y, Li N, Hua J. SPARC overexpression in allogeneic adipose-derived mesenchymal stem cells in dog dry eye model induced by benzalkonium chloride. Stem Cell Res Ther 2024; 15:195. [PMID: 38956738 PMCID: PMC11218109 DOI: 10.1186/s13287-024-03815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Nowadays, companion and working dogs hold significant social and economic importance. Dry eye, also known as dry keratoconjunctivitis (KCS), a common disease in ophthalmology, can readily impact a dog's working capacity and lead to economic losses. Although there are several medications available for this disease, all of them only improve the symptoms on the surface of the eye, and they are irritating and not easy to use for long periods of time. Adipose-derived mesenchymal stem cells (ADMSC) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of ADMSC. Here, we aimed to use ADMSC overexpressing Secreted Protein Acidic and Rich in Cysteine (SPARC) to treat 0.25% benzalkonium chloride-treated dogs with dry eye to verify its efficacy. For in vitro validation, we induced corneal epithelial cell (HCECs) damage using 1 µg/mL benzalkonium chloride. METHODS Fifteen male crossbred dogs were randomly divided into five groups: normal, dry eye self-healing control, cyclosporine-treated, ADMSC-CMV-treated and ADMSC-OESPARC-treated. HCECs were divided into four groups: normal control group, untreated model group, ADMSC-CMV supernatant culture group and ADMSC-OESRARC supernatant culture group. RESULTS SPARC-modified ADMSC had the most significant effect on canine ocular surface inflammation, corneal injury, and tear recovery, and the addition of ADMSC-OESPARC cell supernatant also had a salvage effect on HCECs cellular damage, such as cell viability and cell proliferation ability. Moreover, analysis of the co-transcriptome sequencing data showed that SPARC could promote corneal epithelial cell repair by enhancing the in vitro viability, migration and proliferation and immunosuppression of ADMSC. CONCLUSION The in vitro cell test and in vivo model totally suggest that the combination of SPARC and ADMSC has a promising future in novel dry eye therapy.
Collapse
Affiliation(s)
- Chenchen Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Miao Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongkai Tian
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaqi Gao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongyao Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zixi Ling
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanxiang Jing
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Yang X, Zhang S, Lu J, Chen X, Zheng T, He R, Ye C, Xu J. Therapeutic potential of mesenchymal stem cell-derived exosomes in skeletal diseases. Front Mol Biosci 2024; 11:1268019. [PMID: 38903180 PMCID: PMC11187108 DOI: 10.3389/fmolb.2024.1268019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Skeletal diseases impose a considerable burden on society. The clinical and tissue-engineering therapies applied to alleviate such diseases frequently result in complications and are inadequately effective. Research has shifted from conventional therapies based on mesenchymal stem cells (MSCs) to exosomes derived from MSCs. Exosomes are natural nanocarriers of endogenous DNA, RNA, proteins, and lipids and have a low immune clearance rate and good barrier penetration and allow targeted delivery of therapeutics. MSC-derived exosomes (MSC-exosomes) have the characteristics of both MSCs and exosomes, and so they can have both immunosuppressive and tissue-regenerative effects. Despite advances in our knowledge of MSC-exosomes, their regulatory mechanisms and functionalities are unclear. Here we review the therapeutic potential of MSC-exosomes for skeletal diseases.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Xiaoling Chen
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Tian Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Gupta A. Exosomes for the Management of Low Back Pain: A Review of Current Clinical Evidence. Cureus 2024; 16:e57539. [PMID: 38707134 PMCID: PMC11068073 DOI: 10.7759/cureus.57539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Low back pain affects millions of people, creating an enormous financial burden on the global healthcare system. Traditional treatment modalities are short-lived and have shortcomings. Recently, orthobiologics, including extracellular vesicles or exosomes derived from mesenchymal stem cells, have markedly increased for managing musculoskeletal conditions. Here, the primary aim is to review the outcomes of clinical studies using extracellular vesicles or exosomes for treating low back pain. Numerous databases (Scopus, PubMed, Web of Science, Embase, and Google Scholar) were searched using terms for the intervention 'exosomes' and the treatment 'low back pain' for studies published in English to March 18, 2024. Articles utilizing exosomes for the management of low back pain were included. Articles not utilizing exosomes, not explicitly stating the presence of exosomes in their formulation, or not targeting low back pain were excluded. Two articles that met our pre-defined criteria were included in this review. The results showed that administering extracellular vesicles or exosomes is safe and potentially effective in patients suffering from low back pain. Yet, more sufficiently powered, multi-center, prospective, randomized, and non-randomized trials with longer follow-up are essential to assess the long-term safety and efficacy of extracellular vesicles or exosomes derived from various sources and to support its routine clinical use for managing low back pain.
Collapse
Affiliation(s)
- Ashim Gupta
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
- Regenerative Medicine, BioIntegrate, Lawrenceville, USA
- Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, USA
- Regenerative Medicine and Orthopaedics, Regenerative Orthopaedics, Noida, IND
| |
Collapse
|
18
|
Munda M, Velnar T. Stem cell therapy for degenerative disc disease: Bridging the gap between preclinical promise and clinical potential. BIOMOLECULES & BIOMEDICINE 2024; 24:210-218. [PMID: 37669102 PMCID: PMC10950333 DOI: 10.17305/bb.2023.9518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Stem cell therapy has gained attention in the field of regenerative medicine due to its potential to restore damaged tissue. This article focuses on the application of stem cell therapy for treating spinal pathologies, particularly intervertebral disc degeneration. Disc degeneration is a major cause of low back pain and is characterized by changes in the matrix and inflammation. Animal studies have demonstrated that the implantation of mesenchymal stem cells (MSCs) yields promising results, including increased disc height, improved hydration, and reduced inflammation. However, the number of clinical trials remains limited, necessitating further research to optimize MSCs therapy. Although preclinical studies offer valuable insights, caution is needed when extrapolating these findings to clinical practice. Stem cell therapy still faces multiple challenges, such as the durability and survival of MSCs upon implantation, uncertain pathways to discogenic differentiation, and the adverse impact of a harsh microenvironment on cell survival. The avascular nature of the intervertebral disc and dynamic loading conditions also affect the adaptation of transplanted cells. Despite these obstacles, stem cell therapy holds promise as a potential treatment for disc degeneration, and ongoing research aims to fill the current gap in conclusive data.
Collapse
Affiliation(s)
- Matic Munda
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- AMEU-AMC Maribor, Maribor, Slovenia
| |
Collapse
|
19
|
Yang S, Zhang Y, Peng Q, Meng B, Wang J, Sun H, Chen L, Dai R, Zhang L. Regulating pyroptosis by mesenchymal stem cells and extracellular vesicles: A promising strategy to alleviate intervertebral disc degeneration. Biomed Pharmacother 2024; 170:116001. [PMID: 38128182 DOI: 10.1016/j.biopha.2023.116001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain (LBP), which can lead to disability and thus generate a heavy burden on society. IVDD is characterized by a decrease in nucleus pulposus cells (NPCs) and endogenous mesenchymal stem cells (MSCs), degradation of the extracellular matrix, macrophage infiltration, and blood vessel and nerve ingrowth. To date, the therapeutic approaches regarding IVDD mainly include conservative treatment and surgical intervention. However, both can only relieve symptoms rather than stop or revert the progression of IVDD, since the pathogenesis of IVDD is not yet clear. Pyroptosis, which is characterized by Caspase family dependence and conducted by the Gasdermin family, is a newly discovered mode of programmed cell death. Pyroptosis has been observed in NPCs, annulus fibrosus cells (AFCs), chondrocytes, MSCs, macrophages, vascular endothelial cells and neurons and may contribute to IVDD. MSCs are a kind of pluripotent stem cell that can be found in almost all tissues. MSCs have a strong ability to secrete extracellular vesicles (EVs), which contain exosomes, microvesicles and apoptotic bodies. EVs derived from MSCs play an important role in pyroptosis regulation and could be beneficial for alleviating IVDD. This review focuses on clarifying the regulation of pyroptosis to improve IVDD by MSCs and EVs derived from MSCs.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Yongbo Zhang
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Qing Peng
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Bo Meng
- Department of Orthopedics, Graduate School of Dalian Medical University, Dalian 116044, China
| | - Jiabo Wang
- Department of Orthopedics, Huai'an 82 Hospital, Huai'an 223003, China
| | - Hua Sun
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liuyang Chen
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Rui Dai
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
20
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
21
|
Xie G, Wu T, Ji G, Wu H, Lai Y, Wei B, Huang W. Circular RNA and intervertebral disc degeneration: unravelling mechanisms and implications. Front Mol Biosci 2023; 10:1302017. [PMID: 38192334 PMCID: PMC10773835 DOI: 10.3389/fmolb.2023.1302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Low back pain (LBP) is a major public health problem worldwide and a significant health and economic burden. Intervertebral disc degeneration (IDD) is the reason for LBP. However, we have not identified effective therapeutic strategies to address this challenge. With accumulating knowledge on the role of circular RNAs in the pathogenesis of IDD, we realised that circular RNAs (circRNAs) may have tremendous therapeutic potential and clinical application prospects in this field. This review presents an overview of the current understanding of characteristics, classification, biogenesis, and function of circRNAs and summarises the protective and detrimental circRNAs involved in the intervertebral disc that have been studied thus far. This review is aimed to help researchers better understand the regulatory role of circRNAs in the progression of IDD, reveal their clinical therapeutic potential, and provide a theoretical basis for the prevention and targeted treatment of IDD.
Collapse
Affiliation(s)
- Guohao Xie
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangju Ji
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lai
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Wang X, Tian H, Yang X, Zhao H, Liang X, Li Y. Mesenchymal Stem Cells‐Derived Extracellular Vesicles in Orthopedic Diseases: Recent Advances and Therapeutic Potential. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 01/06/2025]
Abstract
AbstractEver since the first application of mesenchymal stem cell (MSC) transplantation treating human hematologic malignancies in 1995, MSC‐based treatments have demonstrated great therapeutic potential in clinical settings. However, only a few MSC‐based cell therapy products have been clinically approved. Accumulating evidence suggests that the beneficial effects of MSCs are mainly attributed to the release of paracrine factors or extracellular vesicles (EVs) rather than their mesodermal differentiation potential. Therefore, MSC‐derived EVs (MSC‐EVs), such as exosomes and microvesicles, have merged as promising alternatives to traditional cell‐based therapeutics in clinical practice. They offer several advantages such as better safety, lower immunogenicity, protection of cargoes from degradation, and the ability to overcome biological barriers. Moreover, there have been multiple clinical studies exploring the potential of MSC‐EVs for treating various diseases, including orthopedic disorders. However, there is no definitive “cure” for conditions such as osteoporosis and other bone disorders, but MSC‐EVs have displayed significant therapeutic potential for these orthopedic ailments. Therefore, the objective of this study is to conduct a systematic review of current knowledge related to MSC‐EVs and emphasize their potential application in treating orthopedic diseases, such as bone defects, osteoarthritis, osteoporosis, intervertebral disc degeneration, osteosarcoma, and osteoradionecrosis.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Haodong Tian
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Xiaojun Liang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| |
Collapse
|
23
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
24
|
Zhang QX, Cui M. How to enhance the ability of mesenchymal stem cells to alleviate intervertebral disc degeneration. World J Stem Cells 2023; 15:989-998. [PMID: 38058958 PMCID: PMC10696189 DOI: 10.4252/wjsc.v15.i11.989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Intervertebral disc (ID) degeneration (IDD) is one of the main causes of chronic low back pain, and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID. The environment in which the ID is located is harsh, with almost no vascular distribution within the disc, and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate. The stability of its internal environment also plays an important role in preventing IDD. The main feature of disc degeneration is a decrease in the number of cells. Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner. The main purpose is to promote their regeneration. The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix. The treatment of disc degeneration with stem cells has achieved good efficacy, and the current challenge is how to improve this efficacy. Here, we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles, enhancement of therapeutic effects when stem cells are mixed with related substances, and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions. We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges.
Collapse
Affiliation(s)
- Qing-Xiang Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430048, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
25
|
Maraldi T, Russo V. Amniotic Fluid and Placental Membranes as Sources of Stem Cells: Progress and Challenges 2.0. Int J Mol Sci 2023; 24:16020. [PMID: 38003210 PMCID: PMC10671515 DOI: 10.3390/ijms242216020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the second edition of this Special Issue was to collect both review and original research articles that investigate and elucidate the possible therapeutic role of perinatal stem cells in pathological conditions, such as cardiovascular and metabolic diseases, as well as inflammatory, autoimmune, musculoskeletal, and degenerative diseases [...].
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
| | - Valentina Russo
- Faculty of Bioscience and Agro-Food and Environmental Technology, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
26
|
Hou Y, Wang J, Wang J. Engineered biomaterial delivery strategies are used to reduce cardiotoxicity in osteosarcoma. Front Pharmacol 2023; 14:1284406. [PMID: 37854721 PMCID: PMC10579615 DOI: 10.3389/fphar.2023.1284406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. Chemotherapy drugs play an integral role in OS treatment. Preoperative neoadjuvant chemotherapy and postoperative conventional adjuvant chemotherapy improve survival in patients with OS. However, the toxic side effects of chemotherapy drugs are unavoidable. Cardiotoxicity is one of the common side effects of chemotherapy drugs that cannot be ignored. Chemotherapy drugs affect the destruction of mitochondrial autophagy and mitochondria-associated proteins to cause a decrease in cardiac ejection fraction and cardiomyocyte necrosis, which in turn causes heart failure and irreversible cardiomyopathy. Biomaterials play an important role in nanomedicine. Biomaterials act as carriers to deliver chemotherapy drugs precisely around tumor cells and continuously release carriers around the tumor. It not only promotes anti-tumor effects but also reduces the cardiotoxicity of chemotherapy drugs. In this paper, we first introduce the mechanism by which chemotherapy drugs commonly used in OS cause cardiotoxicity. Subsequently, we introduce biomaterials for reducing cardiotoxicity in OS chemotherapy. Finally, we prospect biomaterial delivery strategies to reduce cardiotoxicity in OS.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| |
Collapse
|
27
|
Jia Z, Zhang S, Li W. Harnessing Stem Cell-Derived Extracellular Vesicles for the Regeneration of Degenerative Bone Conditions. Int J Nanomedicine 2023; 18:5561-5578. [PMID: 37795043 PMCID: PMC10546935 DOI: 10.2147/ijn.s424731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Degenerative bone disorders such as intervertebral disc degeneration (IVDD), osteoarthritis (OA), and osteoporosis (OP) pose significant health challenges for aging populations and lack effective treatment options. The field of regenerative medicine holds promise in addressing these disorders, with a focus on utilizing extracellular vesicles (EVs) derived from stem cells as an innovative therapeutic approach. EVs have shown great potential in stimulating biological responses, making them an attractive candidate for rejuvenating degenerative bone disorders. However, a comprehensive review summarizing the current state of this field and providing a clear assessment of EV-based therapies in degenerative bone disorders is currently deficient. In this review, we aim to fill the existing gap by outlining the current knowledge on the role of EVs derived from different types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, in bone regeneration. Furthermore, we discuss the therapeutic potential of EV-based treatments for IVDD, OA, and OP. By substantiating the use of stem cell-derived EVs, we highlight their promising potential as a cell-free strategy to improve degenerative bone disorders.
Collapse
Affiliation(s)
- Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101100, People’s Republic of China
| | - Shunxin Zhang
- Department of Ultrasound, 2nd Medical Center of PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
28
|
Zhang H, Luo P, Huang X. Engineered nanomaterials enhance drug delivery strategies for the treatment of osteosarcoma. Front Pharmacol 2023; 14:1269224. [PMID: 37670948 PMCID: PMC10475588 DOI: 10.3389/fphar.2023.1269224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in adolescents, and the clinical treatment of OS mainly includes surgery, radiotherapy, and chemotherapy. However, the side effects of chemotherapy drugs are an issue that clinicians cannot ignore. Nanomedicine and drug delivery technologies play an important role in modern medicine. The development of nanomedicine has ushered in a new turning point in tumor treatment. With the emergence and development of nanoparticles, nanoparticle energy surfaces can be designed with different targeting effects. Not only that, nanoparticles have unique advantages in drug delivery. Nanoparticle delivery drugs can not only reduce the toxic side effects of chemotherapy drugs, but due to the enhanced permeability retention (EPR) properties of tumor cells, nanoparticles can survive longer in the tumor microenvironment and continuously release carriers to tumor cells. Preclinical studies have confirmed that nanoparticles can effectively delay tumor growth and improve the survival rate of OS patients. In this manuscript, we present the role of nanoparticles with different functions in the treatment of OS and look forward to the future treatment of improved nanoparticles in OS.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Ping Luo
- Science and Technology Education Section, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Xiaojun Huang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| |
Collapse
|
29
|
Soufi KH, Castillo JA, Rogdriguez FY, DeMesa CJ, Ebinu JO. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108893. [PMID: 37240236 DOI: 10.3390/ijms24108893] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Back pain is the single leading cause of disability worldwide. Despite the prevalence and morbidity of lower back pain, we still lack a gold-standard treatment that restores the physiological function of degenerated intervertebral discs. Recently, stem cells have emerged as a promising strategy for regenerative therapy for degenerative disc disease. In this study, we review the etiology, pathogenesis, and developing treatment strategies for disc degeneration in low back pain with a focus on regenerative stem cell therapies. A systematic search of PubMed/MEDLINE/Embase/Clinical Trials.gov databases was conducted for all human subject abstracts or studies. There was a total of 10 abstracts and 11 clinical studies (1 RCT) that met the inclusion criteria. The molecular mechanism, approach, and progress of the different stem cell strategies in all studies are discussed, including allogenic bone marrow, allogenic discogenic cells, autologous bone marrow, adipose mesenchymal stem cells (MSCs), human umbilical cord MSC, adult juvenile chondrocytes, autologous disc derived chondrocytes, and withdrawn studies. Clinical success with animal model studies is promising; however, the clinical outcomes of stem cell regenerative therapy remain poorly understood. In this systematic review, we found no evidence to support its use in humans. Further studies on efficacy, safety, and optimal patient selection will establish whether this becomes a viable, non-invasive therapeutic option for back pain.
Collapse
Affiliation(s)
- Khadija H Soufi
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Jose A Castillo
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Freddie Y Rogdriguez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Charles J DeMesa
- Department of Anesthesia and Pain Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Julius O Ebinu
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
31
|
Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol 2023; 14:1141601. [PMID: 36911700 PMCID: PMC9999104 DOI: 10.3389/fimmu.2023.1141601] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) has considerable impact on patient physical, mental, and financial health. Secondary SCI is associated with inflammation, vascular destruction, and subsequent permanent damage to the nervous system. Mesenchymal stem cells (MSCs) have anti-inflammatory properties, promoting vascular regeneration and the release neuro-nutrients, and are a promising strategy for the treatment of SCI. Preclinical studies have shown that MSCs promote sensory and motor function recovery in rats. In clinical trials, MSCs have been reported to improve the American Spinal Injury Association (ASIA) sensory and motor scores. However, the effectiveness of MSCs in treating patients with SCI remains controversial. MSCs promote tumorigenesis and ensuring the survival of MSCs in the hostile environment of SCI is challenging. In this article we examine the evidence on the pathophysiological changes occurring after SCI. We then review the underlying mechanisms of MSCs in the treatment of SCI and summarize the potential application of MSCs in clinical practice. Finally, we highlight the challenges surrounding the use of MSCs in the treatment of SCI and discuss future applications.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| |
Collapse
|
32
|
Takedachi M, Kawasaki K, Sawada K, Sakura K, Murata M, Shimomura J, Kawakami K, Morimoto C, Miki K, Takeshita N, Iwayama T, Okura H, Matsuyama A, Saito M, Kitamura M, Murakami S. Periodontal Tissue Regeneration by Transplantation of Autologous Adipose Tissue-Derived Multi-Lineage Progenitor Cells With Carbonate Apatite. Cell Transplant 2023; 32:9636897231198296. [PMID: 37710973 PMCID: PMC10503283 DOI: 10.1177/09636897231198296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
We have developed an autologous transplantation method using adipose tissue-derived multi-lineage progenitor cells (ADMPCs) as a method of periodontal tissue regeneration that can be adapted to severe periodontal disease. Our previous clinical study confirmed the safety of autologous transplantation of ADMPCs and demonstrated its usefulness in the treatment of severe periodontal disease. However, in the same clinical study, we found that the fibrin gel used as the scaffold material might have caused gingival recession and impaired tissue regeneration in some patients. Carbonate apatite has a high space-making capacity and has been approved in Japan for periodontal tissue regeneration. In this study, we selected carbonate apatite as a candidate scaffold material for ADMPCs and conducted an in vitro examination of its effect on the cellular function of ADMPCs. We further performed autologous ADMPC transplantation with carbonate apatite as the scaffold material in a model of one-wall bone defects in beagles and then analyzed the effect on periodontal tissue regeneration. The findings showed that carbonate apatite did not affect the cell morphology of ADMPCs and that it promoted proliferation. Moreover, no effect on secretor factor transcription was found. The results of the in vivo analysis confirmed the space-making capacity of carbonate apatite, and the acquisition of significant new attachment was observed in the group involving ADMPC transplantation with carbonate apatite compared with the group involving carbonate apatite application alone. Our results demonstrate the usefulness of carbonate apatite as a scaffold material for ADMPC transplantation.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Keigo Sawada
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuma Sakura
- Department of Medical Innovation, Osaka University Hospital, Suita, Japan
| | - Mari Murata
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Junpei Shimomura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuma Kawakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Chiaki Morimoto
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Koji Miki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Noboru Takeshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hanayuki Okura
- Center for Reverse Translational Research, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Habikino, Japan
- Adipo Medical Technology, Osaka, Japan
- Institute of Innovative Medical Technology, Osaka. Japan
| | - Akifumi Matsuyama
- Center for Reverse Translational Research, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Habikino, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Kitamura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
33
|
Xia Y, Yang R, Wang H, Hou Y, Li Y, Zhu J, Xu F, Fu C. Biomaterials delivery strategies to repair spinal cord injury by modulating macrophage phenotypes. J Tissue Eng 2022; 13:20417314221143059. [PMID: 36600997 PMCID: PMC9806413 DOI: 10.1177/20417314221143059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) causes tremendous harm to a patient's physical, mental, and financial health. Moreover, recovery of SCI is affected by many factors, inflammation is one of the most important as it engulfs necrotic tissue and cells during the early stages of injury. However, excessive inflammation is not conducive to damage repair. Macrophages are classified into either blood-derived macrophages or resident microglia based on their origin, their effects on SCI being two-sided. Microglia first activate and recruit blood-derived macrophages at the site of injury-blood-borne macrophages being divided into pro-inflammatory M1 phenotypes and anti-inflammatory M2 phenotypes. Among them, M1 macrophages secrete inflammatory factors such as interleukin-β (IL-β), tumor necrosis factor-α (TNF-α), IL-6, and interferon-γ (IFN-γ) at the injury site, which aggravates SCIs. M2 macrophages secrete IL-4, IL-10, IL-13, and neurotrophic factors to inhibit the inflammatory response and inhibit neuronal apoptosis. Consequently, modulating phenotypic differentiation of macrophages appears to be a meaningful therapeutic target for the treatment of SCI. Biomaterials are widely used in regenerative medicine and tissue engineering due to their targeting and bio-histocompatibility. In this review, we describe the effects of biomaterials applied to modulate macrophage phenotypes on SCI recovery and provide an outlook.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Ruohan Yang
- Cancer Center, The First Hospital of
Jilin University, Changchun, PR China
| | - Hengyi Wang
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Yulin Hou
- Depattment of Cardiology, Guangyuan
Central Hospital, Guangyuan, PR China
| | - Yuehong Li
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Jianshu Zhu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Feng Xu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Changfeng Fu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China,Changfeng Fu, Department of Spine Surgery,
The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR
China.
| |
Collapse
|
34
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|