1
|
Akbari Oryani M, Tarin M, Rahnama Araghi L, Rastin F, Javid H, Hashemzadeh A, Karimi-Shahri M. Synergistic cancer treatment using porphyrin-based metal-organic Frameworks for photodynamic and photothermal therapy. J Drug Target 2025; 33:473-491. [PMID: 39618308 DOI: 10.1080/1061186x.2024.2433551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
Recent advancements in multifunctional nanomaterials for cancer therapy have highlighted porphyrin-based metal-organic frameworks (MOFs) as promising candidates due to their unique properties and versatile applications. This overview focuses on the use of porphyrin-based MOFs for combined photodynamic therapy (PDT) and photothermal therapy (PTT) in cancer treatment. Porphyrin-based MOFs offer high porosity, tuneable structures, and excellent stability, making them ideal for drug delivery and therapeutic applications. The incorporation of porphyrin molecules into the MOF framework enhances light absorption and energy transfer, leading to improved photodynamic and photothermal effects. Additionally, the porosity of MOFs allows for the encapsulation of therapeutic agents, further enhancing efficacy. In PDT, porphyrin-based MOFs generate reactive oxygen species (ROS) upon light activation, destroying cancer cells. The photothermal properties enable the conversion of light energy into heat, resulting in localised hyperthermia and tumour ablation. The combination of PDT and PTT in a single platform offers synergistic effects, leading to better therapeutic outcomes, reduced side effects, and improved selectivity. This dual-modal treatment strategy provides precise spatiotemporal control over the treatment process, paving the way for next-generation therapeutics with enhanced efficacy and reduced side effects. Further research and optimisation are needed for clinical applications.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Rahnama Araghi
- Department of Biotechnology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Dutta B, Datta S, Mir MH. Photoresponsive metal-organic framework materials for advance applications. Chem Commun (Camb) 2024; 60:9149-9162. [PMID: 39104303 DOI: 10.1039/d4cc02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The interaction between light and materials produces a range of phenomena within molecular systems, leading to advanced applications in the field of materials science. In this regard, metal-organic framework (MOF) materials have become superior candidates to others because of their easy tailor-made synthetic methods via incorporation of photoactive moieties into their structural assembly. Photoresponsive MOFs exhibit a massive variety of exciting properties, including photochromism, photomagnetism, photoluminescence, photon up or down conversion, photoconductivity, nonlinear optical properties, photosalient effects and photoinduced switching of conformations. These photoresponsive properties of MOFs regulate different potential applications, such as on-demand gas sorption and separation, optical sensing, fabrication of photoactuators and photosensing electronic devices, dye degradation, catalysis, cargo delivery, ink-free erasable printing, bio-imaging and drug delivery in biological systems. Therefore, judicious crystal engineering along with an understanding of their structure-property relationship will lead to the fabrication of desired photosensitive MOFs. Herein, we attempted to incorporate categorical descriptions based on advanced applications of photoresponsive MOFs considering a wide range of recent publications.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | | |
Collapse
|
3
|
Liu C, Tian C, Guo J, Zhang X, Wu L, Zhu L, Du B. Research Progress of Metal-Organic Frameworks as Drug Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43156-43170. [PMID: 39132713 DOI: 10.1021/acsami.4c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Metal-organic frameworks (MOFs) are composite crystalline materials created through the coordination of metal ions and organic ligands. MOFs have attracted extensive attention in the biomedical field based on the advantages of internal porosity, customizable porosity, and facile surface modification. This review examines the utilization of MOFs in drug delivery systems, focusing on the research progress from the aspects of coloading drug systems, intelligent responsive carriers, biological macromolecule stabilizers, self-driving micro/nanomotors, and multifunctional living carriers. In addition, the current challenges the research faces are also discussed. The review aims to provide a reference for the further application of MOFs as advanced drug delivery systems.
Collapse
Affiliation(s)
- Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Xiaodi Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ligang Wu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ling Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
4
|
Ma C, Cheng Z, Tan H, Wang Y, Sun S, Zhang M, Wang J. Nanomaterials: leading immunogenic cell death-based cancer therapies. Front Immunol 2024; 15:1447817. [PMID: 39185425 PMCID: PMC11341423 DOI: 10.3389/fimmu.2024.1447817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.
Collapse
Affiliation(s)
- Changyu Ma
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Yihan Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Shuzhan Sun
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Mingxiao Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Sun X, Liu W, Cui H, Zhou J, Chen X, Yang H, Wang J. Multifunctional Lanthanide Metal-Organic Frameworks Are Used for Fluorescence Sensing of Bi 3+, HPO 42-, Flu, and PNBA and Application. Inorg Chem 2024; 63:13506-13515. [PMID: 38991196 DOI: 10.1021/acs.inorgchem.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Using a nitrogen-containing tricarboxylic acid ligand (imidazole-1-yl) benzene-2,4,6-tricarboxylic acid (H3ttc) and lanthanide metal elements (Dy, Eu, Nd, and Gd), four lanthanide metal organic frameworks (Ln-MOFs) with the same structure, namely, {[Dy2 (Httc)3]·1.5DMF}n(1), {[Eu2 (Httc)3]·1.5DMF}n(2), {[Nd2 (Httc)3]·1.5DMF}n(3), and {[Gd2 (Httc)3]·1.5DMF}n(4), were synthesized under solvothermal conditions. The characterization analysis showed that the four isomorphic Ln-MOFs were trigonal crystals of the R3̅c space group, with good phase purity and thermal stability. Fluorescence analysis showed that complex 1 can be an excellent fluorescence sensor for Bi3+, HPO42-, and fluridine (Flu), while complex 2 can be an excellent fluorescence sensor for p-nitrobenzoic acid (PNBA). And their sensing mechanisms were discussed in detail. The fluorescent test paper and fluorescent seal were prepared by using the excellent luminescence properties of 1 and 2, and the pesticide on the surface of cherry tomato was detected. The applicability of these MOFs as fluorescence sensors was proved. Therefore, Ln-MOFs are expected to have unpredictable application prospects in the field of environmental detection.
Collapse
Affiliation(s)
- Xuehua Sun
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Wen Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Huali Cui
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Jie Zhou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiaoli Chen
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Hua Yang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Jijiang Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| |
Collapse
|
6
|
Wang Y, Gao N, Li X, Ling G, Zhang P. Metal organic framework-based variable-size nanoparticles for tumor microenvironment-responsive drug delivery. Drug Deliv Transl Res 2024; 14:1737-1755. [PMID: 38329709 DOI: 10.1007/s13346-023-01500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/09/2024]
Abstract
Nanoparticles (NPs) have been designed for the treatment of tumors increasingly. However, the drawbacks of single-size NPs are still worth noting, as their circulation and metabolism in the blood are negatively correlated with their accumulation at the tumor site. If the size of single-size NPs is too small, it will be quickly cleared in the blood circulation, while, the size is too large, the distribution of NPs in the tumor site will be reduced, and the widespread distribution of NPs throughout the body will cause systemic toxicity. Therefore, a class of variable-size NPs with metal organic frameworks (MOFs) as the main carrier, and size conversion in compliance with the characteristics of the tumor microenvironment (TME), was designed. MOF-based variable-size NPs can simultaneously extend the time of blood circulation and metabolism, then enhance the targeting ability of the tumor site. In this review, MOF NPs are categorized and exemplified from a new perspective of NP size variation; the advantages, mechanisms, and significance of MOF-based variable-size NPs were summarized, and the potential and challenges in delivering anti-tumor drugs and multimodal combination therapy were discussed.
Collapse
Affiliation(s)
- Yu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
7
|
Zhang J, Liu J, Huang Y, Yan L, Xu S, Zhang G, Pei L, Yu H, Zhu X, Han X. Current role of magnetic resonance imaging on assessing and monitoring the efficacy of phototherapy. Magn Reson Imaging 2024; 110:149-160. [PMID: 38621553 DOI: 10.1016/j.mri.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Phototherapy, also known as photobiological therapy, is a non-invasive and highly effective physical treatment method. Its broad use in clinics has led to significant therapeutic results. Phototherapy parameters, such as intensity, wavelength, and duration, can be adjusted to create specific therapeutic effects for various medical conditions. Meanwhile, Magnetic Resonance Imaging (MRI), with its diverse imaging sequences and excellent soft-tissue contrast, provides a valuable tool to understand the therapeutic effects and mechanisms of phototherapy. This review explores the clinical applications of commonly used phototherapy techniques, gives a brief overview of how phototherapy impacts different diseases, and examines MRI's role in various phototherapeutic scenarios. We argue that MRI is crucial for precise targeting, treatment monitoring, and prognosis assessment in phototherapy. Future research and applications will focus on personalized diagnosis and monitoring of phototherapy, expanding its applications in treatment and exploring multimodal imaging technology to enhance diagnostic and therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, PR China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Huachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China.
| |
Collapse
|
8
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Zheng M, Li R, Wang J, Huang Y, Han M, Li Z. Application of metal–organic frameworks in stomatology. AIP ADVANCES 2024; 14. [DOI: 10.1063/5.0206476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metal–organic frameworks (MOFs), a new class of porous organic–organic hybrid materials controlled by self-assembly of metal atoms and organic pillars, are attracting considerable interest because of their specific properties. More recently, the advantages of different types of nanoscale metal–organic frameworks for the use of MOF nanoparticles in stomatology have been reported in the literature. This article covers the treatment of oral cancer, surface modification of implants, antibacterial dressings, and treatment of periodontitis and periodontal regeneration. It presents recent applications, future challenges, and prospects for MOFs in stomatology in four areas. It provides an overview of recent advances in the design and application of MOFs in stomatology from their intrinsic properties to different syntheses and their use as smart drug delivery systems or a combination of these.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| |
Collapse
|
10
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
11
|
Xiao G, Zhao Y, Wang X, Zeng C, Luo F, Jing J. Photothermally sensitive gold nanocage augments the antitumor efficiency of immune checkpoint blockade in immune "cold" tumors. Front Immunol 2023; 14:1279221. [PMID: 37942337 PMCID: PMC10628457 DOI: 10.3389/fimmu.2023.1279221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Immune checkpoint blockade (ICB) has revolutionized the therapy landscape of malignancy melanoma. However, the clinical benefits from this regimen remain limited, especially in tumors lacking infiltrated T cells (known as "cold" tumors). Nanoparticle-mediated photothermal therapy (PTT) has demonstrated improved outcomes in the ablation of solid tumors by inducing immunogenic cell death (ICD) and reshaping the tumor immune microenvironment. Therefore, the combination of PTT and ICB is a promising regimen for patients with "cold" tumors. Methods A second near-infrared (NIR-II) light-activated gold nanocomposite AuNC@SiO2@HA with AuNC as a kernel, silica as shell, and hyaluronic acid (HA) polymer as a targeting molecule, was synthesized for PTT. The fabricated AuNC@SiO2@HA nanocomposites underwent various in vitro studies to characterize their physicochemical properties, light absorption spectra, photothermal conversion ability, cellular uptake ability, and bioactivities. The synergistic effect of AuNC@SiO2@HA-mediated PTT and anti-PD-1 immunotherapy was evaluated using a mouse model of immune "cold" melanoma. The tumor-infiltrating T cells were assessed by immunofluorescence staining and flow cytometry. Furthermore, the mechanism of AuNC@SiO2@HA-induced T-cell infiltration was investigated through immunochemistry staining of the ICD-related markers, including HSP70, CRT, and HMGB1. Finally, the safety of AuNC@SiO2@HA nanocomposites was evaluated in vivo. Results The AuNC@SiO2@HA nanocomposite with absorption covering 1064 nm was successfully synthesized. The nano-system can be effectively delivered into tumor cells, transform the optical energy into thermal energy upon laser irradiation, and induce tumor cell apoptosis in vitro. In an in vivo mouse melanoma model, AuNC@SiO2@HA nanocomposites significantly induced ICD and T-cell infiltration. The combination of AuNC@SiO2@HA and anti-PD-1 antibody synergistically inhibited tumor growth via stimulating robust T lymphocyte immune responses. Discussion The combination of AuNC@SiO2@HA-mediated PTT and anti-PD-1 immunotherapy proposed a neoteric strategy for oncotherapy, which efficiently convert the immune "cold" tumors into "hot" ones.
Collapse
Affiliation(s)
- Guixiu Xiao
- State Key Laboratory of Biotherapy, West China Hospital, Institute for Breast Health Medicine, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yujie Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Institute for Breast Health Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xueyan Wang
- State Key Laboratory of Biotherapy, West China Hospital, Institute for Breast Health Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Zeng
- Radiology Department, Sichuan Jianzhu Hospital, Chengdu, Sichuan, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Jing
- State Key Laboratory of Biotherapy, West China Hospital, Institute for Breast Health Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
13
|
Jin M, Zhao Y, Guan ZJ, Fang Y. Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules 2023; 28:1360. [PMID: 36771027 PMCID: PMC9921779 DOI: 10.3390/molecules28031360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most pressing diseases in the world. Traditional treatments, including surgery, chemotherapy, and radiotherapy still show certain limitations. Recently, numerous cancer treatments have been proposed in combination with novel materials, such as photothermal therapy, chemodynamic therapy, immunotherapy, and a combination of therapeutic approaches. These new methods have shown significant advantages in reducing side effects and synergistically enhancing anti-cancer efficacy. In addition to the above approaches, early diagnosis and in situ monitoring of lesion areas are also important for reducing side effects and improving the success rate of cancer therapy. This depends on the decent use of bioimaging technology. In this review, we mainly summarize the recent advances in porous framework materials for bioimaging and cancer therapy. In addition, we present future challenges relating to bioimaging and cancer therapy based on porous framework materials.
Collapse
Affiliation(s)
- Meng Jin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingying Zhao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zong-Jie Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Innovation Institute of Industrial Design and Machine Intelligence, Quanzhou-Hunan University, Quanzhou 362801, China
| |
Collapse
|
14
|
Xu T, Liu Z, Huang L, Jing J, Liu X. Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy. Front Immunol 2022; 13:1057850. [PMID: 36532066 PMCID: PMC9751906 DOI: 10.3389/fimmu.2022.1057850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
With encouraging antitumor effects, immunotherapy represented by immune checkpoint blockade has developed into a mainstream cancer therapeutic modality. However, only a minority of ovarian cancer (OC) patients could benefit from immunotherapy. The main reason is that most OC harbor a suppressive tumor immune microenvironment (TIME). Emerging studies suggest that M2 tumor-associated macrophages (TAMs), T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs) are enriched in OC. Thus, reversing the suppressive TIME is considered an ideal candidate for improving the efficiency of immunotherapy. Nanoparticles encapsulating immunoregulatory agents can regulate immunocytes and improve the TIME to boost the antitumor immune response. In addition, some nanoparticle-mediated photodynamic and photothermal therapy can directly kill tumor cells and induce tumor immunogenic cell death to activate antigen-presenting cells and promote T cell infiltration. These advantages make nanoparticles promising candidates for modulating the TIME and improving OC immunotherapy. In this review, we analyzed the composition and function of the TIME in OC and summarized the current clinical progress of OC immunotherapy. Then, we expounded on the promising advances in nanomaterial-mediated immunotherapy for modulating the TIME in OC. Finally, we discussed the obstacles and challenges in the clinical translation of this novel combination treatment regimen. We believe this resourceful strategy will open the door to effective immunotherapy of OC and benefit numerous patients.
Collapse
Affiliation(s)
| | | | | | - Jing Jing
- *Correspondence: Xiaowei Liu, ; Jing Jing,
| | | |
Collapse
|
15
|
Ye J, Hu T, Wu Y, Chen H, Qiu Q, Geng R, Ding H, Zhao X. Near-Infrared Liposome-Capped Au-Rare Earth Bimetallic Nanoclusters for Fluorescence Imaging of Tumor Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Early detection of cancer can effectively improve the survival rate of cancer patients. Fluorescence imaging has the advantages of high sensitivity and rapid imaging, and is widely used in the precise imaging detection of tumors. In this study, five kinds of Au-rare earth bimetallic
nanoclusters (Au/Ln NCs) were prepared by template method using five representative rare earth elements doped with gold. The morphologies, surface charges, sizes, fluorescence quantum yields and maximum fluorescence emission wavelengths of these five kinds of Au/Ln NCs were characterized and
contrasted. The findings indicated that the Au/Ce nanoclusters (Au/Ce NCs) prepared by Ce doping have the longest fluorescence emission wavelength (695 nm) and higher quantum yield, which could effectively avoid the interference of autofluorescence, and was suitable for fluorescence imaging
of tumor cells. In order to improve the specific accumulation of nanoclusters in tumor cells, Au/Ce NCs were coated with folic acid modified liposomes (lip-FA) to constructed a targeted fluorescent imaging probe with near-infrared response (Au/Ce@lip-FA), which was successfully used for fluorescence
imaging of tumor cells. The probe has the characteristics of stable fluorescence signal, good targeting, easy internalization, and safe metabolism, and can provide high-resolution and high-brightness imaging information, which is expected to play an important role in the clinical diagnosis
and surgical treatment of tumors.
Collapse
Affiliation(s)
- Jing Ye
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, 224007, PR China
| | - Tianxiang Hu
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, 224007, PR China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Qianqian Qiu
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, 224007, PR China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, 224007, PR China
| | - Hui Ding
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, 224007, PR China
| | - Xiaojuan Zhao
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, 224007, PR China
| |
Collapse
|