1
|
Gasparrini W, Lee SH, Woolston BM. Pathways to sustainability: a quantitative comparison of aerobic and anaerobic C1 bioconversion routes. Curr Opin Biotechnol 2025; 93:103310. [PMID: 40334478 DOI: 10.1016/j.copbio.2025.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
One-carbon (C1) substrates are attractive feedstocks for biological upgrading as part of a circular, carbon-negative bioeconomy. Nature has evolved a diverse set of C1-trophs that use a variety of pathways. Additionally, intensive effort has recently been invested in developing synthetic C1 assimilation pathways. This complicated landscape presents the question: "What pathways should be used to produce what products from what C1 substrates?" To guide the selection, we calculate and compare maximal theoretical yields for a range of bioproducts from different C1 feedstocks and pathways. The results highlight emerging opportunities to apply metabolic engineering to specific C1 pathways to improve pathway performance. Since the C1 landscape is dynamic, with new discoveries in the biochemistry of native pathways and new synthetic alternatives rapidly emerging, we present detailed procedures for these yield calculations to enable others to easily adapt them to additional scenarios as a foundation for establishing industrially relevant production strains.
Collapse
Affiliation(s)
- William Gasparrini
- Northeastern University, Department of Chemical Engineering, 360 Huntington Avenue, 223 Cullinane, Boston, MA 02115, United States
| | - Seung H Lee
- Northeastern University, Department of Chemical Engineering, 360 Huntington Avenue, 223 Cullinane, Boston, MA 02115, United States; Massachusetts Institute of Technology, Department of Chemical Engineering, 25 Ames Street, Cambridge, MA 02139, United States
| | - Benjamin M Woolston
- Northeastern University, Department of Chemical Engineering, 360 Huntington Avenue, 223 Cullinane, Boston, MA 02115, United States; Northeastern University, Department of Bioengineering, 206 ISEC, 805 Columbus Avenue, Boston, MA 02120, United States.
| |
Collapse
|
2
|
He J, Tang M, Zhong F, Deng J, Li W, Zhang L, Lin Q, Xia X, Li J, Guo T. Current trends and possibilities of typical microbial protein production approaches: a review. Crit Rev Biotechnol 2024; 44:1515-1532. [PMID: 38566484 DOI: 10.1080/07388551.2024.2332927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.
Collapse
Affiliation(s)
- JinTao He
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Min Tang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiFei Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Changsha Institute for Food and Drug Control, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Lin Zhang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - QinLu Lin
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Juan Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
3
|
Harirforoush M, Shavandi M, Amoozegar MA, Saffarian P, Hasrak S. Molecular identification of methane-consuming bacteria in the Persian Gulf: a study for microbial gas exploration. Front Microbiol 2024; 15:1435037. [PMID: 39583546 PMCID: PMC11582068 DOI: 10.3389/fmicb.2024.1435037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The seepage of gaseous compounds from underground reservoirs towards the surface causes abnormalities in the population of microbial communities that consume light hydrocarbons on the surface of the reservoir. This microbial population can serve as indicators for determining the location of gas reservoirs prior to drilling operations. In this study, the simulation of methane gas leakage in the sediments of the Persian Gulf was conducted using a laboratory model. The objective of this simulation was to identify the microbial population consuming methane within the sediments of the Persian Gulf, aiding in the exploration of gas reserves. Continuous injection of methane gas into the system was performed for a period of 3 months to enrich the microbial consortia consuming methane. Subsequently, the microbial population was identified using next-generation sequencing (NGS) analysis. The results indicated that, based on the 16S rRNA sequencing dataset, aerobic methanotrophs, including genera Methylobacter, Methylomarinum, Methylomicrobium, Methylomonas, and Methylophage, were the dominant microbial group on the surface of the sediments. Additionally, anaerobic methane oxidation archaea in sediments were performed by ANME-2 and ANME-3 clades. The findings demonstrate that these microbial communities are capable of coexistence and thrive in long-term exposure to methane in the sediments of the Persian Gulf. Identifying this microbial pattern, alongside other geophysical and geological data, can increase the success rate of gas reservoir exploration.
Collapse
Affiliation(s)
- Mahsa Harirforoush
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Shavandi
- Microbiology and Biotechnology Group, Environment and Biotechnology Research Division, Research Institute of Petroleum Industry, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Parvaneh Saffarian
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shabnam Hasrak
- Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
4
|
Crowther TW, Rappuoli R, Corinaldesi C, Danovaro R, Donohue TJ, Huisman J, Stein LY, Timmis JK, Timmis K, Anderson MZ, Bakken LR, Baylis M, Behrenfeld MJ, Boyd PW, Brettell I, Cavicchioli R, Delavaux CS, Foreman CM, Jansson JK, Koskella B, Milligan-McClellan K, North JA, Peterson D, Pizza M, Ramos JL, Reay D, Remais JV, Rich VI, Ripple WJ, Singh BK, Smith GR, Stewart FJ, Sullivan MB, van den Hoogen J, van Oppen MJH, Webster NS, Zohner CM, van Galen LG. Scientists' call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024; 187:5195-5216. [PMID: 39303686 DOI: 10.1016/j.cell.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Collapse
Affiliation(s)
- Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Restor Eco AG, Zürich 8001, Switzerland.
| | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena 53100, Italy.
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona 60131, Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberto Danovaro
- National Biodiversity Future Center, Palermo 90133, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Timothy J Donohue
- Wisconsin Energy Institute, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 94240, the Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - James Kenneth Timmis
- Institute of Political Science, University of Freiburg, Freiburg 79085, Germany; Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081, the Netherlands
| | - Kenneth Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Matthew Z Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas 1433, Norway
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Cheshire, Neston CH64 7TE, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Ian Brettell
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Camille S Delavaux
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Christine M Foreman
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59718, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kat Milligan-McClellan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Devin Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mariagrazia Pizza
- Department of Life Sciences, CBRB Center, Imperial College, London SW7 2AZ, UK
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada 18008, Spain
| | - David Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Virginia I Rich
- Center of Microbiome Science, Byrd Polar and Climate Research, and Microbiology Department, The Ohio State University, Columbus, OH 43214, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Center of Microbiome Science, and EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Laura G van Galen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA.
| |
Collapse
|
5
|
Mota MN, Palma M, Sá-Correia I. Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing. AMB Express 2024; 14:93. [PMID: 39198272 PMCID: PMC11358584 DOI: 10.1186/s13568-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Methanol is a promising feedstock for biomanufacturing, but the efficiency of methanol-based bioprocesses is limited by the low rate of methanol utilization pathways and methanol toxicity. Yeast diversity is an attractive biological resource to develop efficient bioprocesses since any effort with strain improvement is more deserving if applied to innate robust strains with relevant catabolic and biosynthetic potential. The present study is in line with such rational and describes the isolation and molecular identification of seven isolates of the methylotrophic species Candida boidinii from waters derived from the traditional curation of olives, in different years, and from contaminated superficial soil near fuel stations. The yeast microbiota from those habitats was also characterized. The four C. boidinii isolates obtained from the curation of olives' water exhibited significantly higher maximum specific growth rates (range 0.15-0.19 h-1), compared with the three isolates obtained from the fuel contaminated soils (range 0.05-0.06 h-1) when grown on methanol as the sole C-source (1% (v/v), in shake flasks, at 30°C). The isolates exhibit significant robustness towards methanol toxicity that increases as the cultivation temperature decreases from 30°C to 25°C. The better methanol-based growth performance exhibited by C. boidinii isolates from olives´ soaking waters could not be essentially attributed to higher methanol tolerance. These methanol-efficient catabolizing isolates are proposed as a promising platform to develop methanol-based bioprocesses.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
6
|
Sauvageau D, Stein LY, Arenas E, Das S, Iacobelli M, Lawley M, Lazic M, Rondón FL, Weiblen C. Industrializing methanotrophs and other methylotrophic bacteria: from bioengineering to product recovery. Curr Opin Biotechnol 2024; 88:103167. [PMID: 38901110 DOI: 10.1016/j.copbio.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Microbes that use the single-carbon substrates methanol and methane offer great promise to bioindustry along with substantial environmental benefits. Methanotrophs and other methylotrophs can be engineered and optimized to produce a wide range of products, from biopolymers to biofuels and beyond. While significant limitations remain, including delivery of single-carbon feedstock to bioreactors, efficient growth, and scale-up, these challenges are being addressed and notable improvements have been rapid. Development of expression chassis, use of genome-scale and regulatory models based on omics data, improvements in bioreactor design and operation, and development of green product recovery schemes are enabling the rapid development of single-carbon bioconversion in the industrial space.
Collapse
Affiliation(s)
- Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Lisa Y Stein
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Elizabeth Arenas
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shibashis Das
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Maryssa Iacobelli
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mark Lawley
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marina Lazic
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fabián L Rondón
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Cerrise Weiblen
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
7
|
Severinsen MM, Bachleitner S, Modenese V, Ata Ö, Mattanovich D. Efficient production of itaconic acid from the single-carbon substrate methanol with engineered Komagataella phaffii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:98. [PMID: 39010147 PMCID: PMC11251334 DOI: 10.1186/s13068-024-02541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Amidst the escalating carbon dioxide levels resulting from fossil fuel consumption, there is a pressing need for sustainable, bio-based alternatives to underpin future global economies. Single-carbon feedstocks, derived from CO2, represent promising substrates for biotechnological applications. Especially, methanol is gaining prominence for bio-production of commodity chemicals. RESULTS In this study, we show the potential of Komagataella phaffii as a production platform for itaconic acid using methanol as the carbon source. Successful integration of heterologous genes from Aspergillus terreus (cadA, mttA and mfsA) alongside fine-tuning of the mfsA gene expression, led to promising initial itaconic acid titers of 28 g·L-1 after 5 days of fed-batch cultivation. Through the combined efforts of process optimization and strain engineering strategies, we further boosted the itaconic acid production reaching titers of 55 g·L-1 after less than 5 days of methanol feed, while increasing the product yield on methanol from 0.06 g·g-1 to 0.24 g·g-1. CONCLUSION Our results highlight the potential of K. phaffii as a methanol-based platform organism for sustainable biochemical production.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
| | - Simone Bachleitner
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
| | - Viola Modenese
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria.
| |
Collapse
|