1
|
Waaijer LA, van Cranenbroek B, Koenen HJPM. OMIP-112: 42-Parameter (40-Color) Spectral Flow Cytometry Panel for Comprehensive Immunophenotyping of Human Peripheral Blood Leukocytes. Cytometry A 2025; 107:226-232. [PMID: 40095400 DOI: 10.1002/cyto.a.24927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Profiling the human immune system is essential to understanding its role in disease, but it requires advanced and novel technologies. Spectral flow cytometry (SFM) enables deep profiling at the single-cell level. It is able to detect many fluorescent parameters within one measurement; therefore, it is vastly useful when patient material is limited. However, designing and analyzing these high-dimensional datasets remains complex. We optimized a 42-parameter panel (40 commercially available fluorochromes, one stacked fluorochrome and an autofluorescent (AF) parameter) that enables the identification of innate and adaptive immune cell composition. It is the first 42-parameter panel that is optimized on peripheral whole blood, and it outperforms other published OMIPs of 40 colors in terms of complexity. With this panel, we are able to identify neutrophils, basophils, eosinophils, monocytes, dendritic cells, CD4 T cells, CD8 T cells, regulatory T cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, B cells, NK cells, dendritic cells, and innate lymphoid cells (ILCs). Furthermore, with the utilization of co-stimulatory, checkpoint, activation, homing, and maturation markers, this panel enables deeper phenotyping. Within one measurement, more than 80 distinct immune cell subsets were identified by FlowSOM and annotated manually. In conclusion, with this high-dimensional SFM panel, we aim to generate immune profiles to understand disease and monitor therapy response.
Collapse
Affiliation(s)
- Laurien A Waaijer
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
3
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
4
|
Meirkhanova A, Marks S, Feja N, Vorobjev IA, Barteneva NS. Spectral Algal Fingerprinting and Long Sequencing in Synthetic Algal-Microbial Communities. Cells 2024; 13:1552. [PMID: 39329735 PMCID: PMC11430485 DOI: 10.3390/cells13181552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Synthetic biology has advanced in creating artificial microbial and algal communities, but technical and evolutionary complexities still pose significant challenges. Traditional methods, like microscopy and pigment analysis, are limited in throughput and resolution. In contrast, advancements in full-spectrum cytometry enabled high-throughput, multidimensional analysis of single cells based on size, complexity, and spectral fingerprints, offering more precision and flexibility than conventional flow cytometry. This study uses full-spectrum cytometry to analyze synthetic algal-microbial communities, enabling rapid species identification and enumeration. The workflow involves recording individual spectral signatures from monocultures, using autofluorescence to capture populations of interest, and creating a spectral library for further analysis. This spectral library was used for the analysis of the synthetic phytoplankton communities, revealing differences in spectral signatures. Moreover, the synthetic consortium experiment monitored algal growth, comparing results from different instruments, highlighting the advantages of the spectral virtual filter system for precise population separation and abundance tracking. By capturing the entire emission spectrum of each cell, this method enhances understanding of algal-microbial community dynamics and responses to environmental stressors. The development of standardized spectral libraries would improve the characterization of algal communities, further advancing synthetic biology and phytoplankton ecology research.
Collapse
Affiliation(s)
- Ayagoz Meirkhanova
- School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (I.A.V.)
| | - Sabina Marks
- Faculty of Biology, University of Duisburg-Essen, Campus Essen, 45141 Essen, Germany; (S.M.); (N.F.)
| | - Nicole Feja
- Faculty of Biology, University of Duisburg-Essen, Campus Essen, 45141 Essen, Germany; (S.M.); (N.F.)
| | - Ivan A. Vorobjev
- School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (I.A.V.)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Natasha S. Barteneva
- School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (I.A.V.)
- The Environmental Research and Efficiency Cluster, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
5
|
Paul Robinson J, Rajwa B. Spectral flow cytometry: Fundamentals and future impact. Methods Cell Biol 2024; 186:311-332. [PMID: 38705605 DOI: 10.1016/bs.mcb.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Spectral flow cytometry has emerged as a significant player in the cytometry marketplace, with the potential for rapid growth. Despite a slow start, the technology has made significant strides in advancing various areas of single-cell analysis utilized by the scientific community. The integration of spectral cytometry into clinical laboratories and diagnostic processes is currently underway and is expected to garner a significant level of widespread acceptance in the near future. However, incorporating a new methodological approach into existing research programs can lead to misunderstandings or even misuse. This chapter offers an introductory yet comprehensive explanation of the scientific principles that form the foundation of spectral cytometry. Specifically, it delves into the unmixing processes that are utilized for data analysis. This overview is designed for those who are new to the field and seeking an informative guide to this exciting emerging technology.
Collapse
Affiliation(s)
- J Paul Robinson
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States.
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Camp B, Jorde I, Sittel F, Pausder A, Jeron A, Bruder D, Schreiber J, Stegemann-Koniszewski S. Comprehensive analysis of lung macrophages and dendritic cells in two murine models of allergic airway inflammation reveals model- and subset-specific accumulation and phenotypic alterations. Front Immunol 2024; 15:1374670. [PMID: 38529288 PMCID: PMC10961404 DOI: 10.3389/fimmu.2024.1374670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Allergic asthma has been mainly attributed to T helper type 2 (Th2) and proinflammatory responses but many cellular processes remain elusive. There is increasing evidence for distinct roles for macrophage and dendritic cell (DC) subsets in allergic airway inflammation (AAI). At the same time, there are various mouse models for allergic asthma that have been of utmost importance in identifying key inflammatory pathways in AAI but that differ in the allergen and/or route of sensitization. It is unclear whether and how the accumulation and activation of specialized macrophage and DC subsets depend on the experimental model chosen for analyses. Methods In our study, we employed high-parameter spectral flow cytometry to comprehensively assess the accumulation and phenotypic alterations of different macrophage- and DC-subsets in the lung in an OVA- and an HDM-mediated mouse model of AAI. Results We observed subset-specific as well as model-specific characteristics with respect to cell numbers and functional marker expression. Generally, alveolar as opposed to interstitial macrophages showed increased MHCII surface expression in AAI. Between the models, we observed significantly increased numbers of alveolar macrophages, CD103+ DC and CD11b+ DC in HDM-mediated AAI, concurrent with significantly increased airway interleukin-4 but decreased total serum IgE levels. Further, increased expression of CD80 and CD86 on DC was exclusively detected in HDM-mediated AAI. Discussion Our study demonstrates a model-specific involvement of macrophage and DC subsets in AAI. It further highlights spectral flow cytometry as a valuable tool for their comprehensive analysis under inflammatory conditions in the lung.
Collapse
Affiliation(s)
- Belinda Camp
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Ilka Jorde
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Franka Sittel
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Alexander Pausder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Kare AJ, Nichols L, Zermeno R, Raie MN, Tumbale SK, Ferrara KW. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues. Cytometry A 2023; 103:839-850. [PMID: 37768325 PMCID: PMC10843696 DOI: 10.1002/cyto.a.24788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.
Collapse
Affiliation(s)
- Aris J. Kare
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Marina N. Raie
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
8
|
Vorobjev IA, Kussanova A, Barteneva NS. Development of Spectral Imaging Cytometry. Methods Mol Biol 2023; 2635:3-22. [PMID: 37074654 DOI: 10.1007/978-1-0716-3020-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Spectral flow cytometry is a new technology that enables measurements of fluorescent spectra and light scattering properties in diverse cellular populations with high precision. Modern instruments allow simultaneous determination of up to 40+ fluorescent dyes with heavily overlapping emission spectra, discrimination of autofluorescent signals in the stained specimens, and detailed analysis of diverse autofluorescence of different cells-from mammalian to chlorophyll-containing cells like cyanobacteria. In this paper, we review the history, compare modern conventional and spectral flow cytometers, and discuss several applications of spectral flow cytometry.
Collapse
Affiliation(s)
- Ivan A Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
- A.N. Belozersky Insitute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Aigul Kussanova
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Core Facilities, Nazarbayev University, Astana, Kazakhstan
| | - Natasha S Barteneva
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Brigham Women's Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Jensen HA, Kim J. iCoreDrop: A robust immune monitoring spectral cytometry assay with six open channels for biomarker flexibility. Cytometry A 2022; 103:405-418. [PMID: 36458334 DOI: 10.1002/cyto.a.24708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Recent advances in spectral cytometry have extended our ability to monitor immune cell subsets and activation status while simultaneously improving rare population detection. However, technical challenges in reference control selection and autofluorescence extraction serve as barriers to broad application of spectral flow cytometry. Furthermore, the complexity of spectral cytometry panel development limits the adaptation of established assays. Here, we describe the development of a spectral immunophenotyping assay with robust drop-in capability to enable biomarker interrogation flexibility. The immune monitoring core (iCore), which can be used in part or total, captures broad and granular immune subsets across T cells, B cells, NK cells, monocytes, dendritic cells, and granulocytes in peripheral whole blood. Additional user-selected biomarkers can be dropped in (Drop) using channels BV421, Alexa Fluor 488, PE, PE-Cy7, APC, and APC-Cy7. A comprehensive assessment of reagent and panel performance was conducted, including reference control comparison and optimal autofluorescence (AF) extraction on the 5-laser Cytek Aurora system for healthy donor blood. Assay precision and stability analyses revealed robust intra-assay precision, with 95% of 83 distinct population gates having <20% CV. In the presence of additional drop-in markers in two different settings, a T cell module and a myeloid/B cell module, the drop-in channels themselves achieved <20% CV across 12 out of 13 additionally queried population gates. Overall, establishment of optimal unmixing practices will enable widespread adoption of spectral cytometry assays.
Collapse
Affiliation(s)
- Holly A Jensen
- Translational Research, Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, Redwood City, California, USA
| | - Jeong Kim
- Translational Research, Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, Redwood City, California, USA
| |
Collapse
|
10
|
Bourdely P, Petti L, Khou S, Meghraoui-Kheddar A, Elaldi R, Cazareth J, Mossadegh-Keller N, Boyer J, Sieweke MH, Poissonnet G, Sudaka A, Braud VM, Anjuère F. Autofluorescence identifies highly phagocytic tissue-resident macrophages in mouse and human skin and cutaneous squamous cell carcinoma. Front Immunol 2022; 13:903069. [DOI: 10.3389/fimmu.2022.903069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages from human and mouse skin share phenotypic and functional features, but remain to be characterized in pathological skin conditions. Skin-resident macrophages are known to derive from embryonic precursors or from adult hematopoiesis. In this report, we investigated the origins, phenotypes and functions of macrophage subsets in mouse and human skin and in cutaneous squamous cell carcinoma (cSCC) using the spectral flow cytometry technology that enables cell autofluorescence to be considered as a full-fledged parameter. Autofluorescence identifies macrophage subsets expressing the CD206 mannose receptor in human peri-tumoral skin and cSCC. In mouse, all AF+ macrophages express the CD206 marker, a subset of which also displaying the TIM-4 marker. While TIM-4-CD206+ AF+ macrophages can differentiate from bone-marrow monocytes and infiltrate skin and tumor, TIM-4 identifies exclusively a skin-resident AF+ macrophage subset that can derive from prenatal hematopoiesis which is absent in tumor core. In mouse and human, AF+ macrophages from perilesional skin and cSCC are highly phagocytic cells contrary to their AF- counterpart, thus identifying autofluorescence as a bona fide marker for phagocytosis. Our data bring to light autofluorescence as a functional marker characterizing subsets of phagocytic macrophages in skin and cSCC. Autofluorescence can thus be considered as an attractive marker of function of macrophage subsets in pathological context.
Collapse
|