1
|
Mand M, Hahn O, Meyer J, Peters K, Seitz H. Investigation of the Effect of High Shear Stress on Mesenchymal Stem Cells Using a Rotational Rheometer in a Small-Angle Cone-Plate Configuration. Bioengineering (Basel) 2024; 11:1011. [PMID: 39451387 PMCID: PMC11504001 DOI: 10.3390/bioengineering11101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Within the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the subsequent isolation of mesenchymal stem/stromal cells (MSCs), for example, are procedures that induce a high level of mechanical shear stress. As MSCs play a central role in tissue regeneration by migrating into regenerating areas and driving regeneration through proliferation and tissue-specific differentiation, they are increasingly used in therapeutic applications. Consequently, there is a strong interest in investigating the effects of shear stress on MSCs. In this study, we present a set-up for applying high shear rates to cells based on a rotational rheometer with a small-angle cone-plate configuration. This set-up was used to investigate the effect of various shear stresses on human adipose-derived MSCs in suspension. The results of the study show that the viability of the cells remained unaffected up to 18.38 Pa for an exposure time of 5 min. However, it was observed that intense shear stress damaged the cells, with longer treatment durations increasing the percentage of cell debris.
Collapse
Affiliation(s)
- Mario Mand
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
| | | | - Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
2
|
AlAsfoor S, Bernard CE, Jessen E, Simon VA, Rakhshan F, Cipriani G, Hsi LC, Patraw JA, Carothers KJ, Lau JS, McDonough SJ, Dasari S, Farrugia G, Grover M. Protocol for isolating immune cells from human gastric muscularis propria for single-cell analysis. STAR Protoc 2024; 5:103258. [PMID: 39133613 PMCID: PMC11357800 DOI: 10.1016/j.xpro.2024.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Understanding the diversity of gastrointestinal (GI) immune cells, especially in the muscularis propria, is crucial for understanding their role in the maintenance of enteric neurons and smooth muscle and their contribution to GI motility. Here, we present a detailed protocol for isolating single immune cells from the human gastric muscularis propria. We describe steps for tissue preservation, dissection, and dissociation of the muscularis propria. We then detail procedures for magnetic sorting of CD45+ cells and single-cell RNA sequencing (scRNA-seq) analysis. For complete details on the use and execution of this protocol, please refer to Chikkamenahalli et al.1.
Collapse
Affiliation(s)
- Shefaa AlAsfoor
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA.
| | - Cheryl E Bernard
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Jessen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Vernadette A Simon
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN 55905, USA
| | - Fariborz Rakhshan
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN 55905, USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda C Hsi
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Jack A Patraw
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Kari J Carothers
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN 55905, USA
| | - Julie S Lau
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN 55905, USA
| | | | - Surendra Dasari
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
4
|
Boyle DL, Prideaux EB, Hillman J, Wang W, Firestein GS. Improving Transcriptome Fidelity Following Synovial Tissue Disaggregation. Front Med (Lausanne) 2022; 9:919748. [PMID: 36035425 PMCID: PMC9400013 DOI: 10.3389/fmed.2022.919748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To improve the fidelity of the cellular transcriptome of disaggregated synovial tissue for applications such as single-cell RNA sequencing (scRNAseq) by modifying the disaggregation technique. Methods Osteoarthritis (OA) and rheumatoid arthritis (RA) synovia were collected at arthroplasty. RNA was extracted from intact or disaggregated replicate pools of tissue fragments. Disaggregation was performed with either a proprietary protease, Liberase TL (Lib) as a reference method, Liberase TL with an RNA polymerase inhibitor flavopyridol (Flavo), or a cold digestion with subtilisin A (SubA). qPCR on selected markers and RNAseq were used to compare disaggregation methods using the original intact tissue as reference. Results Disaggregated cell yield and viability were similar for all three methods with some viability improved (SubA). Candidate gene analysis showed that Lib alone dramatically increased expression of several genes involved in inflammation and immunity compared with intact tissue and was unable to differentiate RA from OA. Both alternative methods reduced the disaggregation induced changes. Unbiased analysis using bulk RNAseq and the 3 protocols confirmed the candidate gene studies and showed that disaggregation-induced changes were largely prevented. The resultant data improved the ability to distinguish RA from OA synovial transcriptomes. Conclusions Disaggregation of connective tissues such as synovia has complex and selective effects on the transcriptome. We found that disaggregation with an RNA polymerase inhibitor or using a cold enzyme tended to limit induction of some relevant transcripts during tissue processing. The resultant data in the disaggregated transcriptome better represented the in situ transcriptome. The specific method chosen can be tailored to the genes of interest and the hypotheses being tested in order to optimize the fidelity of technique for applications based on cell suspensions such as sorted populations or scRNAseq.
Collapse
Affiliation(s)
- David L. Boyle
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Edward B. Prideaux
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Joshua Hillman
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Gary S. Firestein
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|