1
|
Zhang S, Zhan J, Li M, Wang J, Chen H, Wang Y, Fan Y, Zhang B, Wang X, Zhang X, Wu C. Therapeutic Potential of Traditional Chinese Medicine Against Osteoarthritis: Targeting the Wnt Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2021-2052. [PMID: 39562354 DOI: 10.1142/s0192415x24500782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative articular disease that leads to physical disability and reduced quality of life. The key pathological events in OA are cartilage degradation and synovial inflammation. Conventional therapies often lead to adverse effects that some patients are unwilling to endure. Traditional Chinese Medicines (TCMs) have long been known for their efficacy in treating OA with minimal side effects. The wingless-type (Wnt) signaling pathway is believed to play a role in OA progression, but there is still a lack of comprehensive understanding on how TCM may treat OA via the Wnt signaling pathway. This study aims to fill this gap by reviewing relevant research on the association between the Wnt signaling pathway and cartilage degradation and synovial inflammation in OA. Meanwhile, we also summarized and categorized TCMs and their active components, such as alkaloids, polysaccharides, flavonoids, sesquiterpene lactones, etc., which have shown varying efficacy in treating OA through modulation of the Wnt/[Formula: see text]-catenin signaling pathway. This work underscores the pivotal role of the Wnt signaling pathway in OA pathogenesis and progression, suggesting that targeting this pathway holds promise as a prospective therapeutic strategy for OA management in the future. TCMs and their active components have the potential to alleviate OA by modulating the Wnt signaling cascade. Harnessing TCMs and their active components to regulate the Wnt signaling pathway presents an encouraging avenue for delivering substantial therapeutic benefits to individuals with OA.
Collapse
Affiliation(s)
- Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Jiaguo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Mai Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Junyi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Huiyou Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuxing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuchen Fan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Bingqi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xizhe Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
2
|
Song K, Hu J, Yang M, Xia Y, He C, Yang Y, Zhu S. Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway. J Transl Med 2024; 22:741. [PMID: 39107784 PMCID: PMC11301989 DOI: 10.1186/s12967-024-05470-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Pulsed electromagnetic fields (PEMFs) show promise as a treatment for knee osteoarthritis (KOA) by reducing inflammation and promoting chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). PURPOSE To identify the efficacy window of PEMFs to induce BMSCs chondrogenic differentiation and explore the cellular mechanism under chondrogenesis of BMSCs in regular and inflammatory microenvironments. METHODS BMSCs were exposed to PEMFs (75 Hz, 1.6/2/3/3.8 mT) for 7 and 14 days. The histology, proliferation, migration and chondrogenesis of BMSCs were assessed to identify the optimal parameters. Using these optimal parameters, transcriptome analysis was performed to identify target genes and signaling pathways, validated through immunohistochemical assays, western blotting, and qRT-PCR, with or without the presence of IL-1β. The therapeutic effects of PEMFs and the effective cellular signaling pathways were evaluated in vivo. RESULTS BMSCs treated with 3 mT PEMFs showed the optimal chondrogenesis on day 7, indicated by increased expression of ACAN, COL2A, and SOX9, and decreased levels of MMP3 and MMP13 at both transcriptional and protein levels. The advantages of 3 mT PEMFs diminished in the 14-day culture groups. Transcriptome analysis identified sFRP3 as a key molecule targeted by PEMF treatment, which competitively inhibited Wnt/β-catenin signaling, regardless of IL-1β presence or duration of exposure. This inhibition of the Wnt/β-catenin pathway was also confirmed in a KOA mouse model following PEMF exposure. CONCLUSIONS PEMFs at 75 Hz and 3 mT are optimal in inducing early-stage chondrogenic differentiation of BMSCs. The induction and chondroprotective effects of PEMFs are mediated by sFRP3 and Wnt/β-catenin signaling, irrespective of inflammatory conditions.
Collapse
Affiliation(s)
- Kangping Song
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jing Hu
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Yong Xia
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonghong Yang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
| | - Siyi Zhu
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou strict, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Meldrum K, Evans SJ, Burgum MJ, Doak SH, Clift MJD. Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro. Part Fibre Toxicol 2024; 21:25. [PMID: 38760786 PMCID: PMC11100169 DOI: 10.1186/s12989-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| | - Stephen J Evans
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
4
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|