1
|
Diez-Aldama I, Garcia-Villen F, Saenz-Del-Burgo L, Scaini D, Pedraz JL. Graphene Oxide Modified Bioink for 3D-Bioprinting of Vascular Graft. ACS APPLIED BIO MATERIALS 2025; 8:3858-3872. [PMID: 40219977 DOI: 10.1021/acsabm.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Three-dimensional bioprinting (3DBP) has emerged as a promising technique for fabricating complex tissue constructs using bioinks that support cell growth and differentiation. However, the mechanical properties of bioinks remain a critical challenge in this area, particularly for vascular tissue applications. Herein, the combination of an inorganic (nano)material [graphene oxide (GO)] with an organic material (collagen) as possible ingredients of a bioink intended for vascular graft bioprinting was explored. Different bioink formulations were developed and compared in terms of rheology, printability, and the ability to support vascular cell growth in 3D scaffolds. The bioink modified with collagen and GO exhibited improved mechanical and viscoelastic properties compared with the control formulation. Additionally, the bioink showed full in vitro biocompatibility, with no signs of cytotoxicity. With future applications in mind, a series of scaffolds were successfully bioprinted with the proposed bioink. The coculture of human endothelial cells and muscle cells (C2C12) demonstrated its potential for vascular graft applications. In short, this work introduces a promising bioink for developing vascular grafts with enhanced mechanical and biological properties.
Collapse
Affiliation(s)
- Irene Diez-Aldama
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Joint Research Laboratory (JRL), School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Fatima Garcia-Villen
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada (UGR), Campus of Cartuja s/n, 18071 Granada, Spain
| | - Laura Saenz-Del-Burgo
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Joint Research Laboratory (JRL), School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Denis Scaini
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Joint Research Laboratory (JRL), School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Jose Luis Pedraz
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Joint Research Laboratory (JRL), School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Amini-Mosleh-Abadi S, Yazdanpanah Z, Ketabat F, Saadatifar M, Mohammadi M, Salimi N, Asef Nejhad A, Sadeghianmaryan A. In vitro characterization of 3D printed polycaprolactone/graphene oxide scaffolds impregnated with alginate and gelatin hydrogels for bone tissue engineering. J Biomater Appl 2025:8853282251336552. [PMID: 40278887 DOI: 10.1177/08853282251336552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
To achieve successful bone tissue engineering (BTE), it is necessary to fabricate a biomedical scaffold with appropriate structure as well as favorable composition. Despite a broad range of studies, this remains a challenge, highlighting the need for a better understanding of how structural features (e.g., pore size) and scaffold composition influence mechanical and physical properties, as well as cellular behavior. Therefore, the objective of this study was to characterize physical properties (swelling, degradation), mechanical properties (compressive modulus), and cellular behavior in relation to varying compositions (referred to composite and hybrid scaffolds) as well as varying pore sizes in three-dimensional (3D) printed scaffolds. Composite scaffolds were fabricated from polycaprolactone (PCL) and two different graphene oxide (GO) (3% and 9% (w/v)) concentrations. Additionally, hybrid scaffolds were fabricated by impregnating 3D printed scaffolds in a hydrogel blend of alginate/gelatin. Pore sizes of 400, 1000, and 1500 μm were investigated in this study to assess their effect on the scaffold properties. Our findings showed that swelling and degradation properties were enhanced by (I) the addition of GO as well as introduction of both hydrogel and highest concentration of GO (9% (w/v) GO) into the polymeric matrix of PCL, and (II) increasing the pore size within the scaffolds. Mechanical testing revealed that compressive elastic modulus increased with decreasing pore size, incorporation of GO, and increasing GO content into the matrix of PCL. Although our investigated scaffolds with various pore sizes did not show comparable elastic moduli to that of cortical bone, they exhibited an elastic modulus range (∼31-48 MPa) matching that of trabecular bone. The highest compressive modulus (∼48 MPa) was observed in scaffolds of PCL/9% (w/v) GO (composite scaffolds) with the pore size of 400 μm. Cell viability assay demonstrated high MG-63 cell survival (greater than 70%) in all composite and hybrid scaffolds (indicating scaffold biocompatibility) except PCL/3% (w/v) GO scaffolds. The findings of this study contribute to the field of BTE by providing scaffold design insights in terms of pore size and composition.
Collapse
Affiliation(s)
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Farinaz Ketabat
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahya Saadatifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Salimi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azade Asef Nejhad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Sadeghianmaryan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Former Postdoctoral Research Fellow, Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| |
Collapse
|
3
|
Madhusudhan A, Suhagia TA, Sharma C, Jaganathan SK, Purohit SD. Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review. Polymers (Basel) 2024; 16:3318. [PMID: 39684062 DOI: 10.3390/polym16233318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems. CNTs, with their exceptional mechanical strength and conductivity, enhance rheological properties, facilitating their use as bioinks in supporting complex 3D bioprinting tasks for neural, bone, and cardiac tissues by mimicking the natural structure of tissues. CDs offer fluorescence capabilities for theranostic applications, integrating imaging and therapeutic functions. AC enhances mechanical strength, biocompatibility, and antibacterial effectiveness, making it suitable for wound healing and electroactive scaffolds. Despite these promising features, challenges remain, such as optimizing nanoparticle concentrations, ensuring biocompatibility, achieving uniform dispersion, scaling up production, and integrating multiple functionalities. Addressing these challenges through continued research and development is crucial for advancing the clinical and industrial applications of these innovative hydrogels.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Saravana Kumar Jaganathan
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN67TS, UK
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
4
|
Rayat Pisheh H, Haghdel M, Jahangir M, Hoseinian MS, Rostami Yasuj S, Sarhadi Roodbari A. Effective and new technologies in kidney tissue engineering. Front Bioeng Biotechnol 2024; 12:1476510. [PMID: 39479295 PMCID: PMC11521926 DOI: 10.3389/fbioe.2024.1476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Kidney disease encompasses a wide spectrum of conditions, ranging from simple infections to chronic kidney disease. When the kidneys are unable to filter blood and remove waste products, these abnormalities can lead to kidney failure. In severe cases of kidney failure, kidney transplantation is considered the only definitive treatment. Worldwide, the World Health Organization (WHO) repeatedly emphasizes the importance of organ donation and increasing transplantation rates. Many countries implement national programs to promote the culture of organ donation and improve patient access to kidney transplantation. The extent to which this procedure is performed varies across countries and is influenced by several factors, including the volume of organ donation, medical infrastructure, access to technology and health policies. However, a kidney transplant comes with challenges and problems that impact its success. Kidney tissue engineering is a new approach that shows promise for repairing and replacing damaged kidney tissue. This article reviews recent advances in kidney tissue engineering, focusing on engineered structures such as hydrogels, electrospinning, 3D bioprinting, and microfluidic systems. By mimicking the extracellular environment of the kidney, these structures provide suitable conditions for the growth and development of kidney cells. The role of these structures in the formation of blood vessels, the mimicry of kidney functions and the challenges in this field were also discussed. The results of this study show that kidney tissue engineering has high potential for treating kidney diseases and reducing the need for kidney transplantation. However, to achieve clinical application of this technology, further research is required to improve the biocompatibility, vascularization and long-term performance of engineered tissues.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboube Jahangir
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Sadat Hoseinian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Rostami Yasuj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sarhadi Roodbari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Mancuso S, Bhalerao A, Cucullo L. Advances and Challenges of Bioassembly Strategies in Neurovascular In Vitro Modeling: An Overview of Current Technologies with a Focus on Three-Dimensional Bioprinting. Int J Mol Sci 2024; 25:11000. [PMID: 39456783 PMCID: PMC11506837 DOI: 10.3390/ijms252011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Bioassembly encompasses various techniques such as bioprinting, microfluidics, organoids, and self-assembly, enabling advances in tissue engineering and regenerative medicine. Advancements in bioassembly technologies have enabled the precise arrangement and integration of various cell types to more closely mimic the complexity functionality of the neurovascular unit (NVU) and that of other biodiverse multicellular tissue structures. In this context, bioprinting offers the ability to deposit cells in a spatially controlled manner, facilitating the construction of interconnected networks. Scaffold-based assembly strategies provide structural support and guidance cues for cell growth, enabling the formation of complex bio-constructs. Self-assembly approaches utilize the inherent properties of cells to drive the spontaneous organization and interaction of neuronal and vascular components. However, recreating the intricate microarchitecture and functional characteristics of a tissue/organ poses additional challenges. Advancements in bioassembly techniques and materials hold great promise for addressing these challenges. The further refinement of bioprinting technologies, such as improved resolution and the incorporation of multiple cell types, can enhance the accuracy and complexity of the biological constructs; however, developing bioinks that support the growth of cells, viability, and functionality while maintaining compatibility with the bioassembly process remains an unmet need in the field, and further advancements in the design of bioactive and biodegradable scaffolds will aid in controlling cell adhesion, differentiation, and vascularization within the engineered tissue. Additionally, integrating advanced imaging and analytical techniques can provide real-time monitoring and characterization of bioassembly, aiding in quality control and optimization. While challenges remain, ongoing research and technological advancements propel the field forward, paving the way for transformative developments in neurovascular research and tissue engineering. This work provides an overview of the advancements, challenges, and future perspectives in bioassembly for fabricating neurovascular constructs with an add-on focus on bioprinting technologies.
Collapse
Affiliation(s)
- Salvatore Mancuso
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 460 O’Dowd Hall, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Cojocaru E, Oprea M, Vlăsceanu GM, Nicolae MC, Popescu RC, Mereuţă PE, Toader AG, Ioniţă M. Dual nanofiber and graphene reinforcement of 3D printed biomimetic supports for bone tissue repair. RSC Adv 2024; 14:32517-32532. [PMID: 39411258 PMCID: PMC11474446 DOI: 10.1039/d4ra06167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Replicating the intricate architecture of the extracellular matrix (ECM) is an actual challenge in the field of bone tissue engineering. In the present research study, calcium alginate/cellulose nanofibrils-based 3D printed scaffolds, double-reinforced with chitosan/polyethylene oxide electrospun nanofibers (NFs) and graphene oxide (GO) were prepared using the 3D printing technique. The porous matrix was provided by the calcium alginate, while the anisotropy degree and mechanical properties were ensured by the addition of fillers with different sizes and shapes (CNFs, NFs, GO), similar to the components naturally found in bone ECM. Surface morphology and 3D internal microstructure were analyzed using scanning electron microscopy (SEM) and micro-computed tomography (μ-CT), which evidenced a synergistic effect of the reinforcing and functional fibers addition, as well as of the GO sheets that seem to govern materials structuration. Also, the nanoindentation measurements showed significant differences in the elasticity and viscosity modulus, depending on the measurement point, this supported the anisotropic character of the scaffolds. In vitro assays performed on MG-63 osteoblast cells confirmed the biocompatibility of the calcium alginate-based scaffolds and highlighted the osteostimulatory and mineralization enhancement effect of GO. In virtue of their biocompatibility, structural complexity similar with the one of native bone ECM, and biomimetic mechanical characteristics (e.g. high mechanical strength, durotaxis), these novel materials were considered appropriate for specific functional needs, like guided support for bone tissue formation.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mădălina Oprea
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mădălina-Cristina Nicolae
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Roxana-Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- National Institute for Research and Development in Physics and Nuclear Engineering "Horia Hulubei", Department of Life and Environmental Physics 30 Reactor. Street Magurele Romania
| | - Paul-Emil Mereuţă
- National Institute for Research and Development in Physics and Nuclear Engineering "Horia Hulubei", Department of Applied Nuclear Physics 30 Reactor. Street Magurele Romania
| | - Alin-Georgian Toader
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mariana Ioniţă
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Center of Excellence in Bioengineering, National University of Science and Technology POLITEHNICA Bucharest 6 Iuliu Maniu Boulevard, Campus Building Bucharest 061344 Romania
| |
Collapse
|
7
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
8
|
Kosowska K, Korycka P, Jankowska-Snopkiewicz K, Gierałtowska J, Czajka M, Florys-Jankowska K, Dec M, Romanik-Chruścielewska A, Małecki M, Westphal K, Wszoła M, Klak M. Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:760. [PMID: 38727354 PMCID: PMC11085087 DOI: 10.3390/nano14090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.
Collapse
Affiliation(s)
- Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Kamila Jankowska-Snopkiewicz
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Joanna Gierałtowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Katarzyna Florys-Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Agnieszka Romanik-Chruścielewska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Kinga Westphal
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| |
Collapse
|
9
|
Han S, Zhao X, Cheng L, Fan J. Recent progresses in neural tissue engineering using topographic scaffolds. AMERICAN JOURNAL OF STEM CELLS 2024; 13:1-26. [PMID: 38505822 PMCID: PMC10944707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
Neural tissue engineering as alternatives to recover damaged tissues and organs is getting more and more attention due to the lack of regeneration ability of natural tissue nervous system after injury. Particularly, topographic scaffolds are one of the critical elements to guide nerve orientation and reconnection with characteristics of mimic the natural extracellular matrix. This review focuses on scaffolds preparation technologies, topographical features, scaffolds-based encapsulations delivery strategies for neural tissue regeneration, biological functions on nerve cell guidance and regeneration, and applications of topographic scaffolds in vivo and in vitro. Here, the recent developments in topographic scaffolds for neural tissue engineering by simulating neural cell topographic orientation and differentiation are presented. We also explore the challenges and future perspectives of topographical scaffolds in clinical trials and practical applications.
Collapse
Affiliation(s)
- Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan, China
| |
Collapse
|
10
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Sun L, Wang Y, Xu D, Zhao Y. Emerging technologies for cardiac tissue engineering and artificial hearts. SMART MEDICINE 2023; 2:e20220040. [PMID: 39188557 PMCID: PMC11235648 DOI: 10.1002/smmd.20220040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 08/28/2024]
Abstract
Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues. As an emerging field blending cell biology and material science, tissue engineering technique allows the construction of biomimetic living complexes as organ substitutes for heart repair. In this review, we will present the recent progress in cardiac tissue engineering and artificial hearts. After introducing the critical elements in cardiac tissue engineering, we will present advanced fabrication methods to achieve scaffolds with desired micro/nanostructure design as well as the applications of these bioinspired scaffolds. We will also discuss the current dilemma and possible development direction from a biomedical perspective.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|