1
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Pettinato E, Hocq R, Pflügl S. Utilization of the liquid one carbon feedstocks methanol and formate for acetogenic bioproduction of chemicals and fuels. BIORESOURCE TECHNOLOGY 2025:132643. [PMID: 40383309 DOI: 10.1016/j.biortech.2025.132643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
The fight against climate change requires consideration of carbon as a critical parameter in production systems, with the ultimate aim of creating a truly sustainable circular carbon economy. In this context, microbial bioproduction systems are a promising route to renewably generate value-added chemicals and fuels. Methanol and formate have recently gained interest as microbial one-carbon feedstocks, which can be produced sustainably from carbon dioxide and renewable energy, are easy to store and transport and readily dissolve in aqueous solutions. Acetogenic bacteria are strictly anaerobic microorganisms that can grow autotrophically on molecular hydrogen or use methanol, formate, and carbon monoxide as their sole carbon and energy sources via the Wood-Ljungdahl pathway, the most energetically efficient carbon fixation pathway known to date. Here, known variants of the Wood-Ljungdahl pathway, the physiology of a selection of methylotrophic and formatotrophic acetogens, and emphasize recent advancements in bioprocessing with respect to quantification of acetogen metabolism of methanol and formate as well as research aiming at establishing novel bioprocesses are reviewed. Additionally, the tools available for physiological and metabolic studies as well as for metabolic and genetic engineering are discussed. Finally, the features and constraints that govern the bioenergetics and stoichiometry of acetogen metabolism during growth on methanol and formate are reviewed, and future perspectives of the field discussed. The high energetic efficiency with which acetogens can convert methanol and formate into products renders them highly attractive platform hosts in the circular carbon economy.
Collapse
Affiliation(s)
- Eugenio Pettinato
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Hocq R, Horvath J, Stumptner M, Malevičius M, Thallinger GG, Pflügl S. A megatransposon drives the adaptation of Thermoanaerobacter kivui to carbon monoxide. Nat Commun 2025; 16:4217. [PMID: 40328730 PMCID: PMC12056078 DOI: 10.1038/s41467-025-59103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Acetogens are promising industrial biocatalysts for upgrading syngas, a gas mixture containing CO, H2 and CO2 into fuels and chemicals. However, CO severely inhibits growth of many acetogens, often requiring extensive adaptation to enable efficient CO conversion (carboxydotrophy). Here, we adapt the thermophilic acetogen Thermoanaerobacter kivui to use CO as sole carbon and energy source. Isolate CO-1 exhibits rapid growth on CO and syngas (co-utilizing CO, H2 and CO2) in batch and continuous cultures (µmax ~ 0.25 h-1). The carboxydotrophic phenotype is attributed to the mobilization of a CO-dependent megatransposon originating from the locus responsible for autotrophy in T. kivui. Transcriptomics reveal the crucial role the redox balance plays during carboxydotrophic growth. These insights are exploited to rationally engineer T. kivui to grow on CO. Collectively, our work elucidates a primary mechanism responsible for the acquisition of carboxydotrophy in acetogens and showcases how transposons can orchestrate evolution.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Circe Biotechnologie GmbH, Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Maja Stumptner
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Mykolas Malevičius
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Sitara A, Hocq R, Lu AJ, Pflügl S. Hi-TARGET: a fast, efficient and versatile CRISPR type I-B genome editing tool for the thermophilic acetogen Thermoanaerobacter kivui. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:49. [PMID: 40307869 PMCID: PMC12044746 DOI: 10.1186/s13068-025-02647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Due to its ability to grow fast on CO2, CO and H2 at high temperatures and with high energy efficiency, the thermophilic acetogen Thermoanaerobacter kivui could become an attractive host for industrial biotechnology. In a circular carbon economy, diversification and upgrading of C1 platform feedstocks into value-added products (e. g., ethanol, acetone and isopropanol) could become crucial. To that end, genetic and bioprocess engineering tools are required to facilitate the development of bioproduction scenarios. Currently, the genome editing tools available for T. kivui present some limitations in speed and efficiency, thus restricting the development of a powerful strain chassis for industrial applications. RESULTS In this study, we developed the versatile genome editing tool Hi-TARGET, based on the endogenous CRISPR Type I-B system of T. kivui. Hi-TARGET demonstrated 100% efficiency for gene knock-out (from both purified plasmid and cloning mixture) and knock-in, and 49% efficiency for creating point mutations. Furthermore, we optimized the transformation and plating protocol and increased transformation efficiency by 245-fold to 1.96 × 104 ± 8.7 × 103 CFU μg-1. Subsequently, Hi-TARGET was used to demonstrate gene knock-outs (pyrE, rexA, hrcA), a knock-in (ldh::pFAST), a single nucleotide mutation corresponding to PolCC629Y, and knock-down of the fluorescent protein pFAST. Analysis of the ∆rexA deletion mutant created with Hi-TARGET revealed that the transcriptional repressor rexA is likely involved in the regulation of the expression of lactate dehydrogenase (ldh). Following genome engineering, an optimized curing procedure for edited strains was devised. In total, the time required from DNA to a clean, edited strain is 12 days, rendering Hi-TARGET a fast, robust and complete method for engineering T. kivui. CONCLUSIONS The CRISPR-based genome editing tool Hi-TARGET developed for T. kivui can be used for scarless deletion, insertion, point mutation and gene knock-down, thus fast-tracking the generation of industrially-relevant strains for the production of carbon-negative chemicals and fuels as well as facilitating studies of acetogen metabolism and physiology.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Rémi Hocq
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Alexander Jiwei Lu
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
5
|
Zhai Y, Chen L, Ma L, Duan Y, Chen W, Long L, Wang G, Shi A, Chen G, Li D. Fluorescent protein-based anaerobic reporter for construction of promoter libraries in Clostridium autoethanogenum. Int J Biol Macromol 2025; 310:143155. [PMID: 40268006 DOI: 10.1016/j.ijbiomac.2025.143155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Clostridium autoethanogenum, a key organism for syngas fermentation, has great industrial potential as an anaerobic microbe. However, tools for monitoring and characterizing gene expression, such as fluorescent protein-based anaerobic reporters (FPARs), and promoter libraries for regulating expression intensity, are lacking. In this study, we developed a fluorescent protein-based anaerobic reporter (FPAR) tailored for C. autoethanogenum. The FPAR enabled intuitive and precise assessment of promoter activity, facilitating the creation of libraries of constitutive promoters with varying expression strengths, as well as lactose-inducible promoter libraries. The strongest constitutive promoter exhibited approximately 7.5-fold greater activity than the weakest, while the strongest inducible promoter demonstrated a 10-fold increase compared to the weakest. This work not only establishes an efficient FPAR system for C. autoethanogenum, but also provides key genetic elements for advancing metabolic engineering and optimizing industrial processes involving this microbe.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liucheng Long
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guanglei Wang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Aijia Shi
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
6
|
Hocq R, Thallinger GG, Pflügl S. Sequencing of a Thermoanaerobacter kivui isolate from DSMZ stock: major differences with reference assembly. Microbiol Resour Announc 2025; 14:e0125024. [PMID: 39910716 PMCID: PMC11895483 DOI: 10.1128/mra.01250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025] Open
Abstract
Thermoanaerobacter kivui DSM 2030 is an industrially relevant microbe, whose genome has been available since 2014. As the stock obtained from DSMZ appeared to be multiclonal, we obtained a complete genome sequence by de novo assembly of an isolate from the DSMZ stock and reported differences to the initial assembly.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | | | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
7
|
Schöllkopf AI, Almeida L, Krammer K, Rivero CG, Liebl W, Ehrenreich A. Deletion of atypical type II restriction genes in Clostridium cellulovorans using a Cas9-based gene editing system. Appl Microbiol Biotechnol 2025; 109:31. [PMID: 39878871 PMCID: PMC11779793 DOI: 10.1007/s00253-025-13404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C. cellulovorans. The availability of reporter genes is another requirement for strain engineering and biotechnological applications. In this work, the oxygen-free fluorescence absorption-shift tag (FAST) system was used to characterize promoter strength in C. cellulovorans. Selected promoters were used to establish a CRISPR/Cas system for markerless chromosomal modifications. For stringent control of expression of Cas9, a theophylline-dependent riboswitch was used, and additionally, the anti-CRISPR protein AcrIIA4 was used to reduce the basal activity of the Cas9 in the off-state of the riboswitch. Finally, the newly established CRISPR/Cas system was used for the markerless deletion of the genes encoding two restriction endonucleases of a type II restriction-modification (RS) system from the chromosome of C. cellulovorans. In comparison to the WT, the conjugation efficiency when using the deletion mutant as the recipient strain was improved by about one order of magnitude, without the need for prior C. cellulovorans-specific in vivo methylation of the conjugative plasmid in the E. coli donor strain. KEY POINTS: • Quantification of heterologous promoters enables rational choice for genetic engineering. • CRISPR/Cas with riboswitch and anti-CRISPR allows efficient gene deletion in C. cellulovorans. • Conjugation protocol and type II REase deletion enhance genetic accessibility.
Collapse
Affiliation(s)
- Aline I Schöllkopf
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Luciana Almeida
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Karina Krammer
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Current address: Max Von Pettenkofer-Institut, Pettenkoferstraße 9A, Munich, Germany
| | - Cristina González Rivero
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Current address: Bayerische Landesanstalt Für Landwirtschaft, Lange Point 4, Freising, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
8
|
Le Y, Zhang M, Wu P, Wang H, Ni J. Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing. ENGINEERING MICROBIOLOGY 2024; 4:100174. [PMID: 39628591 PMCID: PMC11610967 DOI: 10.1016/j.engmic.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024]
Abstract
The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengqi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Pengju Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huilei Wang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
9
|
Keating C, Fiege K, Diender M, Sousa DZ, Villanueva L. Microbial single-cell applications under anoxic conditions. Appl Environ Microbiol 2024; 90:e0132124. [PMID: 39345115 PMCID: PMC11577760 DOI: 10.1128/aem.01321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The field of microbiology traditionally focuses on studying microorganisms at the population level. Nevertheless, the application of single-cell level methods, including microfluidics and imaging techniques, has revealed heterogeneity within populations, making these methods essential to understand cellular activities and interactions at a higher resolution. Moreover, single-cell sorting has opened new avenues for isolating cells of interest from microbial populations or complex microbial communities. These isolated cells can be further interrogated in downstream single-cell "omics" analyses, providing physiological and functional information. However, applying these methods to study anaerobic microorganisms under in situ conditions remains challenging due to their sensitivity to oxygen. Here, we review the existing methodologies for the analysis of viable anaerobic microorganisms at the single-cell level, including live-imaging, cell sorting, and microfluidics (lab-on-chip) applications, and we address the challenges involved in their anoxic operation. Additionally, we discuss the development of non-destructive imaging techniques tailored for anaerobes, such as oxygen-independent fluorescent probes and alternative approaches.
Collapse
Affiliation(s)
- Ciara Keating
- Department of Engineering, Durham University, Durham, United Kingdom
| | - Kerstin Fiege
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, the Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, the Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, the Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, the Netherlands
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Mühling L, Baur T, Molitor B. Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363002 DOI: 10.1007/10_2024_270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.
Collapse
Affiliation(s)
- Lucas Mühling
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Tina Baur
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Sitara A, Hocq R, Horvath J, Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. BIORESOURCE TECHNOLOGY 2024; 408:131164. [PMID: 39069138 DOI: 10.1016/j.biortech.2024.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
12
|
Bourgade B, Islam MA. Progresses and challenges of engineering thermophilic acetogenic cell factories. Front Microbiol 2024; 15:1476253. [PMID: 39282569 PMCID: PMC11392765 DOI: 10.3389/fmicb.2024.1476253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Thermophilic acetogens are gaining recognition as potent microbial cell factories, leveraging their unique metabolic capabilities to drive the development of sustainable biotechnological processes. These microorganisms, thriving at elevated temperatures, exhibit robust carbon fixation abilities via the linear Wood-Ljungdahl pathway to efficiently convert C1 substrates, including syngas (CO, CO2 and H2) from industrial waste gasses, into acetate and biomass via the central metabolite acetyl-CoA. This review summarizes recent advancements in metabolic engineering and synthetic biology efforts that have expanded the range of products derived from thermophilic acetogens after briefly discussing their autotrophic metabolic diversity. These discussions highlight their potential in the sustainable bioproduction of industrially relevant compounds. We further review the remaining challenges for implementing efficient and complex strain engineering strategies in thermophilic acetogens, significantly limiting their use in an industrial context.
Collapse
Affiliation(s)
- Barbara Bourgade
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
13
|
Bae J, Park C, Jung H, Jin S, Cho BK. Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production. RSC Chem Biol 2024; 5:812-832. [PMID: 39211478 PMCID: PMC11353040 DOI: 10.1039/d4cb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
The pressing climate change issues have intensified the need for a rapid transition towards a bio-based circular carbon economy. Harnessing acetogenic bacteria as biocatalysts to convert C1 compounds such as CO2, CO, formate, or methanol into value-added multicarbon chemicals is a promising solution for both carbon capture and utilization, enabling sustainable and green chemical production. Recent advances in the metabolic engineering of acetogens have expanded the range of commodity chemicals and biofuels produced from C1 compounds. However, producing energy-demanding high-value chemicals on an industrial scale from C1 substrates remains challenging because of the inherent energetic limitations of acetogenic bacteria. Therefore, overcoming this hurdle is necessary to scale up the acetogenic C1 conversion process and realize a circular carbon economy. This review overviews the acetogenic bacteria and their potential as sustainable and green chemical production platforms. Recent efforts to address these challenges have focused on enhancing the ATP and redox availability of acetogens to improve their energetics and conversion performances. Furthermore, promising technologies that leverage low-cost, sustainable energy sources such as electricity and light are discussed to improve the sustainability of the overall process. Finally, we review emerging technologies that accelerate the development of high-performance acetogenic bacteria suitable for industrial-scale production and address the economic sustainability of acetogenic C1 conversion. Overall, harnessing acetogenic bacteria for C1 valorization offers a promising route toward sustainable and green chemical production, aligning with the circular economy concept.
Collapse
Affiliation(s)
- Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyunwoo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Baleeva NS, Bogdanova YA, Goncharuk MV, Sokolov AI, Myasnyanko IN, Kublitski VS, Smirnov AY, Gilvanov AR, Goncharuk SA, Mineev KS, Baranov MS. A Combination of Library Screening and Rational Mutagenesis Expands the Available Color Palette of the Smallest Fluorogen-Activating Protein Tag nanoFAST. Int J Mol Sci 2024; 25:3054. [PMID: 38474299 DOI: 10.3390/ijms25053054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.
Collapse
Affiliation(s)
- Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Aidar R Gilvanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| |
Collapse
|