1
|
Fisher CG, Falk MM. Endocytosis and Endocytic Motifs across the Connexin Gene Family. Int J Mol Sci 2023; 24:12851. [PMID: 37629031 PMCID: PMC10454166 DOI: 10.3390/ijms241612851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins fated to be internalized by clathrin-mediated endocytosis require an endocytic motif, where AP-2 or another adaptor protein can bind and recruit clathrin. Tyrosine and di-leucine-based sorting signals are such canonical motifs. Connexin 43 (Cx43) has three canonical tyrosine-based endocytic motifs, two of which have been previously shown to recruit clathrin and mediate its endocytosis. In addition, di-leucine-based motifs have been characterized in the Cx32 C-terminal domain and shown to mediate its endocytosis. Here, we examined the amino acid sequences of all 21 human connexins to identify endocytic motifs across the connexin gene family. We find that although there is limited conservation of endocytic motifs between connexins, 14 of the 21 human connexins contain one or more canonical tyrosine or di-leucine-based endocytic motif in their C-terminal or intracellular loop domain. Three connexins contain non-canonical (modified) di-leucine motifs. However, four connexins (Cx25, Cx26, Cx31, and Cx40.1) do not harbor any recognizable endocytic motif. Interestingly, live cell time-lapse imaging of different GFP-tagged connexins that either contain or do not contain recognizable endocytic motifs readily undergo endocytosis, forming clearly identifiable annular gap junctions when expressed in HeLa cells. How connexins without defined endocytic motifs are endocytosed is currently not known. Our results demonstrate that an array of endocytic motifs exists in the connexin gene family. Further analysis will establish whether the sites we identified in this in silico analysis are legitimate endocytic motifs.
Collapse
Affiliation(s)
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Watanabe M. Fish-specific N-terminal domain sequence in Connexin 39.4 plays an important role in zebrafish stripe formation by regulating the opening and closing of gap junctions and hemichannels. Biochim Biophys Acta Gen Subj 2023; 1867:130342. [PMID: 36889448 DOI: 10.1016/j.bbagen.2023.130342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Connexin 39.4 (Cx39.4) is involved in zebrafish (Danio rerio) skin patterning; when mutated, zebrafish exhibit a wavy stripe/labyrinth pattern instead of stripes. Cx39.4 is unique in that it has two additional serine/arginine (SR) residues, Ser2 and Arg3, at positions 2 and 3. Here, I investigated the role of these SR residues in Cx39.4 function. METHODS To examine the SR residues in Cx39.4, mutants of the SR residues were generated. Voltage-clamp recordings were performed using Xenopus oocytes to characterize the channel properties of the mutants. Transgenic zebrafish expressing each mutant were generated, and the effects of each mutation on fish skin patterning were evaluated. RESULTS The Cx39.4R3K mutant showed essentially the same properties as the wild-type (Cx39.4WT) in both electrophysiological analyses, leading to transgenic, complete phenotype rescue. Both the Cx39.4R3A mutant and deletion mutant of SR residues (Cx39.4delSR) showed a faster decay of gap junction activity and abnormal hemichannel activity, resulting in wide stripes and interstripes that indicate instability. Although the Cx39.4R3D mutant showed no channel activity in gap junctions or hemichannels, it caused unstable phenotypes in the transgene, namely a completely rescued phenotype in some individuals and loss of melanophores in others. CONCLUSIONS The SR residues in the NT domain of Cx39.4 are critical for the regulation of channel function, which appears to determine skin patterning. GENERAL SIGNIFICANCE These results elucidate the roles of the two SR residues unique to the NT domain of Cx39.4 in its channel function, which is important for zebrafish stripe pattern formation.
Collapse
Affiliation(s)
- Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Liu Y, Cao M, Yan X, Cai X, Li Y, Li C, Xue T. Genome-wide identification of gap junction (connexins and pannexins) genes in black rockfish (Sebastes schlegelii): Evolution and immune response mechanism following challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108492. [PMID: 36529400 DOI: 10.1016/j.fsi.2022.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication through gap junction channels is very important to coordinate the functions of cells in all multicellular biological tissues. It allows the direct exchange of ions and small molecules (including second messengers, such as Ca2+, IP3, cyclic nucleotides, and oligonucleotides). In this study, a total of 48 members of the gap junction (GJ) protein family were identified from Sebastes schlegelii. In S. schlegelii, GJ proteins were classified into two types, connexin, and pannexin, and then connexins were divided into five subfamilies. The naming of 48 genes was verified through phylogenetic analysis and syntenic analysis. The connexin proteins contained four transmembrane fragments and two extracellular loops, the lengths of the intracellular loop and C-terminal was quite different, and the C-terminal region was highly variable after post-translational modification. PPI analysis showed that GJs interacted with tight junctions, adhesive junctions, and cell adhesions to form a complex network and participated in cell-cell junction organization, ATP binding, ion channel, voltage-gated conduction, wnt signaling pathway, Fc-γ receptor signaling pathway, and DNA replication. In addition, the S. schlegelii GJ protein was highly expressed in intestinal tissues and remarkably regulated after Edwardsiella tarda and Streptococcus iniae infection. The expression of GJs in intestinal cells of S. schlegelii was significantly regulated by LPS and poly (I:C), which was consistent with the results of intestinal tissue stimulation by pathogens. In conclusion, this study can provide valuable information for further research on the function of S. schlegelii GJ proteins.
Collapse
Affiliation(s)
- Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite 2022; 29:51. [PMID: 36350193 PMCID: PMC9645230 DOI: 10.1051/parasite/2022052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-assembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcriptomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found. We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin receptors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The present study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea, which can serve as useful genomic datasets for functional genomic research of this important group of parasites.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - F. Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| |
Collapse
|
5
|
Lukowicz-Bedford RM, Farnsworth DR, Miller AC. Connexinplexity: the spatial and temporal expression of connexin genes during vertebrate organogenesis. G3 (BETHESDA, MD.) 2022; 12:jkac062. [PMID: 35325106 PMCID: PMC9073686 DOI: 10.1093/g3journal/jkac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Animal development requires coordinated communication between cells. The Connexin family of proteins is a major contributor to intercellular communication in vertebrates by forming gap junction channels that facilitate the movement of ions, small molecules, and metabolites between cells. Additionally, individual hemichannels can provide a conduit to the extracellular space for paracrine and autocrine signaling. Connexin-mediated communication is widely used in epithelial, neural, and vascular development and homeostasis, and most tissues likely use this form of communication. In fact, Connexin disruptions are of major clinical significance contributing to disorders developing from all major germ layers. Despite the fact that Connexins serve as an essential mode of cellular communication, the temporal and cell-type-specific expression patterns of connexin genes remain unknown in vertebrates. A major challenge is the large and complex connexin gene family. To overcome this barrier, we determined the expression of all connexins in zebrafish using single-cell RNA-sequencing of entire animals across several stages of organogenesis. Our analysis of expression patterns has revealed that few connexins are broadly expressed, but rather, most are expressed in tissue- or cell-type-specific patterns. Additionally, most tissues possess a unique combinatorial signature of connexin expression with dynamic temporal changes across the organism, tissue, and cell. Our analysis has identified new patterns for well-known connexins and assigned spatial and temporal expression to genes with no-existing information. We provide a field guide relating zebrafish and human connexin genes as a critical step toward understanding how Connexins contribute to cellular communication and development throughout vertebrate organogenesis.
Collapse
Affiliation(s)
| | - Dylan R Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
6
|
Cai X, Gao C, Cao M, Su B, Liu X, Wang B, Li C. Genome-wide characterization of gap junction (connexins and pannexins) genes in turbot (Scophthalmus maximus L.): evolution and immune response following Vibrio anguillarum infection. Gene 2022; 809:146032. [PMID: 34673208 DOI: 10.1016/j.gene.2021.146032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/26/2023]
Abstract
Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Usui Y, Watanabe M. Role of the Connexin C-terminus in skin pattern formation of Zebrafish. BBA ADVANCES 2021; 1:100006. [PMID: 37082017 PMCID: PMC10074918 DOI: 10.1016/j.bbadva.2021.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Zebrafish display a striped skin pattern on their body; two types of connexins, namely, Connexin39.4 (Cx39.4) and Connexin41.8 (Cx41.8), are involved in stripe pattern formation. Herein, we investigated the role of the C-terminal (CT) domains of Cx39.4 and Cx41.8 in vivo and in vitro. Methods To investigate the role of CT domains in vivo, we established transgenic zebrafish lines expressing the CT-domain-modified connexin series in pigmented cells and observed skin patterns in fish. To investigate the role of the CT domains in vitro, we expressed the CT-domain modified connexin series in Neuro-2a (N2a) cells and calculated the plaque formation frequency. Results The overexpression of Cx39.4 lacking a CT domain produced skin patterns similar to that produced by full-length Cx39.4 in the cx39.4 -/- mutant and in cx39.4 and cx41.8 double-knockout mutant zebrafish. Fluorescence-protein-fused CT-domain-modified Cx39.4 formed gap junction plaques between N2a cells. The overexpression of CT-truncated Cx41.8 rescued the mutant phenotype in the cx41.8 -/- mutant but did not function in the double knockout zebrafish. Fluorescence-protein-fused CT-truncated Cx41.8 hardly formed plaques between N2a cells without Cx39.4 but formed gap junction plaques when co-expressed with Cx39.4. Conclusions The CT domain of Cx39.4 is not required for protein function, at least in the pigment cells of zebrafish. However, the need for the CT domain of Cx41.8 depends on Cx39.4 expression. General significance These results provide evidence for the interactions between Cx39.4 and Cx41.8 in pigment cells of zebrafish and suggest that at least one connexin must have a CT domain.
Collapse
|
9
|
Volkening A. Linking genotype, cell behavior, and phenotype: multidisciplinary perspectives with a basis in zebrafish patterns. Curr Opin Genet Dev 2020; 63:78-85. [PMID: 32604031 DOI: 10.1016/j.gde.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Zebrafish are characterized by dark and light stripes, but mutants display a rich variety of altered patterns. These patterns arise from the interactions of brightly colored pigment cells, making zebrafish a self-organization problem. The diversity of patterns present in zebrafish and other emerging fish models provides an excellent system for elucidating how genes, cell behavior, and visible animal characteristics are related. With the goal of highlighting how experimental and mathematical approaches can be used to link these scales, I overview current descriptions of zebrafish patterning, describe advances in the understanding of the mechanisms underlying cell communication, and discuss new work that moves beyond zebrafish to explore patterning in evolutionary relatives.
Collapse
Affiliation(s)
- Alexandria Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Sciences and Applied Mathematics, Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, Craft SL, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5719-5728. [PMID: 32255618 DOI: 10.1021/acs.est.0c00628] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amanda N Buerger
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Hana Vespalcova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Shahadur R Sohag
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amy T Hanlon
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Pamela E Ginn
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Serena L Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Maria Persico
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
| | | | - Adam C. Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
12
|
Early life exposure to cortisol in zebrafish (Danio rerio): similarities and differences in behaviour and physiology between larvae of the AB and TL strains. Behav Pharmacol 2020; 30:260-271. [PMID: 30724799 DOI: 10.1097/fbp.0000000000000470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maternal stress and early life stress affect development. Zebrafish (Danio rerio) are ideally suited to study this, as embryos develop externally into free-feeding larvae. The objective of this study was therefore to assess the effects of increased levels of cortisol, mimicking thereby maternal stress, on larval physiology and behaviour. We studied the effects in two common zebrafish strains, that is, AB and Tupfel long-fin (TL), to assess strain dependency of effects. Fertilized eggs were exposed to a cortisol-containing medium (1.1 μmol/l) or control medium from 0 to 6 h following fertilization, after which at 5-day following fertilization, larval behaviour and baseline hypothalamus-pituitary-interrenal cells axis functioning were measured. The data confirmed earlier observed differences between AB larvae and TL larvae: a lower hypothalamus-pituitary-interrenal axis activity in TL larvae than AB larvae, and slower habituation to repeated acoustic/vibrational stimuli in TL larvae than AB larvae. Following cortisol treatment, increased baseline levels of cortisol were found in AB larvae but not TL larvae. At the behavioural level, increased thigmotaxis or 'wall hugging' was found in AB larvae, but decreased thigmotaxis in TL larvae; however, both AB larvae and TL larvae showed decreased habituation to repeated acoustic/vibrational stimuli. The data emphasize that strain is a critical factor in zebrafish research. The habituation data suggest a robust effect of cortisol exposure, which is likely an adaptive response to increase the likelihood of detecting or responding to potentially threatening stimuli. This may enhance early life survival. Along with other studies, our study underlines the notion that zebrafish may be a powerful model animal to study the effects of maternal and early life stress on life history.
Collapse
|
13
|
Mohindra V, Dangi T, Tripathi RK, Kumar R, Singh RK, Jena JK, Mohapatra T. Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Sci Rep 2019; 9:16511. [PMID: 31712633 PMCID: PMC6848103 DOI: 10.1038/s41598-019-52603-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/18/2019] [Indexed: 01/23/2023] Open
Abstract
This study provides the first high-quality draft genome assembly (762.5 Mb) of Tenualosa ilisha that is highly contiguous and nearly complete. We observed a total of 2,864 contigs, with 96.4% completeness with N50 of 2.65 Mbp and the largest contig length of 17.4 Mbp, along with a complete mitochondrial genome of 16,745 bases. A total number of 33,042 protein coding genes were predicted, among these, 512 genes were classified under 61 Gene Ontology (GO) terms, associated with various homeostasis processes. Highest number of genes belongs to cellular calcium ion homeostasis, followed by tissue homeostasis. A total of 97 genes were identified, with 16 GO terms related to water homeostasis. Claudins, Aquaporins, Connexins/Gap junctions, Adenylate cyclase, Solute carriers and Voltage gated potassium channel genes were observed to be higher in number in T. ilisha, as compared to that in other teleost species. Seven novel gene variants, in addition to claudin gene (CLDZ), were found in T. ilisha. The present study also identified two putative novel genes, NKAIN3 and L4AM1, for the first time in fish, for which further studies are required for pinpointing their functions in fish. In addition, 1.6 million simple sequence repeats were mined from draft genome assembly. The study provides a valuable genomic resource for the anadromous Hilsa. It will form a basis for future studies, pertaining to its adaptation mechanisms to different salinity levels during migration, which in turn would facilitate in its domestication.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
| | - Tanushree Dangi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Ratnesh K Tripathi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.,Imperial Life Sciences (P) Limited, Gurgaon, Haryana, 122001, India
| | - Rajesh Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| | - T Mohapatra
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| |
Collapse
|
14
|
Emfinger CH, Lőrincz R, Wang Y, York NW, Singareddy SS, Ikle JM, Tryon RC, McClenaghan C, Shyr ZA, Huang Y, Reissaus CA, Meyer D, Piston DW, Hyrc K, Remedi MS, Nichols CG. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol Rep 2019; 7:e14101. [PMID: 31161721 PMCID: PMC6546968 DOI: 10.14814/phy2.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Islet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in β-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven β-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.
Collapse
Affiliation(s)
- Christopher H. Emfinger
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Réka Lőrincz
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Yixi Wang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Nathaniel W. York
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Soma S. Singareddy
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Jennifer M. Ikle
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Robert C. Tryon
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Conor McClenaghan
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Zeenat A. Shyr
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Yan Huang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Christopher A. Reissaus
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
| | - Dirk Meyer
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - David W. Piston
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Krzysztof Hyrc
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Maria S. Remedi
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Colin G. Nichols
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| |
Collapse
|
15
|
Denis JF, Diagbouga MR, Molica F, Hautefort A, Linnerz T, Watanabe M, Lemeille S, Bertrand JY, Kwak BR. KLF4-Induced Connexin40 Expression Contributes to Arterial Endothelial Quiescence. Front Physiol 2019; 10:80. [PMID: 30809154 PMCID: PMC6379456 DOI: 10.3389/fphys.2019.00080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis.
Collapse
Affiliation(s)
- Jean-François Denis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tanja Linnerz
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Chanson M, Watanabe M, O'Shaughnessy EM, Zoso A, Martin PE. Connexin Communication Compartments and Wound Repair in Epithelial Tissue. Int J Mol Sci 2018; 19:ijms19051354. [PMID: 29751558 PMCID: PMC5983803 DOI: 10.3390/ijms19051354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.
Collapse
Affiliation(s)
- Marc Chanson
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | - Erin M O'Shaughnessy
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Alice Zoso
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|